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Abstract—The study mainly aims to develop an image 

segmentation algorithm named SMPTS for the segmentation of 

physically touching soybean images in seed testing machines. 

SMPTS is a classical image-based method. In SMPTS, the binary 

method with an adaptive mean threshold is to divide the contours 

of soybeans. The medium filter eliminates salt and pepper noises 

on the binary image of soybean, which leads to less running time 

for SMPTS. Otsu with a fixed threshold is to extract the regions of 

interest of soybean images in physical touching. The minimum 

bounding rectangle locates individual seeds on the binary image. 

Individual seed images are cut from the physically contacted 

soybean images based on location and size. As a result, SMPTS 

could achieve more than 99% segmentation accuracy, with about 

53ms for segmenting a soybean seed on NVIDIA Jetson TX2. 

Meanwhile, the segmentation accuracy of intact soybeans, 

immature soybeans, skin-damaged soybeans, spotted soybeans, 

and broken soybeans is about 100%, 99.66%, 96.56%, 99.44%, 

and 99.51%, respectively. The code for SMPTS is 

https://codeocean.com/capsule/9219546/tree/v1 under the MIT 

license. 

Keywords—image segmentation, image processing, soybean 

seeds, physically touching seeds, seed testing machine 

I. INTRODUCTION 

Soybean, one of the world’s major oilseed crops, is an 
essential vegetable protein and oil source in people’s daily lives. 
The classical method for evaluating the quality of soybeans is 
manual counting and classification of soybean seeds by 
agricultural inspectors. However, the classical method relies 
heavily on the experience and observation of agricultural 
inspectors to achieve soybean classification. More importantly, 
the classical method is time-consuming, heavily subjective, and 
highly inefficient. Zhang et al. [1] used the signal change caused 

by seeds impacting the piezoelectric element to achieve soybean 
counting. However, Zhang’s method could not identify different 
types of soybean seeds based on soybeans’ appearances. 

With the development of machine vision and image 
processing techniques, researchers have proposed various 
image-based recognition methods for agricultural products. 
Javanmardi et al. [2] used an image segmentation algorithm to 
separate individual corns and then combined extracted corns’ 
features with a classifier to complete the corn classification. 
Huang et al. [3] applied Mask R-CNN to perform the 
segmentation of soybean seeds and then designed a lightweight 
Convolutional Neural Network (CNN) to achieve 96.2% 
identification accuracy. To sort high-quality soybean seeds, 
Zhao et al. [4] developed a deep learning-based sorting system 
to recognize the full surface of soybean seeds, with a 
classification accuracy of about 97.84%. Koklu and Ozkan [5] 
segmented individual dry beans through the classical image 
processing algorithm and combined 16 bean features with 
Support Vector Machines (SVM) to classify the beans, with an 
overall accuracy of 93.13%. Jitanan and Chimlek [6] used 
features of individual soybeans for classification with an overall 
accuracy of about 99.2%, but the physical soybean seeds cannot 
be processed in Jitanan’s method. Moreover, the above studies 
focused more on classifying seeds without physical contact. In 
general, seeds are often physically touching in the actual 
detection scenes, which may cause the above studies to have 
difficulty matching real scenes. It indicates that the image 
segmentation for physically touching seed is still a challenge. 

With the widespread application of CNN for image 
segmentation, Yang et al. [7] combined Mask R-CNN with 
transfer learning to achieve individual soybean seeds for 



