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Abstract 

In this integrated study, a turboshaft engine was evaluated by adding inlet air cooling and regenerative 

cooling based on energy-environment analysis. First, impacts of flight-Mach number, flight altitude, the 

compression ratio of compressor-1 in the main cycle, the turbine inlet temperature of turbine-1 in the 

main cycle, temperature fraction of turbine-2, the compression ratio of the accessory cycle, and inlet air 

temperature  variation in inlet air cooling system on some functional performance parameters of 

Regenerative turboshaft engine cycle equipped with inlet air cooling system such as power-specific fuel 

consumption, Power output, thermal efficiency, and mass flow rate of Nitride oxides (NOx) including NO 

and NO2 has been investigated via using hydrogen as fuel working. Consequently, based on the analysis, 

a model was developed to predict the  energy-environment performance of the Regenerative turboshaft 

engine cycle equipped with a cooling air cooling system based on a deep neural network (DNN) with 2 

hidden layers with 625 neurons for each hidden layer. The model proposed to predict the amount of 

thermal efficiency and the mass flow rate of nitride oxide (NOx) containing NO and NO2. The results 

demonstrated the accuracy of the integrated DNN model with the proper amount of the MSE, MAE, and 

RMSD cost function for both predicted outputs to validate both testing and training data. Also, 𝑅 and 𝑅2 

are noticeably calculated very close to 1 for both thermal Efficiency and NOx emission mass flow rate for 

both validations of thermal efficiency and NOx emission mass flow rate prediction values with its training 

and its testing data.  

Keywords: DNN; Inlet Air cooling; Regenerative; Turboshaft engine; Energy and Environment.  

 

 



 

 
 
 

 

 

 

NOMENCLATURE 

𝐴 Area (m2) Greek symbol 

𝐶𝑝 Specific heat capacity (J/kgK) ΔT Temperature variation (K) 

𝐶𝑅 accessory cycle compression ratio 𝜂 Thermal efficiency 

𝑑 Density (kg/m3) 𝛾 Speed of sound (m/s) 

𝑓(𝑥) Activation function 𝜙 Equivalent ratio 

𝐻 Flight Altitude (m) Subscript 

𝑘 Specific heat ratio a Inlet air 

𝑀𝑎 Flight-Mach number c compressor 

𝑚 Mass flow rate (kg/s) PC Cooling Pump 

𝑚 Mass flux (kg/s.m2) Comb Combustor 

𝑃 Pressure (kPa) H Heating 

𝑟 Compression ratio of compressor F Fuel 

R Pearson Correlation factor T turbine 

R2 Determination factor Abbreviation 

𝑇 Temperature (K) 𝑀𝐴𝐸 Mean-absolute error 

𝑇ℎ𝑟𝑢𝑠𝑡 Thrust Force (kN) 𝑀𝑆𝐸 Mean-Squared Error 

Q Heat rate value 𝑅𝑀𝑆𝐷 root-mean-squared deviation 

TF Temperature Fraction 𝐿𝐻𝑉 Lower heating value 

𝑉 Velocity (m/s) 𝑃𝑆𝐹𝐶 Power-Specific fuel consumption 

𝑈𝑖 Actual output GT Gas Turbine 

W Power output (kW) NOx Nitride oxides 

 

1. Introduction 

 

1.1. Background 

 

Gas turbine engines are one of the types of internal combustion engines that operate based on the 

Brayton cycle. Some aero engines are of the type of gas turbine (GT). Since the gas engine plays an 

important role in different industries such as electricity generation, and the air transmission industry. So, 

to improve the performance of gas turbine engines, optimization, prediction, and their thermodynamic 

https://en.wikipedia.org/wiki/Mean_absolute_percentage_error


 

 
 
 

cycle behavior are crucial in improving the performance of gas turbine engines. The most important 

performance parameters that are considered in thermodynamic cycle analysis can be output power, 

specific fuel consumption (PSFC), and thermal efficiency. The simplest procedure for an industrial gas 

turbine engine is the turboshaft engine [1, 2].  

The turboshaft engine works like another gas turbine engine, which is named the turboprop engine, while 

the difference is that the hot gases are expanded into an open turbine or power turbine to produce more 

shaft power. Turboshaft engines are intended to produce shaft power only and are exploited in 

helicopters, ships, trains, tanks, pump units, numerous industrial gas turbines, and other implementations 

[3]. 

In this type of gas turbine engine, the airflow enters a compressor and enters the combustor so much that 

it reacts with fuel and then enters the turbine and makes a move in the turbine, then it exhausts to the 

ambient. The production power of the turbine is used to consume the power of the compressor and to turn 

on the generator (in aero engines, power shaft). It can be found that the prediction and evaluation are the 

cases based on future studies on such engines. 

Machine Learning (ML) and Deep learning (DL) are the branches of Artificial intelligence (AI) that can 

be exploited in many fields associated with energy systems [4]. The gas turbine as one of the energy 

systems is no exception to this rule in order to use artificial intelligence  [5]. The most significant, 

recurrent, and enhancing AI application in the gas turbine studies has been pointed out that anyone 

interested in this subject can find and find a better considerate. Contemplate using these models. 

1.2. Literature Review 

Recent studies verified that thermodynamical analysis is required to study gas turbine evaluation. 

Aygun [6] attempted to analyze the thermodynamic cycle of an engine under different working 

conditions. In Aygun’s study, the engine PSFC and output power are calculated to range between 377.5 to 

588 grams per kilowatt hour and range between 377.33 and 1772.53 kW, respectively. Patel et al.  [7]  tried 

to optimize the subsonic /supersonic turbojet engine in the design point conditions based on the 

efficiency, the specific fuel consumption, and the thrust, the optimum value of the thermal efficiency and 

propulsive efficiency were respectively deliberated as 70.95 and 60.23 %,  Also, In another study, Zhou et 

al. [8] simultaneously examined and optimized recuperated gas turbine with a three-shaft engine and by 

decoupling power turbine mutable area nozzle  (VAN) angle. They projected the control strategy for 

turbine shaft speed and VAN angle. When relative high-pressure shaft speed is respectively 0.95, 0.90, 

and 0.85, output power increased 6.37%, 15.88%, 47.80% and thermal efficiency increased 10.84%, 

25.59%, 64.97% respectively. 

Increasing the thermal efficiency of gas turbine engines has always been one of the challenges of the 

optimization of these systems. One of the conventional methods for increasing the efficiency of gas 

turbine engines  is inlet air cooling. The results are shown by reducing the input air cooling temperature in 

gas turbine engines, thermal efficiency is increased. For instance, Najjar and  Abubaker [9] demonstrated 

that by decreasing the inlet air temperature, inlet air density is increased so the inlet air mass flow rate is 

enlarged, which affects performance parameters such as thermal efficiency and thrust. 

Baakeem et al. [10] inspected the development of the gas turbine power plant by inlet air cooling methods 

(TIAC) in optimum conditions with the cooling capacity of 36 kW/m3s-1 for all TIAC systems and an inlet 

temperature drop of 8 Celsius.  In another study, Yazdi et al. [11] investigated different climates in the 

inlet air of gas turbine engines in different climates of cities, including Yazd (hot–arid), Bandar Abbas 



 

 
 
 

(hot–humid), Ardabil (cold-humid), and Sari (humid subtropical). the cooling system methods consist of 

an absorption chiller, heat pump, and input mist eliminator system for inlet air cooling. In their study, the 

optimum working cooling method is based on different objective functions, such as pollution and the cost 

of electricity generation for each climate. Also, in another study, Deymi-Dashtebayaz and Kazemiani – 

Najafabad [12] explored the effect of different inlet air cooling methods of compressors in gas turbine 

engines. These methods include chiller  media, mist eliminator, and absorption as normal cooling methods 

and pressure drop stations as a new cooling method. Part of the results of this study suggested that the 

absorption chiller system has the highest temperature drop in the air inlet temperature of the compressor, 

increasing the thermal and exergy efficiency of the cycle reported by about 2.5 and 3 %, respectively. 

One of the common methods to increase GT thermal efficiency is adding heat recovery and combing it 

with the Rankine power generation cycle. These methods increase the thermal efficiency of the overall 

cycle by reducing the heat loss of the gas turbine cycle. 

Bontempo and Manna [13] added an intercooler and a reheat Rankine cycle to the gas turbine engine and 

with regard to adding this advanced gas turbine cycle, they tried to optimize this specific advanced gas 

turbine based on power and efficiency. They determined that the energy efficiency of this advanced gas 

turbine is 24.96% higher than the simple one. Furthermore, in another study, Cha et al. [14] considered 

the effect of thermodynamic analysis of a GT engine cycle using inlet air cooling and heat recovery. The 

results showed that by adding the cooling in the inlet air and heat recovery, the output power and thermal 

efficiency increased to 25.4 % and 11.5% respectively. Sanaye et al. [15] analyzed, including Energy, 

Exergy, Economic, and Environmental (4E analysis), a plant that combined cooling, heating, power, and 

water system (CCHPW) involving a gas turbine, an Heat Recovery Steam Generator (HRSG) including 

steam and absorption refrigeration system equipped with an inlet air cooling system. 

Recent studies have shown that hydrogen [16-18] used as fuel has advantages over the use of hydrocarbon 

fuels in gas turbine engines such as kerosene [19-21].  For instance, Derakhshandeh et al. [22] compared a 

hydrocarbon-fueled turbofan and a hydrogen-fueled turbofan based on the GE90 turbofan engine. Then an 

optimization with regards to economy and ecology was done. The consequences specified that in the 

hydrogen-fueled optimized cycle, the thermal efficiency improved by 2.65%.  Kaya et al. [23] examined 

the advancement potential of the exergetic sustainability of a hydrogen-fueled turbofan UAV with heat 

recovery to save fuel and environmental influence reduction in the standard atmosphere with a relative 

humidity of 60% and altitude in the range of  0 to 16 km. In this way, fuel has been saved by about 11%. 

