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Abstract— This research is focused on exploring the 

utilization of Acoustic Emission (AE) in the condition 

monitoring of safety-critical engineering structures. AE serves 

as a non-destructive testing method that identifies defects and 

structural changes by analyzing the release of elastic energy 

during the initiation and progression of cracks. The proposed 

methodology revolves around the strategic placement of AE 

sensors on structures, continuous data acquisition during 

operational phases, and the application of advanced signal 

processing and pattern recognition techniques for the detection 

of faults and assessment of their severity. The incorporation of 

machine learning techniques enhances accuracy and facilitates 

real-time decision-making for proactive maintenance, 

ultimately ensuring the safety and reliability of infrastructure 

and industrial operations. The study underscores AE's pivotal 

role in extending the life of structures, minimizing downtime, 

and reducing maintenance expenses. In summary, AE-based 

condition monitoring presents significant potential for 

safeguarding critical engineering assets and advancing 

proactive maintenance practices.  
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I. INTRODUCTION 

Composites serve as widely favoured lightweight 
construction materials in safety-critical engineering sectors, 
including aeronautics, aerospace, and automotive industries. 
Their appeal is attributed to several key characteristics, such 
as excellent resistance to water and moisture, acoustic 
insulation, fire resistance, a high stiffness-to-weight ratio, 
adaptability in construction, and robust load-bearing 
capabilities [1-2]. However, despite these merits, composite 
structures are susceptible to various forms of damage, such as 
fatigue cracking, indentation, debonding, and matrix failure, 
among others. These defects can precipitate unexpected 
structural failures [2-3]. Therefore, it is imperative to establish 
an online structural condition monitoring strategy to 
effectively detect concealed damage. 

One promising approach for this purpose involves acoustic 
emission (AE), a method that involves the detection of 
transient elastic waves generated during damage initiation in 
a material. These AE waves are a result of the rapid release of 
energy associated with irreversible structural changes within 
the material [4-6]. Often, a pencil lead break (PLB) signal is 
employed as an AE source, offering a reproducible test signal 
for AE applications. Different functions, including step 
functions, linear functions, and cosine bell functions, have 
been explored for modeling the rise times of PLB signals. It 
has been found that the cosine bell function yields the best 
agreement between simulation and analytical results [8]. 

AE-based monitoring techniques offer the potential for 
large-scale, in-service monitoring with minimal 
instrumentation requirements. These techniques capture the 
elastic wave motion following the initiation and propagation 
of cracks within materials and convert it into electrical 
waveforms. Analysing these waveforms aids in understanding 
the nature and extent of structural damage. Remarkably, this 
monitoring technique enables global structural assessment and 
is passive in nature, drawing its energy solely from the damage 
source without requiring external energy sources [5-6]. 

In contemporary research, there is a growing emphasis on 
developing automated monitoring techniques that employ 
experimentally measured structural responses [9-11]. Among 
these techniques, image-based condition monitoring has 
emerged as a promising avenue for rapid inspection [12-14]. 
However, the identification of structural damage using 
measured data has proven to be intricate due to the influence 
of predefined damage features on the identification results. To 
mitigate this complexity, deep learning-based image 
classification techniques are being adopted. These techniques 
train neural networks using the features of the training dataset, 
offering an advantage in handling grid-like inputs such as 
images and producing consistent feature values from local 
regions with similar patterns. The applications of deep 
learning in condition monitoring encompass a wide range, 
including identifying cracks in concrete, road defects, 
pavement distress, and historical structure damage, among 
others [18-20]. 