touching seed images under the high-throughput soybean seeds 
phenotyping. Similarly, other researchers, including Liang et al. 
[8], Toda et al. [9], and Feng et al. [10], have all applied 
improved CNNs to the segmentation of touching seed images. 
Although these studies [7-10] could reach better segmentation 
performance, they are all data-driven and have high 
requirements for hardware computing power during CNN 
training. Meanwhile, labelling data is time-consuming and 
laborious work, the quality of data labelling would directly 
affect the accuracy of image segmentation. However, classical 
image processing methods rely more on pixels to process images. 
Therefore,  classical image processing methods are still highly 
robust and interpretable. Moreover, classical image processing 
methods require low hardware computing power. Grift et al. [11] 
designed an image processing algorithm to accomplish maize 
counting with an error rate of missing seeds ranging from 0 to 
4.24%. Tan et al. [12] proposed an algorithm for touch seed 
counting of hybrid rice, and the average accuracy reached 
94.63%. Liu et al. [13] improved the watershed algorithm to 
achieve segmentation of touching beans with better 
segmentation performance. To count soybean seeds and 
recognize broken seeds, Chen et al. [14] proposed a clustering 
algorithm based on SVM and K-Means for segmenting touch 
bean seeds. Although the researchers have paid more attention 
to image segmentation of physically touching seeds, touching 
seeds on the images is rare. Lin et al. [15] proposed an image 
segmentation algorithm for physically touching soybean images 
based on Multi-scale Retinex with Color Restoration (MSRCR), 
which segments a seed in approximately 104ms on NVIDIA 
Jetson TX2 with a segmentation accuracy of over 99%. While 
Lin's algorithm can reach better segmentation results, the 
algorithm may need help to fully segment seeds covered with 
grey-black or purple spots on the surface [16]. The above studies 
can achieve good segmentation accuracy for physically 
contacted seeds, but the part of the research [11-14] do not 
exhibit their real-time performance. 

Based on the above analyses, we aim to develop an image 
segmentation algorithm applied to seed testing machine, which 
can completely segment seeds regardless of how the soybean 
seed surface is covered with any classification features of 
soybeans. More importantly, the image segmentation algorithm 
should facilitate real-time segmentation of physically touching 
seeds while operating on a resource-constrained platform. 

II. MATERIALS AND METHODS 

A. Image Acquisition System 

The image acquisition system contains an industrial camera 
(MV-CA060-11GM, HIKVISION Co., Ltd., Hangzhou, China), 
light source, NVIDIA Jetson TX2, power supply, and display, 
as shown in Fig. 1. The soybean images (3072×2048 pixels) 
were saved in JPG format. Meanwhile, the image acquisition 
system collected 38 images of physically touching soybean 
seeds to validate the performance of SMPTS. 

 

Fig. 1. Image acquisition system. 

B. Image Segmentation Algorithm 

Fig. 2 shows the flowchart of SMPTS. The Binary Method 
with Adaptive Mean Threshold (BM-AMT) is applied to extract 
the contours of soybeans. Then, a medium filter is used to 
eliminate salt and pepper noises on the binary image of BM-
AMT. Then, Otsu with a Fixed Threshold (Otsu-FT) is applied 
to segment the background and foreground of the original 
images, but all seeds on binary images are physically in contact. 
To extract the interest regions, the binary image of Otsu-FT 
multiplies the binary image of BM-AMT, the result is named the 
binary image of interest regions (Image-IR). The Minimum 
Bounding Rectangle (MBR) locates individual seeds on Image-
IR. The size of MBR was used to judge whether seeds were in 
physical contact. If the seeds were non-physically touching, 
those individual seed images were cropped out from the original 
images after masking. If the seeds were physically touching, the 
erosion operation with the 13×13 kernel was applied to eliminate 
some tiny contact between seeds on the binary image of interest 
regions after masking. Then, those seeds were relocated by 
MBR. Finally, those individual seed images were cropped out. 

 

Fig. 2. The flowchart of image processing. 



III. EXPERIMENTS AND ANALYSIS 

A. Experiment Environments 

SMPTS was constructed in C/C++ with OpenCV 3.4.8. 
SMPTS performed various experiments on the desktop 
computer with an Inter(R) Core(TM) i7-13700 2.10GHz CPU 
and 32GB RAM. Finally, SMPTS was run and tested on the 
NVIDIA Jetson TX2. 

B. Evaluation Metrics 

There are three evaluation metrics to evaluate SMPTS, 
including the Rate of Intact Seeds (RIS), the Rate of Physically 
Touching Seeds (RPT), and the Rate of Over-segmented Seeds 
(ROS). 