Farahani  et al. [24] investigated the thermal efficiency, exergy efficiency, and exergy destruction of the 

TF30-P414 turbofan engine to check the effect of the changes in the flight altitude (H) and the flight-

Mach number (Ma) by using an Optimization approach. 

The nitric oxide (NOx) formation Correlations are industrialized and clarified as a function of numerous 

parameters that affect performance and emissions [25]. 

Another challenge for a gas turbine engine is to reduce the mass flow rate of nitric  oxide compounds 

emission in such systems. Therefore, a lot of efforts have been made in this regard. Park et al. [26] 

empirically investigated the reduction of NOx emission of a real gas turbine based on Mitsubishi Hitachi 

Power System’s GT model for power generation: 501G by considering the pilot fuel split ratio of 

combustion-tuning parameters as sensitivity analysis for CCPP (combined cycle power plant) at Korea 

Western Power. 

Zhang et al. [27] executed multi-objective genetic algorithm optimization with an objective function of 

higher efficiency and lower emissions for a helicopter turboshaft engine under given flight conditions 

with respect to the designated heat transfer surface geometries.    

In recent years, artificial intelligence has been a hot topic for prediction for several applications, such as 

energy systems. For Example, Motaghian et al. [28] applied the Artificial Neural Network to predict the 

performance prediction of a solid desiccant wheel; also, it can be applied to predict in many fields such as 

https://www.sciencedirect.com/topics/engineering/atmosphere-standard


 

 
 
 

prediction of Composite Properties [29, 30], prediction of Tensile − Shear strength [31], and prediction of 

temperature and force in bone drilling process [32]. However, the most common usage of ANN in the gas 

turbine is fault diagnosis. For instance, Bai et al. [33] investigated the use of a Convolutional neural 

network (CNN) based on deep transfer learning to detect the fault detection of data-rich gas turbine 

combustion chambers.  

The other application of artificial intelligence in the gas turbine is the prediction of performance or 

pollutant emissions. For instance, the prediction of turbofan engine performance as one of the gas turbine 

engines has been studied by Sabzehali et al. [34]; in another study, Liu and Karimi [35] predicted a GT 

performance via machine learning. The result demonstrated that the average and maximum errors were 

calculated at less than 2.0% and 4.3%, respectively. Pierezan et al. [36] combined Artificial Neural 

Networks (ANN) and Cultural Coyote Optimization Algorithm (CCOA) for heavy-duty gas turbine 

performance. As a consequence, the CCOA developed the basic GT performance meaningfully, and 

specific consumption (TSFC) was reduced up to 3.6%. Kayaalp and Metlek [37] predicted successfully 

the pollutants such as CO, CO2, UHC, and NO2 that the absolute mean error values for each one were 

0.1473, 0.0442, CO2, 0.0369,  and 0.0028, respectively. 

The other usage of ANN can be found in studies of predicted NOx emissions; in this regard, Wang et al. 

[38] predicted NOx emissions and NO mass flow rate MFR with various input selections by means of 

mutual information (MI) and back propagation neural network (BPNN). In their methodology based on 

the Ml-feature selection, the BPNN mean absolute deviation (MAD) and the BPNN root mean square 

error (RMSE) were decreased by almost 15%, which also indicated that the MI-feature selection method 

was effective. The investigation demonstrated that it can be effective, lower computational cost, and be 

useful to control the after-treatment system of real driving vehicles. 

Dirik [39] used a hybrid intelligence system to predict NOx emissions.  For this purpose, the Adaptive 

Neuro-Fuzzy Inference System (ANFIS) model was optimized by utilizing a genetic algorithm (GA) to 

decrease the errors such as mean squared error (MSE), the error means (EM), the root-mean-squared error 

(RMSE), the standard deviation (STD), and mean absolute percentage error (MAPE). The results showed 

that the minimum values of error parameters such as MSE, RMSE, EM, STD, and MAPE were calculated 

to be 24.8379, 4.9838, 3.4625e-05, 4.9839, and 5.1660, respectively, for the training data. The minimum 

values of these error parameters for the test data were found as 26.5961, 5.1571, 0.065696, 5.157, and 

5.3695 for ANFIS-GA, respectively. 

1.3. Contribution and organization  

As the recent literature reviewed, even though performance prediction [34, 35] and NOx emission [38] 

were studied separately for engines, it needs to be used in the new concept of engines such as turboshaft 

engines as one of aero gas turbine engines to predict both its NOx emission and its performance that never 

has done. First, the prediction needs the calculated data based on the Energy-Environment analysis of the 

new concept turboshaft engine. In this integrated study, in order to increase the thermal efficiency and 

output power, and also reduce the production of nitrogen oxides (NOx) produced by the turboshaft 

engine, adding an inlet air cooling [14, 40] system and a regenerative [41-43] cooling system and also 

considering liquid hydrogen as a fuel has done thermodynamically and environmentally for a new concept 

turboshaft engine that was never exploited before. Then a deep neural network is modeled to predict the 

NOx emission mass flow rate and thermal efficiency at the same time as to set the predicted data to the 

real data gained from the energy-environment analysis of the new Regenerative turboshaft engine 

combined cycle. Eventually, current study could be opened the novel intellect turboshaft engine with deep 

neural network processing and equip the inlet air cooling and regenerative system at the same time.  



 

 
 
 

2. Methodology 

In this study, the case study consists of two combined cycles together; the cycle of an open gas turbine 

cycle as a turboshaft engine can be called the main cycle. In this cycle, the input airflow first begins by 

passing through the inlet air exchanger (Heat exchanger 1), so airflow density increases, and then enters 

the compressor. The airflow compresses in the compressor 1 (c1) and is ready to enter the combustion 

chamber; after reacting with fuel, the temperature and enthalpy increase to reach the inlet temperature of 

turbine 1 (TIT), so it enters turbine 1, and after rotating the turbine 1 shaft, it enters to heat recovery of 

exhaust flow (Heat exchanger 2); after reduction of temperature. It exhausts the ambient.  

The other cycle is the sub-cycle flow called the accessory cycle. A close Rankine cycle is associated with 

liquid nitrogen as a working fluid. In this case, the liquid nitrogen enters heat exchanger 1 after increasing 

the pressure at the cooling pump (PC) and cools the input airflow, and the sub-cycle flow enters turbine 2 

and reduces the temperature of the heat exchanger. After cooling the exhaust flow, it reaches the 

temperature of turbine 3, then it rotates to the shaft turbine 3. So, it enters heat exchanger 3 (hex3). In heat 

exchanger 3, using liquid hydrogen fuel flow as a working refrigerant fluid for the accessory cycle, 

caused by decreasing temperature to the boiling temperature of the nitrogen in the turbine 3 output 

pressure; liquidity transpires for nitrogen. Then liquid nitrogen flow enters the PC pump again. 

The thermodynamics (energy analysis) and environmental results were obtained from Engineering 
Equation Solver (EES). 
The diagram of the novel regenerative turboshaft engine combined cycle is illustrated in Fig. 1. 

 



 

 
 
 

 

Fig. 1. Novel Regenerative turboshaft engine combines cycle Visualization 

 

2.1. Thermodynamic modeling of the main cycle (Gas turbine cycle) 

In this case, a turboshaft gas turbine cycle as the main cycle combined with a Rankine cycle in order to 

improve the inlet air and heat recovery of exhaust  flow as a sub-cycle was studied. Pressure drops of 

airflow in the inlet air cooling and upstream heat exchanger 1 (hex1) flow are negligible, it can be 

approved for pressure in eq (1); 

𝑷𝟐 = 𝑷𝟏 
(1) 

 

Novel Regenerative Turboshaft Engine Combine Cycle Diagram 



 

 
 
 

𝑻𝟐 = 𝑻𝟏 − ∆𝑻𝒄𝒐𝒐𝒍 (2) 

where P1, T1, P2, and T2 are the inlet pressure of heat exchanger 1, inlet temperature of the heat exchanger 

1, and the pressure and temperature of the inlet air compressor, respectively; P3 and T3 are the pressure 

and temperature of the inlet air at the burner. ΔT𝑐𝑜𝑜𝑙 is the temperature variation between the inlet air 

temperatures that varies according to the temperature of the environment.  

The c1 outlet pressure (𝑃3) is calculated as: 

𝑷𝟑 = 𝒓𝒄𝟏𝑷𝟐 (3) 

where 𝑟𝑐1 is pressure ratio of compressor and 𝑃2 is the pressure of the inlet air compressor.  

The outlet temperature of the compressor (𝑇3) is obtainable as [44]; 

𝑻𝟑 = 𝑻𝟐 [𝟏 +
𝟏

𝜼𝒄𝟏
(𝒓𝒄𝟏

𝒌𝒄𝟏−𝟏
𝒌𝒄𝟏  − 𝟏)] (4) 

where 𝜂𝑐1 and 𝑘𝑐 are isentropic compressor efficiency and the friction of special heat  capacity in the 

pressure constant process to the special heat  capacity in the volume constant process in the compressor, 

which is the function of the mean temperature of the passing air from along the compressor, also the 

compressor consumed power (𝑊𝑐1) can be premeditated as; 

𝑾𝒄𝟏 = 𝒎𝒂𝑻𝟐 [𝟏 +
𝟏

𝜼𝒄𝟏
(𝒓𝒄𝟏

𝒌𝒄𝟏−𝟏
𝒌𝒄𝟏  − 𝟏)] (5) 

where the inlet air mass flow rate to the engine (𝑚𝑎) measured as; 

𝒎𝒂 = 𝒅𝒂𝑽𝒂𝑨𝒂 (6) 

where 𝐴𝑎, 𝑑𝑎, and 𝑉𝑎 are the surface of the air inlet, air density, and inlet airflow velocity, respectively. 

