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Abstract— Gas turbines are capable of producing a tremendous 

amount of energy and have wide industrial applications due to their 

small size and lower weight. Their efficiency mainly depends on 

two factors i.e. turbine inlet temperature and compressor and/or 

turbine efficiency. By increasing the turbine inlet temperature, 

turbine blades face high-temperature hot corrosion (850 ℃ to 950 

℃) that limits the life of the turbine blade. During hot corrosion, 

molten sodium salts and vanadium oxide condense over the surface 

of turbine blades, consume protective oxide layers and diffuse into 

the microstructure of super alloy. As a result, fatigue and creep 

phenomena are accelerated leading to fracture. In this paper, the 

use of hot corrosion-resistant coating i.e. thermal barrier coatings 

have been investigated. Over the past few years, it has been proven 

to be an effective strategy to avoid premature failure. Hot corrosion 

reaction in conventional coatings transforms tetragonal zirconia to 

monoclinic phase and form large crystalline products which induce 

thermal stress and cracks upon cooling. While, nanostructured, 

rare earth elements co-doped and multiple layered thermal barrier 

coatings possess superior hot corrosion resistance than these 

conventional coatings. Also, high porosity in nanostructured, low 

reactivity of rare earth elements, and diffusion hindrance of 

multilayered coatings resist hot corrosion processes. In 

conventional metallic bond coatings, hot corrosion destroys 

protective oxide layers and consumes aluminium and chromium 

contents. When reinforced with nanoparticles, rare earth elements, 

and gradient aluminium layers, metallic bond coatings improve 

their hot corrosion resistance. These modifications develop 

continuous protective alumina and chromium oxide layer, prohibit 

diffusion of molten salts, and increase aluminium content of bond 

coatings. Evaluation of coatings using XRD techniques, SEM 

spectroscopy, and corrosion kinetics curves exhibit the superiority 

of hot corrosion-resistant coatings over conventional coatings. 

Keywords— High-temperature hot corrosion, low-temperature 

hot corrosion, fatigue life, creep rate, thermal barrier coatings, 

nanostructured coatings, rare earth elements, gradient coatings 

I. INTRODUCTION  

A gas turbine is used to produce a tremendous amount of 

energy and has many useful applications due to their smaller 

size and weight. Its efficiency depends mainly on two factors: 

i.e. higher turbine inlet temperature and efficiency of 

compressor and turbine. The increase in inlet temperature is 

driven by improvement in turbine blade metallurgy, coatings, 

and cooling techniques. Turbine efficiency and blade life are 

enhanced by hot corrosion, erosion, thermo-mechanical creep, 

and fatigue properties of turbine blades.  Hot corrosion is 

accelerated due to molten deposits which damages the blade 

surface [1]. There are two main types of hot corrosion that are 

discussed in this research work: 

A) Type-1: HTHC (high-temperature hot corrosion) 

It is observed from 850 to 950 . The chemical reaction starts 

due to molten metal on the TBCs (Thermal Barrier Coatings) 

and sweeps down to substrate material [2, 3]. HTHC is mainly 

due to Na2SO4 (sodium sulfate), NaCl (sodium chloride), and 

V2O4 (Vanadium Oxide). The impurities in fuel can lower the 

melting point of Na2SO4, moreover, during combustion NaCl 

can form Na2SO4 by reacting with SO2 (sulfur dioxide) and 

oxygen as shown by the following reaction [4]. Presence of 

Vanadium accelerates the solubility of turbine blade protective 

oxide in Na2SO4 [5]. It starts by breaking the oxide layer, 

followed by depletion of chromium content of substrate 

material, substrate oxidation loss of material integrity which 

finally leads to blade failure along with material strength. 

 

2NaCl (l) + SO2 (g) + O2 (g) → Na2SO4 (l) + Cl2 (g) 

 

B) Type-2: LTHC (low temperature hot 

corrosion) 

It is observed at the temperature range from 650 to 800 [6]. 

A high partial pressure SO3 (sulfur trioxide) formed as a 

byproduct of combustion leads to LTHC Reaction. The 

performance of Nano-structured TBCs, rare earth elements, 

and multilayer TBCs are investigated in this paper. It has been 

found in recent research that the additions of Nano-structured 

TBCs, rare earth elements, and multilayer TBCs provide better 



performance as compared to the conventional coatings. In this 

paper, XRD, SEM, and corrosion kinetic curves are used to 

evaluate different types of coatings. 