𝑅𝐼𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑖𝑛𝑡𝑎𝑐𝑡 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑒𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
  () 

𝑅𝑃𝑇 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙𝑙𝑦 𝑡𝑜𝑢𝑐ℎ𝑖𝑛𝑔 𝑠𝑒𝑒𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
 () 

𝑅𝑂𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑣𝑒𝑟−𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝑠𝑒𝑒𝑑𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑒𝑑𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑖𝑚𝑎𝑔𝑒
 () 

C. Binary Method Selection 

Fig. 3 shows the results of segmenting seed images with 
physical contact using Otsu with Adaptive Thresholding (Otsu-
AT). In the binary image, there are many tiny contacts between 
seeds, which causes a smaller number of individual seed images 
to be segmented from soybean images with physical contacts. 
Meanwhile, Otsu-AT cannot entirely segment individual seeds 
located in the corners of the image into the foreground of the 
binary image due to uneven illumination. More importantly, 
Otsu-AT is more likely to misclassify some typical features of 
soybeans (e.g., spotted or broken features) into the background 
of binary images, which could contribute to the incompleteness 
of individual soybean seeds cropped from the original images. 
There are various thresholds in different regions of the 
physically touched soybean image, preventing Otsu-AT for 
global image segmentation using one threshold from achieving 
better segmentation. 

 

(a) Original image. 

 

(b) Binary image. 

Fig. 3 The result of Otsu-AT. 

The Binary Method with Adaptive Thresholds (BM-AT) is 
a multi-threshold image segmentation algorithm. The core of 
BM-AT is to split the image into various regions, and then 
calculate the individual thresholds for each region. Finally, BM-
AT divides images' foreground and background based on the 
thresholds of each region. Therefore, BM-AT can mitigate the 
effect of illumination on image segment results. 

There are two methods for threshold calculation in BM-AT: 
the adaptive gaussian threshold and the adaptive mean threshold. 
Since BM-AT uses different thresholds for image segmentation 
in various image regions, BM-AT can only perform foreground 
and background segmentation for grey-scale discontinuous 
areas, unlike Otsu-AT, which uses a threshold for global image 
segmentation. Fig.4 shows the binary image of the Binary 
Method with Adaptive Gaussian Threshold (BM-AGT) and 
BM-AMT, respectively. To extract the interest regions of 
soybean images, the binary images of BM-AGT and BM-AMT 
were multiplied by the binary image of the binary method with 
a fixed threshold (BM-FT), respectively, as shown in Fig. 5. 

 

(a) The binary image of BM-AGT. 



 

(b) The binary image of BM-AMT. 

Fig. 4 The binary images of BM-AGT and BM-AMT. 

 

(a) The result of multiplying the binary image of BM-AGT with the binary 
image of BM-FT. 

 

(b) The result of multiplying the binary image of BM-AMT with the binary 
image of BM-FT. 

Fig. 5 The binary image of interest regions of soybean images. 

Table Ⅰ shows the results of different adaptive methods. BM-
AMT achieves about 99.17% of RIS, while BM-AGT only 
reaches 93.83% of RIS. Meanwhile, the average segmentation 
time of BM-AGT (approximately 145ms) for a seed is about 

1.27 times higher than that of BM-AMT (about 114ms). In RPT, 
BM-AGT is considerably lower than BM-AMT. 

TABLE I. THE SEGMENTATION ACCURACY OF DIFFERENT BINARY METHODS 

Methods 

Evaluation Metrics 

RIS RPT ROS 

Average 

segmentati

on time/ms 

BM-AMT 99.17% 0.83% 0.39% 114 

BM-AGT 93.83% 6.17% 0.09% 145 

D. Parameter Selection of BM-AT 

In BM-AT, the block size means the size of a pixel 
neighborhood, which is used to calculate a threshold of the 
pixels in the pixel neighborhood. Table Ⅱ shows the results 
using different block sizes in BM-AMT. As the block size 
increases, the average segmentation time of a seed decreases 
from 183ms to 105ms. When the block size was set to 25, RIS 
was the highest, and RPT was the lowest. 

TABLE Ⅱ. THE EFFECT OF BLOCK SIZES ON BM-AMT FOR SMPT 

Block size 

Evaluation Metrics 

RIS RPT ROS 

Average 

segmentati

on time/ms 

19 98.66% 1.34% 0.72% 183 

21 98.75% 1.25% 0.66% 167 

23 98.95% 1.05% 0.39% 153 

25 99.17% 0.83% 0.39% 114 

27 99.05% 0.95% 0.39% 110 

29 98.93% 1.07% 0.45% 105 

E. Parameter Selection of Medium Filter 

After BM-AMT, there are many salt and pepper noises on 
the binary image, resulting in longer average segmentation times 
for a seed. The medium filter can eliminate salt and pepper 
noises because MBR would locate all tiny objects on the binary 
image. Table Ⅲ shows the results of removing salt and pepper 
noises using medium filters with different kernel sizes. The 
average seed segmentation time of the image processing 
algorithm without a medium filter (about 3,052ms) is 
considerably higher than that of the image processing algorithm 
with medium filters (all less than 300ms). Remarkably, the 
larger the kernel size of the medium filter, the faster the average 
segmentation time of a seed. The average seed segmentation 
time of the image segmentation algorithm with a 5×5 kernel size 
of medium filter is 114ms, but its RIS and RPT are pretty good 
among others. 