Fuel heat value rate (𝑄ℎ) is intended as; 



 

 
 
 

𝑸𝒉 = 𝒎𝒂𝑪𝒑(𝑻𝟒 − 𝑻𝟑) (7) 

Where 𝐶𝑝 is the heat capacity of air at constant pressure as a function of temperature, which is defined 

as [45]; 

𝑪𝒑 = 𝒂𝟏 + 𝒂𝟐𝑻
𝟏 + 𝒂𝟑𝑻

𝟐 + 𝒂𝟒𝑻
𝟑 (8) 

Air is combined with a molar composition of 21% oxygen and 79 % 183 nitrogen and other gases. Also, 𝑎1, 𝑎2,  𝑎3, 

and 𝑎4 are constant values. 

In this case, constants 𝑎 values must be used as; 

{
 

 
𝒂𝟏 = 𝟎. 𝟗𝟗𝟗𝟔𝟑𝟒𝟑𝟖

𝒂𝟐 = −𝟎. 𝟎𝟓𝟓𝟐𝟎𝟓𝟑𝟏𝟐 × 𝟏𝟎−𝟑

𝒂𝟑 = 𝟎. 𝟑𝟒𝟔𝟑𝟐𝟎𝟐𝟖𝟏 × 𝟏𝟎−𝟔

𝒂𝟒 = −𝟎. 𝟏𝟒𝟎𝟏𝟏𝟖𝟗𝟗𝟕 × 𝟏𝟎−𝟗

 (9) 

Also, 𝑇4 is the inlet flow temperature in the turbine (1) and 𝑇3 is the outlet flow temperature in the 

compressor. 

Correspondingly, the fuel consumption mass flow rate can be determined as [46]; 

𝒎𝒇 =
𝑸𝒉

𝑳𝑯𝑽 𝜼𝒄𝒐𝒎𝒃
 (10) 

where 𝐿𝐻𝑉, 𝜂𝑐𝑜𝑚𝑏, and  𝑄ℎ are the lower heating value per kilogram of fuel, combustion efficiency, and 

heat value rate, respectively. 

The summation of these two-mass flow rates defined the passing mass flow rate through the turbine as; 

𝒎𝑻 = 𝒎𝒂 +𝒎𝒇 

𝒎𝑻 = 𝒅𝒂𝑽𝒂𝑨𝒂 +
𝑸𝒉

𝑳𝑯𝑽 𝜼
𝒄𝒐𝒎𝒃

 
(11) 

The generated power of turbine 1 can be defined as the following equation. 



 

 
 
 

𝑾𝑻𝟏 = 𝒎𝑻𝟏. 𝑪𝒑𝑻𝟏. (𝑻𝟒 − 𝑻𝟓) (12) 

Where  𝑚𝑇1 and 𝐶𝑝
𝑇1

 are the mass flow rate of passing from turbine 1 and specific heat capacity at 

pressure constant.  

According to the principle of conservation of energy, it is supposed that mechanical power loss in shafts 

is ignored.  

Also, the heat traded in the heat exchanger 2 is calculated as; 

𝑸𝟐 = 𝒎𝒂𝑪𝒑𝟓(𝑻𝟓 − 𝑻𝟔) (13) 

where 𝑇5 and 𝑇6 are the input temperature and the output of the heat exchanger 2; also, 𝐶𝑝5 is specific 

heat compacity at constant pressure in the temperature 𝑇5 and the pressure 𝑃5.  

Also, the net power of the main cycle is calculated. 

𝑾𝒏𝒆𝒕𝟏 = 𝑾𝑻𝟏 −𝑾𝒄𝟏 (14) 

where 𝑊𝑇1 and 𝑊𝑐1 are the generation power of turbine 1 and compressor consumed power of the main 

cycle, respectively.  

Flight Mach number (F-Mach) can be obtained as; 

𝑴𝒂 =
𝑽

𝜸
 (15) 

where 𝑉 and 𝛾 are local flow velocity and sound speed, respectively. 

 

2.2. Thermodynamic modeling of the accessory cycle (inlet air refrigeration system) 

 

In this case, according to the cycle schematic in Fig. 1; a subsystem was added to improve the inlet air 

and recover the exhaust flow heat from a Rankine cycle with liquid nitrogen as a working fluid. Also, the 

sub-system cycle is called the accessory cycle. 

The heat converted in the heat exchanger 1 is calculated as; 



 

 
 
 

𝑸𝟏 = 𝒎𝒂𝑪𝒑∆𝑻 (16) 

where 𝑚𝑎, 𝐶𝑝 and ∆𝑇 are the mass flow rate of inlet air in the refrigeration cycle, the specific heat rate 

capacity in the pressure constant approach and the different temperatures of the inlet air refrigeration 

cycle in the engine to the ambient temperature. 

The accessory cycle compression ratio (𝐶𝑅) can be considered as; 

(17) `𝑪𝑹 =
𝑷𝒄𝟏

𝑷𝒄𝟔
 

where 𝑃𝑐6 and 𝑃𝑐1 are the inlet and outlet pressure of the pc pump, respectively. 

The inlet power (𝑊𝑃𝐶) to the Pc pump is considered as; 

𝑾𝑷𝑪 =
𝒎𝑷𝑪𝑷𝒄𝟔(𝑪𝑹 − 𝟏)

𝜼𝑷𝑪𝒅𝒄
 (18) 

where  𝑃𝑐6, 𝜂𝑝𝑐, 𝑑𝑐, and 𝑚𝑃𝐶 are the inlet pressure of the pc pump, pc-pump isentropic efficiency, 

refrigerant fluid density, and refrigerant fluid mass flow rate, respectively. 

The output temperature of the heat exchanger 1 (𝑇𝑐2) is calculated i.e.; 

𝐓𝐜𝟐 = 𝐓𝐜𝟏 + (
𝐐𝟏

𝐦𝐜𝐂𝐩𝐜𝟐
) (19) 

where 𝑇𝑐1 and 𝐶𝑝𝑐2 are input temperature of heat exchanger 1 and heat capacity of refrigerant fluid at 

constant pressure, respectively. 

Heat exchanger 1 exit pressure is obtained as follows; 

(20) 

 

 

𝑷𝑪𝟐 = 𝑷𝑪𝟏 − ∆𝑷𝒄𝒉𝟏 

 

where 𝑃𝐶1, 𝑃𝐶2, and ∆𝑃𝑐ℎ1 are inlet downstream heat exchanger 1 pressure, exit downstream heat 

exchanger 1 pressure, and pressure drop in the Heat exchanger 1, respectively. ∆𝑃𝑐ℎ1 evaluated as a 

percentage of the air exit pressure of the compressor. 

Also, the output temperature of turbine 2 (𝑇𝑐3) is intended as; 

(21) 𝑻𝒄𝟑 = 𝑻𝒄𝟐𝑻𝑭𝑻𝟐 



 

 
 
 

where 𝑇𝐹𝑇2 and 𝑇𝑐2 temperature fraction of turbine 2 and the inlet temperature of turbine 2, respectively; 

also, the outlet pressure of turbine 2 (𝑃𝑐3) can be calculated as; 

(22) 𝑷𝒄𝟑 = 𝑷𝒄𝟐 ((𝑻𝑭𝑻𝟐)
𝑲𝑪𝟐
𝑲𝑪𝟐−𝟏) 

where 𝑃𝑐2, 𝐾𝐶2,  𝑇𝑐2, and 𝑇𝐹𝑇2 are the inlet pressure of turbine 2 and the ratio of the special heat capacity, 

which is the division of specific heat capacity at constant pressure to the specific heat capacity at the 

constant volume, inlet the temperature of turbine 2, and temperature ratio of turbine 2, respectively. 

In heat exchanger 2, the exit temperature of the heat exchanger is defined as; 

(23) 
𝑻𝒄𝟒 = 𝑻𝒄𝟑 + (

𝑸𝟐
𝒎𝒄𝑪𝒑𝒄𝟑

) 

Where 𝑇𝑐3, 𝑇𝑐4, 𝐶𝑝𝑐3, and 𝑇𝑐3 are inlet temperature of the heat exchanger 2, output temperature of the 

heat exchanger 2, and refrigerant fluid heat capacity at constant pressure in 𝑇𝑐3 temperature and 𝑃𝑐3 

pressure. 

Heat exchanger2 exit pressure is attained as follows; 

(24) 

 

𝑷𝑪𝟒 = 𝑷𝑪𝟑 − 𝜟𝑷𝒄𝒉𝟐 

where 𝑃𝐶3 , 𝑃𝐶4, and 𝛥𝑃𝑐ℎ2 inlet heat exchanger-1 pressure, exit Heat exchanger-2 pressure, and pressure 

drop in the Heat exchanger 2, respectively; also, 𝛥𝑃𝑐ℎ2 is evaluated as a percentage of the air exit pressure 

of the compressor. 