 

 
Figure 1 Basquin curve representing the number of cycles to 

failure for superalloy DZ125 in air and the presence of hot 

corrosive environment [7]. 

II. INFLUENCE OF HOT CORROSION ON TURBINE 

BLADE LIFE 

With exceptional strength properties at high temperature, Ni 

(Nickel) based super-alloys are usually used as a 

substrate material for turbine blades. The mechanical 

properties of the substrate depending on the chemical 

composition of refractory elements. Cr (chromium) and Ti 

(Titanium) are necessary for resistance against hot corrosion 

[8]. Cr restricts the Na2SO4 molten deposits by forming Cr2O3 

(chromium oxide). Other materials like Nb (Niobium) and Mo 

(Molybdenum) serves up to 1200 °C and 1300°C, in uncooled 

systems, respectively.  However, hot corrosion challenges the 

turbine blades and disks as they reduce their fatigue life [9-

11]. The fatigue testing of Ni superalloy DZ125 also indicates 

lower fatigue strength in the presence of a corrosive 

environment [12]. The Basquin curve presented in Fig. 1 

presents a lower fatigue life of DZ125 superalloy in a hot 

corrosive environment.    

 

Furthermore, hot corrosion experiments done on Ni superalloy 

617 has shown that hot corrosion accelerates the creep rate in 

corrosive environments [13]. During hot corrosion, M23C6 

carbides are precipitated at grain boundaries, which depletes 

Cr and cause inter-granular corrosion. These carbides enhance 

the fatigue and creep rate of turbine blades due to which, grain 

boundaries are weakened by the cyclic loadings and lead to 

fracture. Therefore, to enhance the turbine blade life, 

resistance against corrosion is essential. Thermal barrier 

coatings (TBCs) are used as resistance against hot corrosion 

[14]. 

III. HOT CORROSION RESISTANT TBCS 

TBCs protect the turbine blade against hot corrosion and 

thermal stresses, thus enhancing the operating temperature and 

efficiency of the turbine [15]. They protect turbine blades 

against thermal shock, hot corrosion, and erosion degradation 

[16-18]. A TBC consists of a low thermal conductivity 

topcoat, which protects the substrate against hot corrosion, and 

the metallic bond coat, which provides adhesion between the 

topcoat and substrate. The common methods for TBCs 

applications are EB-PVD (electron beam-physical vapor 

deposition), HVOFC (high-velocity oxygen fuel coating), and 

APS (atmospheric plasma spraying) [7, 19, 20]. APS is a 

widely used deposition because of cost-effectiveness and 

higher efficiency [21, 22]. 

 

Most widely used TBC is Yttria-Stabilized Zirconia (YSZ) 

[23, 24] However, its performance degrades at the temperature 

above 1200℃ in the presence of corrosive environment and 

fuel impurities. These conditions deteriorate TBCs by thermal 

cycling and spallation by hot corrosion [25-28]. Before the 

occurrence of hot corrosion reaction, ZrO2 (Zirconia) is 

stabilized in the tetragonal phase and stabilized by Y2O3 

(Yttria) [29, 30]. During hot corrosion, the acidic salts deplete 

the Y2O3 which results in phase transformation of Zirconia 

from tetragonal to monoclinic phase. This phase 

transformation leads to additional stresses and cracks in the 

coatings. Corrosion products induce stresses in TBCs, by 

reducing their thermal contraction upon cooling [31]. Wide-

scale research has been done to improve the effectiveness of 

TBCs. These research works have focused on Nanostructured 

TBCs and rare earth metals and compounds. 

A) Nanostructured TBCs 

Nanostructured YSZ coatings have shown an increase in 

thermal fatigue, bonding strength, and decreased the thermal 

conductivity of TBCs in comparison to conventional coatings 

[32-34]. Hot corrosion experiments of Nanostructured YSZ 

TBCs have revealed better resistance in the presence of a 

corrosive environment.  

Accelerated corrosion is performed on conventional and 

nanostructured coating specimens in the presence of 55 wt % 

V2O5 and 45 wt % Na2SO4. The specimens are heated at 1000 

°C for 30 hours to capture the hot corrosion effects. The 



process can be explained by following reactions in the 

presence of molten salts [35]. 