A review of existing literature reveals a significant 
research gap in the domain of AE-based deep learning for the 
automatic detection and classification of damage sources in 
safety-critical composite structures, a gap that this paper seeks 
to address. This paper introduces a Random Forest Classifier 
(RFC) based deep learning model for autonomous damage 
source zone monitoring in sandwich composite (SCS) 
structures, utilizing AE signals induced by PLBs at 45o angle 
(approximately). A series of laboratory experiments has been 
conducted on a SCS using two piezoelectric AE sensors. The 
AE signals acquired during these experiments (in the time 
domain) are transformed into time-frequency RGB (red-
green-blue) spectrogram through continuous wavelet 
transform (CWT). These spectrogram images serve as inputs 
for the specifically designed RFC based deep learning model 
for training/validation and testing. 

II. LABORATORY EXPERIMENTS FOR AE BASED 

INSPECTION OF THE COMPOSITE STRUCTURE 

A comprehensive experimental investigation was 
conducted on an unblemished SCS (500 mm × 500 mm × 15 
mm) specimen utilizing a randomly configured network of AE 



sensors. The SCS sample, composed of aluminium 
honeycomb core and carbon-fibre composite face-sheets, was 
chosen for this laboratory study. To capture sensor signals, a 
multi-channel acoustic data-acquisition system (ADAS)  was 
employed. 

Within the experiment, damage-induced AE-waves were 
generated by employing a pencil-lead-break source (referred 
to as HN-source) at various locations within the sensor 
network on the specimen. A comprehensive depiction of the 
experimental setup, encompassing both the ADAS system and 
the sensor network on the SCS sample with an existing debond 
region, is presented in Fig. 1. 

 

Fig. 1. Experimental setup for PLB-induced AE-based inspection of SCS. 

III. DEEP LEARNING BASED AUTONOMOUS CONDITION 

MONITORING OF SCS 

An autonomous condition monitoring strategy is 
developed for the rapid localization of the artificial damage 
sources within the three distinct zones: 'Zone I', 'Zone II', and 
'Zone III'. The proposed monitoring strategy utilizes a 
purposely designed Random Forest classifier based deep 
learning model to accomplish this intelligent monitoring using 
the AE data registered at the pre-assigned sensing points (i.e., 
S1 and S2). 

The initial phase entails data preprocessing, where the 
spectrogram images are produced by performing CWT on the 
received AE signals corresponding to the three different 
categories and standardized them to a uniform size of 136 
×136 pixels. These spectrograms underwent conversion into 
numerical arrays. The dataset was partitioned into training, 
validation, and test sets, with the training and validation 
subsets serving as the foundation for model development and 
the test set as an independent evaluation dataset. The Random 
Forest model was instantiated with 100 decision trees and 
subsequently underwent training utilizing the training data. 
During this training process, the model acquired the ability to 
discern and interpret the patterns inherent in the images, 
enabling it to detect / classify the AE source on the SCS. 

Subsequent to the model's training phase, we assessed its 
performance on both the validation and test datasets. 
Predictions were made on the validation data, and the 
accuracy of these predictions was gauged and recorded as the 
validation accuracy (VA) as given in Eq. 1. Following this, 
predictions were generated for the test dataset, and the test 
accuracy (TA) as represented in Eq. 2 was ascertained. 

            

       

Number of Correct Predictions onValidation Set
VA

Total Number of Validation Samples
=         (1) 

                 

       

Number of Correct PredictionsonTest Set
TA

Total Number of Test Samples
=               (2)                                                                            

To gain insights into the reliability of the model's 
predictions, the standard error is computed as represented in 
Eq. 3, a metric that quantifies the deviation of predicted labels 
from the true labels in the test dataset. In addition, the standard 
errors are estimated for each specific class ('Zone I', 'Zone II', 
and 'Zone III') to assess prediction variability for individual 
categories. An average standard error as given in Eq. 4 was 
derived to furnish a comprehensive measure of prediction 
reliability.                                                                                                                         
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To extend our understanding of the model's performance, 
a confusion matrix is constructed. This matrix illuminates the 
number of true positives, true negatives, false positives, and 
false negatives, affording a more detailed analysis of 
classification accuracy. In summation, the proposed 
methodology performs data preprocessing, model selection, 
training, validation, and evaluation, standard error analysis 
with equations, and the construction of a confusion matrix. 
These integral components together constitute our approach 
for classifying the damage induced AE source regions, which 
is presented in the following section. 