Also, exit turbine 3 pressure (𝑃𝑐5) is calculated as; 

(25) 𝑷𝒄𝟓 = 𝑷𝒄𝟒((
𝑻𝒄𝟓
𝑻𝒄𝟒

)

𝒌𝒄𝟒
𝒌𝒄𝟒−𝟏

) 

where 𝑃𝑐4 and 𝑘𝑐4 are the inlet pressure of turbine 3 and the ratio of special heat capacity at constant 

pressure to the special heat capacity at the constant volume in temperature and pressure 𝑇𝑐4and 𝑃𝑐4, 

respectively; also, 𝑇𝐶5 is the output temperature of the turbine 3. 

The exchanged heat value (𝑄3) is calculated as; 

(26) 𝑸𝟑 = 𝒎𝒄𝑪𝒑(𝑻𝑪𝟓 − 𝑻𝑪𝟔) 



 

 
 
 

Where 𝑚𝑐 is the mass flow rate of the cooling fluid, 𝐶𝑝 is specific heat rate capacity in pressure constant 

approach; also, T𝐶6 is the temperature of the cooling fluid that is equal to the boiling temperature of the 

cooling fluid in 𝑃𝐶6  pressure. 

exit heat exchanger 3 pressure is obtainable as follows; 

(27) 

 

 

𝑷𝑪𝟔 = 𝑷𝑪𝟓 − 𝜟𝑷𝒄𝒉𝟑 

 

Where 𝑃𝐶5,  𝑃𝐶6, and 𝛥𝑃𝑐ℎ3 are inlet heat exchanger 1 pressure, exit heat exchanger 3 pressure, and 

pressure drop in the Heat exchanger 3, respectively; also, 𝛥𝑃𝑐ℎ3 is evaluated as a percentage of the air exit 

pressure of the compressor. 

The inlet power to the fuel pump (PF pump) is defined as; 

(28) `𝑾𝑷𝒇 =
𝒎𝒇(𝑷𝒇𝟐−𝑷𝒇𝟏)

𝜼𝒑𝒇𝒅𝒇
 

where 𝑊𝑃𝑓, 𝑃𝑓1, and 𝑃𝑓2 the power consumption of the pf pump, inlet pressure of pf pump, output 

pressure of pf pump, respectively; also, 𝜂𝑝𝑓, 𝑑𝑓, and 𝑚𝑓 are isentropic efficiency of pf pump, refrigerant 

fluid density, and fuel consumption mass flow rate, respectively.  

 Also, the output power of turbine 2 is calculated as; 

where 𝐶𝑝𝐶2 is refrigerant fluid-specific heat capacity in 𝑇𝑐3 temperature and 𝑃𝑐3 pressure. 

It is assumed that mechanical power loss in shafts is negatable of loss according to the principle of 

conservation of energy. So, the outlet power of turbine 3 is intended as; 

(30) 𝑾𝑻𝟑 = 𝒎𝑪𝑪𝑷𝑪𝟒(𝑻𝑪𝟒 − 𝑻𝑪𝟓) 

where 𝐶𝑝𝐶4 is the specific heat capacity of refrigerant fluid in 𝑇𝑐4 temperature and 𝑃𝑐4 pressure. 

Notably, it is assumed that the ignorance of loss of mechanical power in shafts is due to the principle of 

conservation of energy. 

Also, the accessory output power is defined as; 

𝑾𝒏𝒆𝒕𝟐 = 𝑾𝑻𝟐 +𝑾𝑻𝟑 −𝑾𝑷𝑪 −𝑾𝑷𝒇 (31) 

(29) 𝑾𝑻𝟐 = 𝒎𝑪𝑪𝑷𝑪𝟐(𝑻𝑪𝟑 − 𝑻𝑪𝟐) 



 

 
 
 

where 𝑊𝑃𝑓,  𝑊𝑃𝐶, 𝑊𝑇3, and 𝑊𝑇2 are the power consumption of the fuel pump and the power 

consumption of the pump in the accessory, the power generation of turbines 3 and 2, respectively. 

The output power (𝑃𝑜𝑢𝑡) is equal to the sum of the power of the main and accessory cycles, which is 

calculated as; 

𝑷𝒐𝒖𝒕 = 𝑾𝒏𝒆𝒕𝟐 +𝑾𝒏𝒆𝒕𝟏 (32) 

where 𝑊𝑛𝑒𝑡1and 𝑊𝑛𝑒𝑡2 are the net generating power of the main and accessory cycle, respectively. 

Power-specific fuel consumption is known as the specific fuel consumption of an engine, which is defined 

as the friction of mass flow rate of fuel consumption (𝑚𝑓) to output power of engine in the following 

equation, PSFC can be calculated as;  

(33) 𝑷𝑺𝑭𝑪 =
𝒎𝒇

𝑷𝒐𝒖𝒕
 

Ƞ𝑡ℎ is the thermal efficiency of the engine which is calculated as;  

(34) Ƞ𝒕𝒉 =
𝑷𝒐𝒖𝒕
𝑸𝒉

 

where 𝑄ℎ is the heat rate value. 

The mass flux for each species is defined as; 

(35) 
�̿�𝒊 =

�̇�𝒊

𝑨
 

 

where �̇�𝑖 and 𝐴 are the mass flow rate of species i and area, respectively. 

Consider a non-reactive gas mixture consisting of only two molecular species, species A and B. Fick's 

law is defined as spreading through others by one-dimensional binary diffusion (𝑌𝐴 + 𝑌𝐵 = 1), where 𝑌𝐴 

and 𝑌𝐵 are the mass fraction of species A and species B, respectively. On the other hand, the diffusional 

flux of species A and B should be according to the following equation for binary mixtures at one 

dimension. 

(36) 
−𝝆𝑫𝑨𝑩

𝒅𝒀𝑨
𝒅𝒙

− 𝝆𝑫𝑩𝑨
𝒅𝒀𝑩
𝒅𝒙

= 𝟎 

 

 where 𝜌, 𝐷𝐴𝐵, and 𝐷𝐵𝐴 are the gas mixture density, and diffusion coefficient of A diffused through B and 

B diffused through A, respectively. 

Individually, the mass flux for each species can be defined as; 

https://en.wikipedia.org/wiki/Brake-specific_fuel_consumption
https://en.wikipedia.org/wiki/Brake-specific_fuel_consumption


 

 
 
 

(37) 
�̿�𝒊 = 𝒀𝒊�̿� − 𝝆𝑫𝒊

𝒅𝒀𝒊
𝒅𝒙

 

 

So, the mass flow rate for each species can be calculated by the mass fraction gotten as; 

(38)  �̇�𝒊 = 𝒚𝒊𝒎𝒕𝒐𝒕 

Besides, the 𝑁𝑂𝑥 emission has two Parts: 𝑁𝑂 and 𝑁𝑂2. Accordingly, the mass flow rate of each emission 

can be determined as follows; 

(39)  �̇�𝑵𝑶 = 𝒚𝑵𝑶𝒎𝒕𝒐𝒕 

(40)  �̇�𝑵𝑶𝟐 = 𝒚𝑵𝑶𝟐𝒎𝒕𝒐𝒕 

Consequently, the 𝑁𝑂𝑥 emission mass flow rate can be determined as; 

(41) 
  �̇�𝑵𝑶𝒙 = �̇�𝑵𝑶 + �̇�𝑵𝑶𝟐 

 

 

2.3. 𝑁𝑂𝑥 formation 

 

The hydrogen fuel has no nitrogen, but in the combustion products of the combustion chamber, the nitride 

oxide compound (𝑁𝑂𝑥) is emitted to the ambient.  

The term 𝑁𝑂𝑥 is a chemical compound for molecules comprehending at least one oxygen atom with one 

nitrogen. 𝑁𝑂𝑥 is composed of nitrogen gas in the air in all ambient. Most of 𝑁𝑂𝑥 generation is nitrogen 

oxide (𝑁𝑂), with a miniature proportion of nitrogen dioxide (𝑁𝑂2), and a slight measure of other 𝑁𝑂𝑥. 

𝑁𝑂𝑥 emission from the exhaust appearances reacts in the environment to form an ozone layer. This is one 

of the crucial motives for studying the formation of 𝑁𝑂𝑥 [47].  

Nitrogen can similarly be found in fuel mixtures, which may comprise minor measures of ammonia 𝑁𝐻3, 

cyanide 𝑁𝐶, and Hiroden cyanide 𝐻𝐶𝑁. There are numerous imaginable reactions that surround 𝑁𝑂, 

which are all probable to transpire through the combustion process in an immediate duration [48]. 

(42) {

𝑶 + 𝑵𝟐 → 𝑵𝑶 + 𝑵
𝑵 + 𝑶𝟐 → 𝑵𝑶 + 𝑶
𝑵 + 𝑶𝑯 → 𝑵𝑶 + 𝑯

 

𝑁𝑂 can supplementarily react to the shape form of 𝑁𝑂2. 

(43) 𝑵𝑶 + 𝑯𝟐𝑶 → 𝑵𝑶𝟐 + 𝑯𝟐 

(44) 𝑵𝑶 + 𝑶𝟐 → 𝑵𝑶𝟐 + 𝑶 

𝑁𝑂𝑥 is composed of four mechanisms that contain nitrogen from the air [49]: 

a. Thermal mechanism (Zeldovich) 

b. Prompt mechanism (Fennimore) 

c.  𝑁2𝑂 intermediate mechanism 

d.  𝑁𝑁𝐻 mechanism (fuel 𝑁𝑂) 

 

2.3.1. Zeldovich mechanism  



 

 
 
 

𝑁𝑂 is formed at the high temperature above the range of 1600–1700 K. Above this range, despite these 

temperatures, 𝑁𝑂𝑥 is formed in minute amounts. Also, 𝑁𝑂𝑥 starts to form inside the combustion 

chamber [50]. 