NaVO3 formed during the experiments has a low melting 

point and it easily penetrates the coatings. Where it reacts with 

Y2O3 to transform ZrO2 from tetragonal to the monoclinic 

form of YVO4. 

 

ZrO2.Y2O3 (s) + 2NaVO3 (I) → m-ZrO2 (l) + 2YVO4 (s) + 

Na2O (I) 

 

In addition to the above reaction, V2O5 also reacts readily with 

Y2O3 at a temperature above 800 ºC to transform tetragonal 

Zirconia to monoclinic form.    

   

ZrO2.Y2O3 (s) + V2O5 (I) → m-ZrO2 (l) + 2YVO4 (s)  

 

The stresses and cracking developed by hot corrosion are 

more pronounced in conventional coatings while 

nanostructured coatings resist transformation as shown in Fig. 

2. High surface roughness and porous zones are formed in 

nanostructured coatings, which prolong reaction with molten 

salts and resist ZrO2 transformation from tetragonal to 

monoclinic phase. In conventional coatings, cracking starts 

earlier after 12 hours of exposure to hot corrosion and 

delamination occurs after 24 hours. However, nanostructured 

coatings showed resistance to hot corrosion as the 

development of crack is delayed to 24 hours. 

 
Figure 2 Hot carrion test on Nano-structured and conventional 

coatings[36]. 

 

In recent study, a layer-gradient nanostructured Sc2O3_Y2O3 

co-stabilized Zr2O3 (ScYSZ) was compared with convential 

coatings to improve performance of thermal barrier coatings. 

The thermal cycling life of ScYSZ is more than that of 

convential coatings. Also the average insulation temperature 

of ScYSZ is higher than that of conventional coatings [37]. 

 

B) Effect of Rare Earth Elements and 

Compounds 

 

The addition of rare earth elements or compounds stabilizes 

YSZ and offers better corrosion resistance than conventional 

YSZ coatings [38-42]. In experiments, it was found that 

Scandia and Yttria co-stabilized Zirconia (ScYSZ) offer better 

corrosion resistance in comparison with Nanostructured YSZ 

and Scandia [43, 44]. Hot corrosion behavior of ScYSZ is 

found different from YSZ coatings [45]. In the case of YSZ 

coatings, spallation occurs in topcoat while in ScYSZ coatings 

spallation occurs in bond coat [43]. ScYSZ delays the phase 

transformation of zirconia from tetragonal to monoclinic as 

shown in X-ray Diffraction (XRD) patterns in Fig.3. Also in 

ScYSZ, spallation occurs in the bond coat while in YSZ 

coatings it occurs in the topcoat. Research has shown that 

Nanostructured Ceria and Yttria co-stabilized Zirconia 

(CYSZ) exhibits better corrosion resistance than conventional 

coatings[46]. CeO2 resists the reaction with the molten salts 

and obstructs diffusion [47, 48].  

 

 

 
Figure 3 XRD patterns after exposure to hot corrosive 

environments (a) YSZ (b) ScYSZ [17] 

 

 

The hot corrosion resistance of Ceria stabilized zirconia (CSZ) 

coatings is enhanced due to the overlay of alumina (Al2O3), as 

it reduces the infiltration of molten salts and decreases the 

depletion of Zirconia stabilizers [49]. Higher porosity and 

lower γ-phase in nano Al2O3 resist chemical reaction, which 

gives it an advantage over micro Al2O3. After the hot 

corrosion test, thermal stresses and cracking occur in CSZ 

with the transformation of ZrO2 and formation of irregular 

shape products of YVO4, CeVO4, and CeO3. The extent of 

degradation in CSZ/ micro Al2O3 is lower than CSZ due to the 

lesser transformation of zirconia. However, no damage and 



hot corrosion products are found in layered composite 

CSZ/nano Al2O3 coatings.  

It is found in research that corrosion resistance is improved 

due to less transformation of tetragonal to the monoclinic 

phase of ZrO2 in gadolinia (Gd2O3), ytterbia (Yb2O3) and 

yttria co-stabilized ZrO2 (GdYb-YSZ). Yb2O3 limits the 

intensity of GdYb-YSZ to react with molten salts [50]. It acts 

as a stabilizer for tetragonal ZrO2 while Y2O3 and Gd2O3 react 

with molten salts. After the hot corrosion test, the monoclinic 

phase content of ZrO2 in GdYb-YSZ coatings is also less than 

YSZ  coatings. Similarly, Gd2Zr2O5 + YSZ 

and Gd2Zr2O5 coatings offer higher corrosion resistance than 

YSZ coatings, because of less depletion of Y2O3. Moreover, 

development in thermal stresses and cracking in Gd2Zr2O5 + 

YSZ and Gd2Zr2O5 coatings takes a longer time in the 

corrosive environment than YSZ coatings [51]. 