IV. RESULT AND DISCUSSION 

The proposed condition monitoring approach leverages 
the Random Forest classifier based deep learning to achieve 
autonomous detection and classification of damage-source 
regions in the SCS. Towards this, a series of PLB induced AE 
experiments is performed in 3 predefined damage zones on the 
SCS. The corresponding AE signals in time-domain are 
collected and processed to produce spectrogram images. A 
typical comparison of the raw S1 signals corresponding to the 
Zone I, Zone II and Zone III is presented in Fig. 2.  

 

Fig. 2. AE signals corresponding to three different damage-source zones. 

The time-domain AE signals are then converted to time-
frequency spectrogram images as represented in Fig. 3. These 
spectrogram data are applied to a purposely designed deep 
learning model. A detailed distribution of the training, 
validation, testing image data corresponding to the predefined 
Zone I, Zone II and Zone III are listed in Table 1.  



                             

                (a)                          (b)                           (c) 

Fig. 3. CWT spectrograms of the AE signals at S1 (ref. Fig. 2) from (a) 

Zone I, (b) Zone II, and (c) Zone III. 

TABLE I.  DISTRIBUTION OF THE CWT SPECTROGRAM DATA 

Condition 
Table Column Head 

Training Validation Testing 

Zone I 1000 200 200 

Zone II 1000 200 200 

Zone III 1000 200 200 

 

The training and validation performance of the proposed 
deep learning model is presented in Fig. 4. The proposed 
model offers around 97% of training accuracy and around 
95% validation accuracy (95.67%) using the spectrogram data 
from 3 different classes (ref. Table 1). The model renders 
standard errors for each class are: [0.542125446737192, 
0.31268994227509145, 0.3411744421846396] with an 
average standard error of 0.39866327706564103. In addition, 
Fig. 5 shows the class wise distribution of the standard error 
versus the average standard errors for a better representation 
of the monitoring performance. 

 

Fig. 4. Training/validation progress acheived from the deep learning model. 

 

 

Fig. 5. Class wise distribution of standard error versus av. standard errors. 

The test confusion matrix from the trained deep learning 
model is presented in Fig. 6. It shows the class-wise 
identification of the supplied test data per classes (i.e., 200). 
The model produced an average test accuracy of 91.5 % and 
Fig. 7 shows the class-wise test accuracy with respect to the 
overall (3 class average) test accuracy. 

 

Fig. 6. Confusion matrix shows the test performance of the deep learning 

model for identifying the AE source regions on the SCS. 



 

Fig. 1. The class-wise test accuracy versas the overall test performance. 

V. CONCLUSION 

 A novel AE-based deep learning model has been 

introduced for the automated monitoring of damage-source 

regions within the SCS. This model has demonstrated 

remarkable efficacy in the detection of damage sources and 

the identification of specific zones within the targeted SCS. 

Notably, this Structural Health Monitoring (SHM) approach 

eliminates the need for intensive manual feature engineering 

by working directly with raw, unprocessed AE signals for 

comprehensive assessments of both global and localized 

damage sources in composite materials. 

The confusion charts generated during testing of the pre-

trained deep learning model underscore its capacity to 

reliably differentiate among the three primary AE-source 

regions or classes within the SCS. This high level of accuracy 

has been achieved using previously unused datasets, 

emphasizing the robustness and practical applicability of the 

proposed condition monitoring approach. 

This research holds promise for making substantial 

contributions to the field of Structural Health Monitoring. It 

paves the way for the development of cyber-physical systems 

tailored for industrial-grade condition monitoring of safety-

critical composite structures and systems. Looking ahead, our 

future research endeavours will delve into the 

characterization of diverse types of damage sources within 

operational composites, an ongoing area of investigation for 

the authors. 
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