Originally, the rate of formation of 𝑁𝑂 was defined by the use of the three reactions based on the 

Arrhenius equation. 

Table 1. Arrhenius parameters for the 𝑁𝑂 reaction based on the Zeldovich mechanics [51] 

 Reaction rate constant (𝑚3/𝑘𝑔 𝑚𝑜𝑙 − 𝑠) 

 Forward reaction Backward reaction 

𝑶 + 𝑵𝟐 ↔ 𝑵𝑶 +𝑵 𝑘1 = 1.8 × 1014 × exp (−
38,370

𝑇
) 𝑘−1 = 1.8 × 1014 × exp (−

425

𝑇
) 

𝑵 +𝑶𝟐 ↔ 𝑵𝑶 +𝑵 𝑘2 = 1.8 × 1014 × exp (
4680

𝑇
) 𝑘−2 = 1.8 × 10

14 × exp (−
20,820

𝑇
) 

𝑵 +𝑶𝑯 ↔ 𝑵𝑶 +𝑯 𝑘3 = 7.1 × 1013 × exp (−
450

𝑇
) 𝑘−3 = 1.7 × 10

14 × exp (−
24,560

𝑇
) 

 

The 𝑁𝑂 formation rate can be defined by using three reactions as; 

(45) 
𝒅[𝑵𝑶]

𝒅𝒕
= 𝒌𝟏[𝑶][𝑵𝟐] − 𝒌−𝟏[𝑵𝑶][𝑵] − 𝒌𝟐[𝑵][𝑶𝟐] − 𝒌−𝟐[𝑵𝑶][𝑶] + 𝒌𝟑[𝑵][𝑶𝑯]−𝒌−𝟑[𝑵𝑶][𝑯] 

2.3.2. Fennimore mechanism 

The Fennimore mechanism is confidentially accompanying the combustion chemistry of hydrocarbons 

(𝐻𝐶). 𝑁𝑂 shape probably quickly in the flame reaction region. 

The prompt 𝑁𝑂 is formed in the flame by the response of provisional material types of 𝐶𝑁 set with 𝑂 and 

𝑂𝐻 radicals. The 𝐻𝐶 radicals 𝐶𝐻, 𝐶𝐻2, 𝐶, 𝐶2, etc. formed in the flame front rejoin with sub-atomic 

nitrogen to attain provisional species, for instance, 𝐻𝐶𝑁 and 𝐶𝑁 by the reactions. Enormous 

concentrations of cyanides (𝐶𝑁−) supplementary closer to the reaction flame have been inspected during 

a higher fuel-air (FA) equivalence ratio and quick 𝑁𝑂 formation has been seen related to quick 

degeneration of 𝐻𝐶𝑁 [49]. 

(46) 
𝑪𝑯 + 𝑵𝟐 ↔ 𝑯𝑪𝑵 + 𝑵 

𝑪 + 𝑵𝟐 ↔ 𝑪𝑵 + 𝑵 

The hydrogen cyanide (𝐻𝐶𝑁) converted into nitric oxide (𝑁𝑂) for Ф <  1.2. The prompt 𝑁𝑂 by 

considering the Fennimore mechanism is discovered to be closer to 10%. The combustion period in the 

engines is lower due to the higher combustion pressure [47]. 

The conversion sequence is obtainable as; 

(47) {

𝑯𝑪𝑵 +𝑶 ↔ 𝑵𝑪𝑶 +𝑯
𝑵𝑪𝑶 + 𝑯 ↔ 𝑵𝑯 + 𝑪𝑶
𝑵𝑯 +𝑯 ↔ 𝑵+𝑯𝟐

𝑵 + 𝑶𝑯 ↔ 𝑵𝑶 +𝑯

 

2.3.3. 𝑁2𝑂 intermediate mechanism 

 



 

 
 
 

𝑁2𝑂 intermediate mechanism is typically used by gas turbine industries in engines operating under fuel-

lean (Ф <  0.8), and low-temperature conditions. 

In gas turbine engines, it plays a crucial role in monitoring the 𝑁𝑂 formation when the engine is operating 

under premixed combustion [49]. 

Notably, Ф is the equivalent ratio. The three steps of 𝑁2𝑂 intermediate mechanism is; 

(48) 

 

{

𝑶 + 𝑵𝟐 +𝑴 ↔ 𝑵𝟐𝑶 +𝑴
𝑯+ 𝑵𝟐𝑶+↔ 𝑵𝑶 + 𝑵𝑯
𝑶+ 𝑵𝟐𝑶+↔ 𝑵𝑶 + 𝑵𝑶

 

 
2.3.4. NNH mechanism 

𝑁𝑂 formation based on the 𝑁𝑁𝐻 mechanism is the latest discovery of 𝑁𝑂 formation in the reaction of 

nitrogen oxides. The nitrogen reacts to form at first with radical 𝐻 and then it is reactive with radicals. 

For example, 𝐻𝐶𝑁, 𝑁𝐻3, 𝐶𝑁, 𝑁𝐻, etc. These species are further oxidized to 𝑁𝑂. 

The two key phases’ reactions in this mechanism are contained as [47]; 

(49) {
𝑵𝟐 +𝑯 → 𝑵𝑵𝑯

𝑵𝑵𝑯 + 𝑶 → 𝑵𝑶 + 𝑵𝑯
 

2.4. Deep Neural Network Approach 

 

In recent years, deep learning techniques have provided powerful techniques for improving modeling and 

predictive performance [52]. Deep learning techniques use a deep or layered architecture. This is the basic 

structure of deep neural networks, and the main difference between deep neural networks (DNN) is the 

number of layers. In general, flat neural networks have only a few layers of neural networks, which limits 

their ability to express complex functions [53]. Conversely, deep learning has more than five neural 

network layers, providing a more efficient algorithm that can be even more accurate. The deep neural 

network method is regarded as a good ML method because it adds some hidden layers to a normal ML 

neural network, and is popular in various fields such as energy consumption prediction [54] and turbofan 

performance prediction [34]. However, there is a rare investigation that studied deep learning prediction 

of aero engines for both emission and performance.  

In this study, the DNN was designed to predict the energy and environment parameters such as Thermal 

Efficiency and NOx emission mass flow rate. In this regard, the network considers 4 layers, including an 

input layer, 2 hidden layers, and an output layer. The parameters of the input layer are Turbine 

Temperature Fraction, Turbine Pressure fraction, Turbine Inlet Temperature, Pressure ratio, Difference 

Temperature, flight Mach number, and flight altitude (H). Also, the output layer is defined as Thermal 

Efficiency and NOx Emission mass flow rate. Each hidden layer has manually 625 neurons. Also, the loss 

function and optimizer are defined as the mean squared error and ADAM based on Keras library which 

included the TensorFlow library in the Python open-source scripting coding system. Consequently, the 

network has 397,502 parameters gained by Neurons and biases. The network is illustrated in Fig. 2. 

 



 

 
 
 

 
  

Fig. 2. Deep Neural Network Visualization  

Some parameters are deliberated for comparison to achieve an accurate model. These parameters 

are described in the following equation. 

The mean absolute error (MAE) can be defined as; 

(50) 𝑴𝑨𝑬 =
𝟏

𝒏
∑|𝑼𝒊 − �̂�𝒊|

𝒏

𝒊=𝟏

 

The mean squared error (MSE) can be calculated as; 

(51) 𝑴𝑺𝑬 =
𝟏

𝒏
∑(𝑼𝒊 − �̂�𝒊)

𝟐
𝒏

𝒊=𝟏

 

Root-mean-square deviation (RMSD) can be determined as; 

(52) 𝑹𝑴𝑺𝑫 = √
𝟏

𝒏
∑(𝑼𝒊 − �̂�𝒊)

𝟐
𝒏

𝒊=𝟏

 

Pearson correlation factor (𝑅) and determination factor (𝑅2) signify the correlation between the true 

values, especially for the test, and the predicted values of the DNN model. In this regard, if 𝑅 and 𝑅2 are 

calculated closer to one, the predicted values are more matched to the true values. 

 

(53) 
𝑹 =

∑ [(𝑼𝒊 − 𝑼𝒊
𝒎𝒆𝒂𝒏)(�̂�𝒊 − �̂�𝒊

𝒎𝒆𝒂𝒏)𝒏
𝒊=𝟏

√[∑ (𝑼𝒊 − 𝑼𝒊
𝒎𝒆𝒂𝒏)𝟐𝒏

𝒊=𝟏 ][∑ (�̂�𝒊 − �̂�𝒊
𝒎𝒆𝒂𝒏)𝟐𝒏

𝒊=𝟏 ]
 

 

 



 

 
 
 

(54) 𝑹𝟐 =
[∑ (𝑼𝒊 − 𝑼𝒊

𝒎𝒆𝒂𝒏)(�̂�𝒊 − �̂�𝒊
𝒎𝒆𝒂𝒏

)
𝒏
𝒊=𝟏 ]

𝟐

[∑ (𝑼𝒊 − 𝑼𝒊
𝒎𝒆𝒂𝒏)𝒏

𝒊=𝟏 ][∑ (�̂�𝒊 − �̂�𝒊
𝒎𝒆𝒂𝒏)𝒏

𝒊=𝟏 ]
 

 

where 𝑈𝑖
𝑚𝑒𝑎𝑛, �̂�𝑖

𝑚𝑒𝑎𝑛 , 𝑈𝑖, and �̂�𝑖 are the mean values of true data (test data), the mean value of predicted 

data from the DNN model, the values of the i-sample for true data (test data), and the i-sample predicted 

value, respectively. 