The hot corrosion test of titania and yttria co-stabilized 

stabilized zirconia (TiSZ) has revealed the superior 

performance of TiSZ in comparison with YSZand CSZ [52]. 

XRD Peaks of coatings obtained after the hot corrosion test 

indicate no monoclinic phase of ZrO2 in the case of TiSZ as 

shown in Fig. 4.  

 
Figure 4 XRD patterns after exposure to hot corrosive 

environments (a) convention YSZ coatings (b) CSZ coating and 

(c) TiSZ coatings[52]. 

Tantalum (Ta) doping on YSZlowers thermal conductivity and 

stabilizes YSZ up to 1500 °C due to strong 

interaction between  Y3+ and Ta5+ ions. The hot corrosion 

resistance of Y2 O3 and tantalum oxide (Ta2O5) co-doped 

zirconia coating (TaYSZ) is found superior to YSZ coatings. 

The reaction of a molten mixture of Na2SO4 and V2O5 

with TaYSZ coatings is weak and reaction products 

are Na2TO3, TaVO5, and Ta9VO25.    

In contrast to YSZ coatings, the TaYSZ coating resist phase 

transformation and also the corrosion products are very small. 

Therefore, thermal cracking and stresses in TaYSZ coatings 

are not induced due to their higher corrosion resistance. The 

Scanning Electron Microscope (SEM) images of both 

coatings, developed after the hot corrosion test, are shown in 

Fig. 5.   

 
Figure 5 SEM images of (a) conventional YSZ coating and (b) 

TaYSZ coating developed after hot corrosion tests are 

presented[53]. 

 

 

C) Hot Corrosion Comparison of Base Metal, Bond 

Coating, and Multiple Layered TBCs 

In one study, the hot corrosion behavior of base metal Inconel 

738(BM), NiCrAlY bond coat (BC), duplex YSZ (YSZ/BC), 

duplex Lanthanum Zirconate (LZ/BC) and a five-layered 

coated specimen with LZas top 

layer(LZ+YSZ/YSZ/YSZ+BC)is compared [54]. The hot 

corrosion resistance of coated specimens is in the following 

order. 

Five Layered coating> YSZ> LZ> BC> BM 

 

 

The exposure of BM to a molten mixture of Na2SO4 and V2O5 

forms Na2VO3 which acts as a catalyst in the oxidation of 

metallic ions and forms Al2O3, Cr2O3, . 

The spinels NiAl2O4 and NiCr2O4 formed lead to mass gain, 

severe strains, and spallation of oxide layers.  

The BC provides better corrosion resistance than the BM due 

to the formation of Al2O3 and Cr2O3 layers, which prohibits 

the diffusion of oxidizing agents. The spallation of these oxide 

layers occurs due to thermal stresses and chemical reaction 

with molten salts.  

Due to hot corrosion in BC, the Al and Ni oxide layers are 

dissociated because of the fluxing mechanism.  

YSZ depicts better hot corrosion resistance than the BC and 

worse than LZ. However, LZ has low hot corrosion resistance 

at a higher number of cycles than YSZ, due to propagation of 

cracks and low fracture toughness. The five-layered coating 

exhibits better hot corrosion resistance than YSZ and LZ 

coatings. The top layer reacts with the molten salts and 

protects the YSZ coatings, Thus it has better corrosion 

resistance than the YSZ and LZ coatings.  



The parabolic corrosion rate constant ‘Kp’ measures the hot 

corrosion performance of coatings. Lower ‘Kp’ indicates better 

performance of coatings against hot corrosion performance. It 

is given by the following relation 

 

Kp=((∆W/A)2)/t 

 

where ∆W/A is the weight gain per unit surface area and ‘t’ is 

the hot corrosion time.  

 

IV. HOT CORROSION RESISTANT METALLIC BOND 

COATINGS 

NiCoCrAlY and NiCrAlYSi coatings are renowned as hot 

corrosion and oxidation resistant coatings and are also used in 

bond coats of Thermal Barrier Coatings (TBC) [55]. Al2O3 is 

formed due to the depletion of bond coatings. Al2O3layer is a 

protective layer, but it is not continuous [56]. Thus it causes 

spallation.  