TABLE Ⅲ. THE EFFECT OF MEDIUM FILTERS WITH DIFFERENT KERNEL SIZES 

FOR SMPT 

Kernel size 

Evaluation Metrics 

RIS RPT ROS 

Average 

segmentati

on time/ms 

- 99.14% 0.86% 0.45% 3,052 



Kernel size 

Evaluation Metrics 

RIS RPT ROS 

Average 

segmentati

on time/ms 

3×3 99.05% 0.95% 0.45% 294 

5×5 99.17% 0.83% 0.39% 114 

7×7 98.75% 1.28% 0.26% 83 

9×9 97.77% 2.23% 0.28 65 

F. Method Selection for Seperating Tiny Contact Seeds 

 The image processing algorithm that does not process the 
contact seeds achieves about 92.74% of the RIS, but some tiny 
contact seeds can still be further segmented on the binary image. 
Table Ⅳ shows that Erosion Operation (KEOP) and Watershed 
Algorithm (WA) are used to process the tiny contact seeds. The 
image processing algorithm with 13×13 kernel erosion 
operation has excellent segmentation accuracy (about 99.17%), 
and the average segmentation time of seeds is about 114ms. In 
comparison, the image processing algorithm with the Watershed 
Algorithm (IMGP-WA) is approximately 98.63% of RIS, and 
the average segmentation time for a seed is about 136ms. More 
importantly, the ROS of IMGP-WA (about 1.02%) is 
significantly higher than that of the image processing algorithm 
with KEOP (all less than 0.55%), which indicates that IMGP-
WA causes over-segmentation of seeds. Meanwhile, the average 
segmentation time of seeds with IMGP-WA is about 136ms, 
significantly higher than that of the image processing algorithm 
with KEOP (all less than 115ms). 

TABLE Ⅳ. DIFFERENT METHODS OF ELIMINATING SOME TINY CONTACT 

BETWEEN SEEDS 

Methods 

Evaluation Metrics 

Kernel 

size 
RIS RPT ROS 

Average 

segmentati

on time/ms 

- - 92.74% 7.26% 0.47% 121 

KEOP 

7×7 98.07% 1.93% 0.50% 115 

9×9 98.72% 1.28% 0.45% 115 

11×11 98.98% 1.02% 0.44% 115 

13×13 99.17% 0.83% 0.39% 114 

15×15 98.91% 1.09% 0.54% 115 

WA - 98.63% 1.37% 1.02% 136 

G. Comparison and Discussion 

Yang et al. [7] utilized Mask R-CNN and transfer learning 
to segment individual soybean seeds from physically touched 
soybean seed images. Yang's method has an RIS of over 99% 
and takes about 104ms to segment individual seeds. In 
comparison, SMPTS takes about 53ms to segment individual 
seeds on NVIDIA Jetson TX2 and achieves an RIS of 
approximately 99.17%. Although Yang's method achieves a RIS 
of more than 99% for images of physically touched soybean 
seeds, Yang's method aims at segmenting intact soybeans that 
are complete and shiny; they do not consider other types of 
soybean seed segmentation, which may make Yang 's method 
unable to serve the image segmentation of soybean seed 

classification tasks. However, the SMPTS can realize five kinds 
of soybean seed segmentation: intact soybeans, immature 
soybeans, skin-damaged soybeans, spotted soybeans, and 
broken soybeans [17]. 

Lin et al. [15] designed an MSRCR-based image 
segmentation algorithm for physically contacted soybean 
images; the results of Lin's algorithm realize about 98.75% RIS 
with 104ms for segmenting a seed in our soybean images on 
NVIDIA Jetson TX2. However, the RPT and ROS of Lin's 
algorithm (about 0.99% and 1.58%, respectively) are higher than 
those of the SMPTS (about 0.83% and 0.39%, respectively). The 
ROS of Lin's algorithm (about 1.58%) is nearly four times that 
of the SMPTS (about 0.39%). More importantly, the average 
segmentation time of a seed of the SMPTS (about 53ms) is 
significantly lower than that of Lin's algorithm (about 202ms). 
Because there are a lot of salt and pepper noises in our soybean 
images, the average seed segmentation time of Lin's algorithm 
is considerably longer than SMPTS. Table Ⅴ shows the 
comparison experiments. 