 

 

3. Result and discussion 
 

The output power variations at a flight altitude are shown in Fig. 3a at constant F-Mach=0.5. 

The results demonstrate that the output power is reduced by increasing the flight altitude ranging from 

about 3000 meters to 4000 meters because, by reducing the air density due to increasing the flight 

altitude, the inlet air mass flow rate to the engine decreases and reducing the density of inlet air leads to 

decreasing the mass flow rate of the main cycle power turbine and consequently the reduction of the 

generated power of the main cycle power turbine. Also, the variation of the output power with the Flight-

Mach number at a constant altitude of 4000 m is shown in Fig. 3b. Since the inlet air mass flow rate to the 

engine increases with an increase in the Flight-Mach number, accordingly, the output power increases. 

The variation of PSFC and the thermal efficiency of the cycle at a flight altitude at constant F-Mach=0.5 

were shown in Fig. 3b. 

The results confirm that with increasing the flight altitude, in the flight altitude ranges from about 3000 

meters to 4000 meters at the constant Flight-Mach number, the thermal efficiency is increased and power-

specific fuel consumption is reduced. Also, the variation of the power-specific fuel consumption and 

thermal efficiency at a constant flight altitude of 4000 m is shown in Fig. 3b. The results confirm that the 

constant flight altitude with a higher Flight Mach number in the flight Mach numbers ranges from about 

0.3 to about 0.8 is caused an increase in thermal efficiency but it decreases PSFC. 

Also, in Fig. 3c, the generated mass flow of 𝑁𝑂 and 𝑁𝑂2with varied flight altitudes at constant F-Mach= 

0.5 is displayed. Results show that with a decrease in the generated mass flow  rate of 𝑁𝑂 and a decrease 

in 𝑁𝑂2 with Flight altitude increasing. 

Subsequently, the generated mass flow rate of 𝑁𝑂 and 𝑁𝑂2 with varied Flight-Mach numbers at a 

constant altitude of 4000 m is shown in Fig. 3c. The results show that with an increase, the Flight-Mach 

number on 𝑁𝑂 and 𝑁𝑂2 production has increased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 
 

 
b) a) 

  
c) 

 
Fig. 3. Effect of Flight Altitude and Flight Mach Number on a) Power output b) PSFC and Thermal 

Efficiency c) NOx emission mass flow rate 

In this section, the effect of parameters such as the main compressor compression ratio (𝑟𝑐1), accessory 

cycle compression ratio (𝐶𝑅), inlet temperature of the main cycle power turbine (𝑇𝐼𝑇), and turbine 2 

temperature fraction (𝑇𝐹𝑇2), and the different temperatures between ambient air temperature and inlet 

compressor temperature (∆𝑇𝑐𝑜𝑜𝑙) on cycle performance parameters including the output power, PSFC, 

and thermal efficiency are investigated. 

The output power variations for 𝑇𝐼𝑇 and the main cycle compression ratio at a flight altitude of 4000 m 

and F-Mach=0.3 are represented in Fig. 4a. The results show that the output power is increased due to an 
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increase in 𝑇𝐼𝑇. Also, the results show that by increasing the compression ratio of the main cycle 

compressor, the output power cycle is increased. 

The variation of power-specific fuel consumption and thermal efficiency with 𝑇𝐼𝑇 and the compression 

ratio of the main cycle turbine at a flight altitude of 4000 m and F-Mach=0.3 are shown in Fig. 4b. The 

results confirm that increasing 𝑇𝐼𝑇, power-specific fuel consumption increases but thermal efficiency 

decreases. 

Also, the results show that by increasing the compression ratio of the main cycle compressor, the thermal 

efficiency is increased and specific fuel consumption is reduced. 

Also, changes in 𝑁𝑂 and 𝑁𝑂2 produced mass flow rate varied by 𝑇𝐼𝑇 and the compression ratio of the 

main cycle compressor indicated in Fig. 4c. Results showed an increase in the compression ratio of the 

main cycle compressor was caused by an increase in produced mass flow rate of 𝑁𝑂 and 𝑁𝑂2. Similarly, 

𝑁𝑂 and 𝑁𝑂2 production mass flow rates increase with an increase in 𝑇𝐼𝑇. 

Also, the output power variations for the inlet air temperature are shown in Fig. 5b. Results indicate that 

the output power is increased due to reducing the air temperature in the range 0 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −25 𝐾 and 

the range −100 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −50 𝐾. 

Also, the variation of power-specific fuel consumption and thermal efficiency with respect to the different 

temperatures is shown in Fig. 5a. 

The results showed that in the range of −100 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −70 𝐾 , with inlet air cooling thermal 

efficiency increases, and the power-specific fuel consumption decreases. Also, with inlet air cooling in 

the range of −70 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −10 𝐾, the thermal efficiency decreases, and 𝑃𝑆𝐹𝐶 increases. 

As well as changes in 𝑁𝑂 and 𝑁𝑂2  produced mass flow rate and power output at different temperatures 

indicated in Fig. 5b. The results showed that with decreasing temperature variation ranging from 

−100 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −50 𝐾, produced mass flow rates of 𝑁𝑂 and 𝑁𝑂2 were increased. Also with 

decreasing temperature variation ranging from −100 𝐾 ≤ ∆𝑇𝑐𝑜𝑜𝑙 ≤ −50 𝐾, power output was increased. 
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Fig. 4. Effect of the TIT on a) Power output b) PSFC and Thermal Efficiency c) NOx emission mass flow 

rate 
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b) a) 

   

Fig. 5. Impacts of inlet air temperature variation on a) PSFC and Thermal Efficiency b) Power output and 

NOx emission mass flow rate 

The output power variations with accessory cycle compression ratio (𝐶𝑅) and turbine 2 temperature ratio 

(𝑇𝐹𝑇2) are shown in Fig. 6a. The results were exposed an increase in 𝑟𝑐1, the output power was increased. 

Also, the results showed that with an increase in 𝑇𝐹𝑇2, the output power is decreased. 

Correspondingly, the changes in power-specific fuel consumption and thermal efficiency with rc1 and 

𝑇𝐹𝑇2 are shown in Fig. 6b. and the results evidenced an increase in 𝐶𝑅, thermal efficiency was increased 

and 𝑃𝑆𝐹𝐶 is decreased; also, by increasing 𝑇𝐹𝑇2, the thermal efficiency was decreased and 𝑃𝑆𝐹𝐶 is 

increased. 

b) a) 

 
 

Fig. 6. Effect of 𝑇𝐹𝑇2 and 𝐶𝑅 on a) Power output b) PSFC and Thermal Efficiency 
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According to the recent consequences based on the thermodynamical and environmental results of the 

Novel Regenerative turboshaft engine combine cycle with adding inlet air cooling, the affection of  Flight 

Altitude, Flight Mach Number, TIT,  difference inlet air temperature, temperature Fraction of turbine 2, and 

pressure ratio of main cycle compressor has been considered. These seven parameters are provided as the 

input variables of the DNN in the input layer. Also, the thermal efficiency and NOx emission mass flow 

rate are provided as the output variables of the DDN in the output layer. In this regard, 4899 samples have 

been given for the first analysis. So, 20% of the dataset was set for the training of the model; so, the other 

data was applied for the testing of the model.  

The dependency of input and output parameters are illustrated in Fig. 7 just for watching the dynamic 

behavior of the system to choose experiencedly the hidden layers and its neurons. 

The dataset was provided in EES and DDN was modeled in the environment of Python 3.9 as an open-

source coding system. First, the datasets have been normalized to the order of zero to one. Then, Adaptive 

moment estimation (ADAM) was chosen as the optimizer of the model and the  MSE was chosen  as the loss 

function. Also, the hidden layer activated with the rectified linear unit (Relu) function that rectified the 

neurons for training in the hidden layer. However, the activation function must be chosen differently at the 

output layer to consider both negative and positive values. The common activation function for the output 

layer is the sigmoid function. 

Relu function can be determined as; 

(55) 𝒇(𝒙) = 𝒙+ = 𝒎𝒂𝒙(𝟎, 𝒙) = {
𝟎            𝒇𝒐𝒓        𝒙 ≤ 𝟎
𝒙            𝒇𝒐𝒓        𝒙 > 𝟎

 

Also, the Sigmoid function can be considered as;  

(56) 𝒇(𝒙) =
𝟏

𝟏 + 𝒆−𝒙
 

The plot of these activation functions is illustrated in Fig. 8. 

 

 



 

 
 
 

 

Fig. 7. The associations of the input and output Parameters 

b)  a) 

  
Fig. 8. a) Relu activation Function b) Sigmoid activation function 
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 As previously discussed, MSE is considered the loss function. In Fig. 9, the loss function and validation 

lost versus epochs are presented. The results showed that at the final epochs the loss function was near zero, 

which allows the network to continue the process to gain the predicted values.  

 

Fig. 9. Loss function and validation loss based on Epochs variation 

 

In order to assess the accuracy of the integrated DNN model, the loss and cost functions such as MSE, 

MAE, RMSD, 𝑅, and 𝑅2 are considered. The result showed that the model has been designed accurately 

with 2 hidden layers and 625 neurons for each hidden layer with 7 input parameters to predict two output 

parameters (Thermal efficiency and NOx emission mass flow rate). The consequences are presented in 

Table 2. It is tangible that the 𝑅 and 𝑅2 are very close to 1 for both thermal efficiency and NOx emission 

mass flow rate for both validations of thermal efficiency and NOx emission mass flow rate prediction values 

with its training and its testing data. 

 The results reported that 𝑅 value for thermal efficiency prediction was calculated at 0.99973and 0.99969for 

validation training and testing datasets, respectively. Also, it has been calculated 0.99827 and 0.99806 for 

validating NOx emission mass flow rate prediction with training and testing datasets, respectively. 𝑅2 value 

for thermal efficiency prediction was calculated at 0.99664 and 0.99683 for validation training and testing 



 

 
 
 

datasets, respectively. Also, it has been calculated 0.99652 and 0.99611 for validating NOx emission mass 

flow rate prediction with training and testing datasets, respectively. 

Also, MSE, MAE, and RMSD of thermal efficiency demonstrated that predicted data of thermal efficiency 

has good agreement with the real values. Mutually, the amounts of these cost functions are calculated for 

both predicted parameters with validation of training and testing datasets. For instance, MSE, MAE, and 

RMSD of thermal efficiency for validation of training data sets were calculated at 0.13193, 0.33280, and 

0.36322, respectively. Also, these parameters were calculated for thermal efficiency validation of testing 

data: 0.12763, 0.32442, and 0.35725, respectively. 

Also, the loss functions such as MSE, MAE, and RMSD are very near to Zero for the Prediction of NOx 

Emission mass flow rate which proves the high accurate power of the prediction model for both testing and 

training data. Accordingly, MSE, MAE, and RMSD of NOx Emission mass flow rate for validation of 

training data sets were premeditated at 0.00105, 0.01724, and 0.03244, respectively. Also, these parameters 

are intended for NOx Emission mass flow rate validation of testing data: 0.00114, 0.01742, and 0.03372, 

respectively. 

Table 2. matched factor of predicted parameters 

 

 

 

 

 

The prediction model was evaluated with the training set and testing set for both output parameters of DNN. 

In Fig. 10, the prediction values are compared with the real data from the test and train datasets. The real 

values and predicted values are set at the midline of 𝑅𝑒𝑎𝑙 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, which shows the target predicated  

 
Thermal Efficiency NOx Emission mass flow rate 

Train Test Train Test 

MSE 0.13193 

 

0.12763 

 

0.00105 

 
0.00114 

MAE 0.33280 

 
0.32442 

0.01724 

 
0.01742 

RMSD 
0.36322 0.35725 0.03244 0.03372 

𝑅 
0.99973 0.99969 0.99827 0.99806 

𝑅2 
0.99664 0.99683 0.99652 0.99611 



 

 
 
 

values are matched to the real values that gained from the system analysis. Eventually, the results showed 

that the prediction was successfully evaluated for this concept. 

a) b) 

  

c) d) 

 
 

Fig. 10. Predicted output values against Real output values 

 

 



 

 
 
 

4. Conclusion 

 
 

 
In this integrated study, the effect of Flight-Mach number, flight altitude, and the difference 

between inlet air temperature of the compressor with the ambient temperature on operating 

parameters of the novel Regenerative turboshaft combine cycle equipped with inlet air cooling 

containing, power output, thermal efficiency, and Nitride oxide emission mass flow rate including 

produced mass flow rate of 𝑁𝑂 and 𝑁𝑂2 with the use of hydrogen as fuel investigated. Also, the 

𝑁𝑂 and 𝑁𝑂2 produced mass flow rate, power-specific fuel consumption, and thermal efficiency 

with respect to the impact of turbine inlet temperature and the use of hydrogen as fuel investigated 

for a novel regenerative turboshaft engine equipped with inlet air cooling. Eventually, the Deep 

neural network was designated to predict Nitride oxide emission mass flow rate and thermal 

efficiency. 

The most significant achievements are expressed as follows: 

1. with cooling inlet air, in the range of Δ𝑇𝑐𝑜𝑜𝑙 =–  50℃  to  Δ𝑇𝑐𝑜𝑜𝑙 = −100℃, specific-power fuel 

consumption was decreased and thermal efficiency was increased. Also, with inlet air cooling, in 

the range of Δ𝑇𝑐𝑜𝑜𝑙 = –  25℃  to Δ𝑇𝑐𝑜𝑜𝑙 = −100℃, 𝑁𝑂, and 𝑁𝑂2 the produced mass flow rate was 

increased. 

2. The results showed that with the increase in the Turbine 1 inlet temperature, the output power and 

power-specific fuel consumption were increased, but the thermal efficiency was reduced. 

3. Also, by increasing the compression ratio of the main cycle compressor, the output power, and the 

thermal efficiency were increased but power-specific fuel consumption was decreased. 

4. Also, with increasing turbine inlet temperature of the main cycle and the compression ratio of the 

main cycle (compressor compression ratio), the 𝑁𝑂, and 𝑁𝑂2 the produced mass flow rate was 

increased. 



 

 
 
 

5. In deep neural network modeling, both Pearson correlation and determination factors are very close 

to 1 for both Thermal Efficiency and NOx Emission mass flow rate to validate its training and its 

testing data. So, Pearson correlation factor for thermal Efficiency prediction and NOx emission 

mass flow rate prediction was calculated at 0.99969 and 0.99806 to validate the testing data set, 

with training and testing datasets, respectively. Also, the determination factor for Thermal 

Efficiency prediction and NOx emission mass flow rate prediction was calculated at 0.99973 and 

0.99827 to validate the testing data set, respectively. 

6. Mutually, the amount of mean-squared error, mean-absolute error, and root mean squared deviation 

for the testing and training data set was approved as the proper exact of deep neural network 

prediction. The amount of these parameters was calculated for validation of thermal efficiency 

testing data at 0.12763, 0.32442, and 0.35725, respectively. Also, it was calculated for validation 

of NOx emission mass flow rate testing data: 0.00114, 0.01742, and 0.03372, respectively. 

 

Declaration of Competing Interest 

 
The authors declare that they have no known competing financial interests or personal relationships that 

could have appeared to influence the work reported in this paper. 

References 

 

[1 ] H.I. Saravanamuttoo, G.F.C. Rogers, H. Cohen. Gas turbine theory. Pearson education2001 . 
[2 ] A.F. El-Sayed. Aircraft propulsion and gas turbine engines. CRC press2017. 
[3 ] Ö. Turan, H. Aydın. Numerical calculation of energy and exergy flows of a turboshaft engine for 

power generation and helicopter applications. Energy. 115 (2016) 914-23 . 
[4 ] M.M. Forootan, I. Larki, R. Zahedi, A. Ahmadi. Machine Learning and Deep Learning in Energy 

Systems: A Review. Sustainability. 14 (2022) 4832 . 
[5 ] Y. Park, M. Choi, K. Kim, X. Li, C. Jung, S. Na, et al. Prediction of operating characteristics for industrial 

gas turbine combustor using an optimized artificial neural network. Energy. 213 (2020) 118769 . 
[6 ] H. Aygun. Thermodynamic, environmental and sustainability calculations of a conceptual turboshaft 

engine under several power settings. Energy. 245 (2022) 123251 . 
[7 ] V. Patel, V. Savsani, A. Mudgal. Efficiency, thrust, and fuel consumption optimization of a 

subsonic/sonic turbojet engine. Energy. 144 (2018) 992-1 002.  



 

 
 
 

[8 ] Q. Zhou, Z. Yin, H. Zhang, T. Wang, W. Sun, C. Tan. Performance analysis and optimized control 
strategy for a three-shaft, recuperated gas turbine with power turbine variable area nozzle. Applied 
Thermal Engineering. 164 (2020) 114353 . 

[9 ] Y.S. Najjar, A.M. Abubaker. Exergy analysis of a novel inlet air cooling system with gas turbine 
engines using cascaded waste-heat recovery. International Journal of Exergy. 22 (2017) 183-204 . 

[10 ] S.S. Baakeem, J. Orfi, H. Al-Ansary. Performance improvement of gas turbine power plants by 
utilizing turbine inlet air-cooling (TIAC) technologies in Riyadh, Saudi Arabia. Applied Thermal 
Engineering. 138 (2018) 417-32. 

[11  ] M.R. Majdi Yazdi, F. Ommi, M.A. Ehyaei, M.A. Rosen. Comparison of gas turbine inlet air cooling 
systems for several climates in Iran using energy, exergy, economic, and environmental (4E) analyses. 
Energy Conversion and Management. 216 (2020) 112944. 

[12  ] M. Deymi-Dashtebayaz, P. Kazemiani-Najafabad. Energy, Exergy, Economic, and Environmental 
analysis for various inlet air cooling methods on Shahid Hashemi-Nezhad gas turbines refinery. Energy & 
Environment. 30 (2018) 481-98. 

[13 ] R. Bontempo, M. Manna. Work and efficiency optimization of advanced gas turbine cycles. Energy 
conversion and management. 195 (2019) 1255-79 . 

[14 ] S.-H. Cha, S.-I. Na, Y.H. Lee, M.S. Kim. Thermodynamic analysis of a gas turbine inlet air cooling and 
recovering system in gas turbine and CO2 combined cycle using cold energy from LNG terminal. Energy 
Conversion and Management. 230 (2021) 113802 . 

[15 ] S. Sanaye, M. Amani, P. Amani. 4E modeling and multi-criteria optimization of CCHPW gas turbine 
plant with inlet air cooling and steam injection. Sustainable Energy Technologies and Assessments. 29 
(2018) 70-81 . 