Table VI and Table VII show the segmentation results of Lin's 
and our algorithms, respectively. The largest RIS of Lin's 
algorithm is immature soybeans, and the second largest RIS is 
intact soybeans, while the largest RIS of SMPTS is intact 
soybeans, and the second biggest RIS is immature soybeans. In 
Table VI, the highest RPT and ROS are broken soybeans 
(approximately 3.27% and 4.80%, respectively), and the lowest 
RIS for broken soybeans is about 96.73%. Table VII shows 
similar results: the RPT of broken soybeans is significantly 
larger than that of other soybeans, and the RIS of broken 
soybeans is the lowest. The RPT of Lin's algorithm (about 
3.27%) is slightly lower than that of SMPTS (about 3.44%), but 
the ROS of Lin's algorithm (about 4.80%) is almost five times 
higher than that of SMPTS (about 0.97%). The ROS of Lin's 
algorithm for spotted soybeans has similar results. The ROS of 
Lin's algorithm for spotted soybeans (about 1.95%) is over three 
times higher than that of SMPTS (about 0.64%). The main 
reason is that Lin's algorithm adopts MSRCR to enhance the 
contrast between seeds and the background on soybean images. 
Therefore, some spotted or broken features on the soybeans 
would be over-enhanced by MSRCR, which makes those 
classification features on the soybeans’ surface similar to the 
background on the image. When Otsu-AT was used to produce 
binary images, these features were classified into the 
background of the binary image. Finally, a completely broken or 
spotted soybean may be divided into many parts, leading to a 
completely broken or spotted soybean with many MBRs on 
binary images. 

TABLE Ⅴ. METHOD COMPARISONS 

Methods 

Evaluation Metrics 

RIS RPT ROS 

Average 

segmentati

on time/ms 

Yang et al., 

2021 [7] 
>99.00% - - 104 

Lin et al., 

2023 [15] 
99.01% 0.99% 1.58% 202 

SMPTS 

(Ours) 
99.17% 0.83% 0.39% 53 



TABLE Ⅵ. DETAIL RESULTS OF LIN’S ALGORITHM 

Methods 
Soybean 

types 

Evaluation Metrics 

RIS RPT ROS 

Lin et al., 
2023 [15] 

Intact 99.55% 0.45% 0 

Immature 100% 0 0 

Skin-
damaged 

99.05% 0.95% 1.89% 

Spotted 99.58% 0.42% 1.95% 

Broken 96.73% 3.27% 4.80% 

TABLE Ⅶ. DETAIL RESULTS OF SMPTS 

Methods 
Soybean 

types 

Evaluation Metrics 

RIS RPT ROS 

SMPTS 

(Ours) 

Intact 100% 0 0 

Immature 99.66% 0.34% 0 

Skin-

damaged 
99.52% 0.48% 1.57% 

Spotted 99.44% 0.56% 0.64% 

Broken 96.56% 3.44% 0.97% 

IV. CONCLUSION 

This study mainly is to construct the SMPTS for segmenting 
physically touching soybean images in seed testing machines. In 
SMPTS, BM-AMT is vital in to extract the contours of soybeans. 
A medium filter serves to eliminate salt and pepper noises on the 
binary images of BM-AMT, resulting in a significant reduction 
in the average time to segment the seeds. The erosion operation 
with the 13×13 kernel was used to process those soybean seeds 
in tiny contact with other soybean seeds, which increases the 
SMPTS's RIS significantly. As a result, the RIS of the SMPTS 
can achieve about 99.17% with approximately 53ms for 
segmenting a soybean seed on NVIDIA Jetson TX2, which 
could meet the online requirement of image segmentation of 
physically touching soybean seeds. Meanwhile, the RIS of intact 
soybeans, immature soybeans, skin-damaged soybeans, spotted 
soybeans, and broken soybeans is about 100%, 99.66%, 96.56%, 
99.44%, and 99.51%, respectively. 
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