[16 ] O. Balli ,E. Ozbek, S. Ekici, A. Midilli, T. Hikmet Karakoc. Thermodynamic comparison of TF33 
turbofan engine fueled by hydrogen in benchmark with kerosene. Fuel. 306 (2021) 121686 . 

[17 ] O. Balli, H. Caliskan. Energy, exergy, environmental and sustainability assessments of jet and 
hydrogen fueled military turbojet engine. International Journal of Hydrogen Energy. 47 (2022) 26728-45 . 

[18 ] O. Balli, Y. Sohret, H.T. Karakoc. The effects of hydrogen fuel usage on the exergetic performance of 
a turbojet engine. International Journal of Hydrogen Energy. 43 (2018) 10848-58. 

[19 ] A. Dinc, H. Caliskan, S. Ekici, Y. Sohret. Thermodynamic-based environmental and enviroeconomic 
assessments of a turboprop engine used for freight aircrafts under different flight phases. Journal of 
Thermal Analysis and Calorimetry (  .2022 .)  

[20 ] A. Hasan, O.J. Haidn. Combustion of Kerosene Jet A Fuel and Superheated Steam Injection in an 
Aviation Turboshaft Engine: Improving Power Output and Reducing Emissions. Journal of The Institution 
of Engineers (India): Series C. 102 (2021) 275-81. 

[21 ] H.Y. Akdeniz, O. Balli. Impact of different fuel usages on thermodynamic performances of a high 
bypass turbofan engine used in commercial aircraft. Energy. 238 (2022) 121745 . 

[22  ] P. Derakhshandeh, A. Ahmadi, R. Dashti. Simulation and technical-economic-environmental 
optimization of the General Electric GE90 hydrogen turbofan engine. International Journal of Hydrogen 
Energy. 46 (2021) 3303-18 . 

[23 ] N. Kaya, Ö. Turan, A. Midilli, T.H. Karakoç. Exergetic sustainability improvement potentials of a 
hydrogen fuelled turbofan engine UAV by heating its fuel with exhaust gasses. international journal of 
hydrogen energy. 41 (2016) 8307-22. 

[24 ] S.D. Farahani, M. Alibeigi, M.R. Sabzehali. Energy and Exergy Analysis  and Optimization of Turbofan 
Engine-TF30-P414. Iranian (Iranica) Journal of Energy & Environment. 12 (2021) 307-17. 

[25 ] S. Saravanan, G. Nagarajan, S. Anand, S. Sampath. Correlation for thermal NOx formation in 
compression ignition (CI) engine fuelled with diesel and biodiesel. Energy. 42 (2012) 401-10 . 



 

 
 
 

[26 ] S. Park, G.M. Choi, M. Tanahashi. Demonstration of a gas turbine combustion-tuning method and 
sensitivity analysis of the combustion-tuning parameters with regard to NOx emissions. Fuel. 239 (2019) 
1 134 -42 .  

[27 ] C. Zhang, V. Gümmer. Multi-objective optimization and system evaluation of recuperated helicopter 
turboshaft engines. Energy. 191 (2020) 116477 . 

[28 ] S. Motaghian, S. Rayegan, H. Pasdarshahri, P. Ahmadi, M.A. Rosen. Comprehensive performance  
assessment of a solid desiccant wheel using an artificial neural network approach. International Journal 
of Heat and Mass Transfer. 165 (2021) 120657 . 

[29 ] E. Sherkatghanad, H. Moslemi Naeini, A.H. Rabiee, A. Zeinolabedin Beygi, V. Zal, L. Lang. Modeling  
and Predicting the Important Properties of the PVC/Glass Fiber Composite Laminates in the Production 
Process by the TLBO-ANFIS Approach. Iranian Journal of Materials Forming. 8 (2021) 63-75. 

[30 ] A.H. Rabiee, E. Sherkatghanad, A. Zeinolabedin Beygi, H. Moslemi Naeini, L. Lang. Experimental 
investigation and modeling of Fiber Metal Laminates hydroforming process by the GWO optimized 
neuro-fuzzy network. Journal of Computational & Applied Research in Mechanical Engineering 
(JCARME) (  .2022 .)  

[31  ] M. Safari  ,R.J. Alves de Sousa, A.H. Rabiee, V. Tahmasbi. Investigation of Dissimilar Resistance Spot 
Welding Process of AISI 304 and AISI 1060 Steels with TLBO-ANFIS and Sensitivity Analysis. Metals. 11  

(2021 .)  
[32  ] M. Safari, V. Tahmasbi, A.H. Rabiee. Investigation into the automatic drilling of cortical bones using 

ANFIS-PSO and sensitivity analysis. Neural Computing and Applications. 33 (2021) 16499-517. 
[33  ] M. Bai, X. Yang, J. Liu, J. Liu, D. Yu. Convolutional neural network-based deep transfer learning for 

fault detection of gas turbine combustion chambers. Applied Energy. 302 (2021) 117509 . 
[34  ] M. Sabzehali, A. Hossein Rabiee, M. Alibeigi, A. Mosavi. Predicting the energy and exergy 

performance of F135 PW100 turbofan engine via deep learning approach. Energy Conversion and 
Management. 265 (2022) 115775 . 

[35 ] Z. Liu, I.A. Karimi. Gas turbine performance prediction via machine learning. Energy. 192 (2020) 
116627 . 

[36 ] J. Pierezan, G. Maidl, E. Massashi Yamao, L. dos Santos Coelho, V. Cocco Mariani. Cultural coyote 
optimization algorithm applied to a heavy duty gas turbine operation. Energy Conversion and 
Management. 199 (2019) 111932 . 

[37 ] K. Kayaalp, S. Metlek. Prediction of burning performance and emissions indexes of a turboprop 
motor with artificial neural network. Aircraft Engineering and Aerospace Technology. 93 (2021) 394-409 . 

[38 ] G. Wang, O.I. Awad, S. Liu, S. Shuai, Z. Wang. NOx emissions prediction based on mutual 
information and back propagation neural network using correlation quantitative analysis. Energy. 198 
(2020) 117286 . 

[39  ] M. Dirik. Prediction of NOx emissions from gas turbines of a combined cycle power plant using an 
ANFIS model optimized by GA. Fuel. 321 (2022) 124037. 

[40  ] M.R. Yazdi, M. Aliehyaei, M.A. Rosen. Exergy, Economic and Environmental Analyses of Gas Turbine 
Inlet Air Cooling with a Heat Pump Using a Novel System Configuration. Sustainability. 7 (2015) 14259-
86 . 

[41  ] M.N. Khan, T.A. Alkanhal, J. Majdoubi, I. Tlili. Performance enhancement of regenerative gas 
turbine: air bottoming combined cycle using bypass valve and heat exchanger—energy and exergy 
analysis. Journal of Thermal Analysis and Calorimetry. 144 (2021) 821-34 . 

[42 ] A. Fakhre, V. Pachidis, I. Goulos, M. Tashfeen, P. Pilidis. Helicopter Mission Analysis for a 
Regenerated Turboshaft. 2013. 



 

 
 
 

[43 ] H. Feng, G. Tao, C. Tang, Y. Ge, L. Chen, S. Xia. Exergoeconomic performance optimization for a 
regenerative closed-cycle gas turbine combined heat and power plant. Energy Reports. 5 (2019) 1525-
31 . 

[44 ] S. Yahya. Turbines compressors and fans. Tata Mcgraw Hill Education Pvt. Ltd., New Delhi2011 . 
[45  ] M. Alibeigi, S.D. Farahani, S.A. Hezaveh. Effects of coupled heat sources in a triple power cycle: 

thermodynamic, economics and environment analysis and optimization. International Journal of Energy 
and Environmental Engineering.  (2021) 1-22 . 

[46  ] M. Sabzehali, M. Alibeigi, S. Davoodabadi Farahani. Comparison of New concept Engine Based On 
Micro Gas Turbine with XU7/L3 Internal Combustion Engine. ASE. 11 (2021) 3591-601. 

[47 ] S. Syed, M. Renganathan. NOx emission control strategies in hydrogen fuelled automobile engines. 
Australian Journal of Mechanical Engineering. 20 (2022) 88-110. 

[48  ] W.W. Pulkrabek. Engineering Fundamentals of the Internal Combustion Engine, 2nd Ed. Journal of 
Engineering for Gas Turbines and Power. 126 (2004) 198 - .  

[49 ] R. Stephen. Turns. An introduction to combustion: concepts and applications. Mechanical 
Engineering Series McGraw Hill (  .2000 .)  

[50 ] R. Sindhu, G. Amba Prasad Rao, K. Madhu Murthy. Effective reduction of NOx emissions from diesel 
engine using split injections. Alexandria Engineering Journal. 57 (2018) 1379-92 . 

[51 ] H.-W. Funke, N. Beckmann, S. Abanteriba. An overview on dry low NOx micromix combustor 
development for hydrogen-rich gas turbine applications. International Journal of Hydrogen Energy. 44 
(2019) 6978-90 . 

[52 ] C. Li, Z. Ding, D. Zhao, J. Yi, G. Zhang. Building Energy Consumption Prediction: An Extreme Deep 
Learning Approach. Energies. 10   (2017 .)  

[53  ] L. Lei, W. Chen, B. Wu, C .Chen, W. Liu. A building energy consumption prediction model based on 
rough set theory and deep learning algorithms. Energy and Buildings. 240 (2021) 110886 . 

[54 ] R. Olu-Ajayi, H. Alaka, I. Sulaimon, F. Sunmola, S. Ajayi. Building energy consumption prediction for 
residential buildings using deep learning and other machine learning techniques. Journal of Building 
Engineering. 45 (2022) 103406. 

 