Al2O3 reacts with Na2O to form AlO2
-, reprecipitating the 

Al2O3 and releasing the O2-.  O2- accelerates the formation of 

Al2O3 thus consuming more Al from the coating. In the 

presence of NaCl, Al2O3 is additionally dissolved by the 

oxychlorination process. To avoid deterioration in mechanical 

properties, Al content is kept lower than 5 wt %. The 

application of nanostructured reinforced coatings, doping in 

rare earth metals and composite/gradient coating is also 

investigated. 

 

Al2O3 + 1/2O2 + NaCl → 2NaAlO2 + Cl2 

A) Nanostructured Reinforced Coatings 

The addition of nano Al2O3, nano SiO2, and nano CeO2 

exhibits better corrosion resistance in comparison to normal 

coatings. The mass change of these nano-particle coatings 

gauges the corrosion performance of such coatings. Mass 

change is defined as the difference of mass gained from scale 

formation to mass loss by spallation of oxide scales. 

Mathematically it is written as  

 

Mc = (m1-m0 *A0/A)/ A1 

 

Here Mc is the mass change of coating; m1, mass change of 

coated sample; m0, mass change of uncoated sample; A0, 

superficial area of the uncoated part of sample; 𝐴, superficial 

area of the uncoated part of sample; A1, superficial area of the 

uncoated part of the sample. In the presence of salt (75 w𝑡 % 

Na2𝑆O4/ 25 𝑤𝑡 %K2𝑆O4) at 1050 °C, the mass change 

(corrosion kinetics) curves of coatings with and without 

nanoparticles are shown in Fig. 6. 

Fig. 7. Shows that nanoparticle coatings have better corrosion 

resistance with enhanced thermal fatigue. Whereas, CeO2 has 

the best hot corrosion resistance. The addition of nanoparticles 

serves as the nucleus for heterogeneous nucleation and results 

in microstructure refinement.  

Nanoparticles also enhance corrosion resistance and improve 

thermal fatigue. Coatings without nanoparticles are affected 

by spallation and deformation of a surface while no spallation 

is observed for coatings reinforced by nanoparticles as shown 

in Fig. 6. 

 
Figure 6 The corrosion kinetics (mass change) curves of 

NiCoCrAlY coatings [57]. 

 
Figure 7 SEM images of (a) NiCoCrAlY coating without 

nanoparticles, (b) with nano Al2O3, (c) nano SiC and (d) nano 

CeO2 are displayed [57]. 



In recent study, APS technique was applied to deposite nano-

Gd2Zr2O7 (nano-GZ) powder after synthesizing by co-

precipitation method on the nickel based substrate. The hot 

corrosion resistance of conventional coatings was compared 

with nano-GZ coatings. The hot corrosion resistance of GZ 

caotings was found found to be more than that of conventional 

coatings. As nano GZ coatings acts as a barrier to pores and 

micro-cracks which play a major role in infiltration of molten 

salts to the TBCs. Fig. 8 shows the XRD patterns of the 

conventional and nano-GZ coatings [58]. 

 
 

Figure 8 XRD patterns for (A) conventional coatings (B) 

nano-GZ coatings [58]. 

 

 

B) Doping with Rare Earth Elements 

Co-Al-Y-Ce coated specimens have better corrosion resistance 

and lesser mass gain as compared to Co-Al and Co-Al-Y 

coated specimens [59]. Co accelerates to the outer layer, and 

also a synergetic effect is produced to resist hot corrosion due 

to the doping of Y and Ce [60]. Co enhances the formation of 

Al2O3 in NiAl coatings and lowers the diffusion rate of sulfur 

[61].  

Experiments have also revealed that Co-Al-Si coatings have 

better corrosion resistance and lower mass gain than the Co-Al 

coatings [59, 62]. The reason being is the formation of ꞵ-NiAl 

which has higher Al content and it facilitates the formation of 

Al2O3 [63]. 

 

[7]+γ́ [Ni3Al] → δ[Ni2Si] + ꞵ[NiAl] 

Moreover, SiO2 is formed as a byproduct, and is resistant to 

molten salts. Si restricts interdiffusion of an element between 

coating and substrate. Also, it improves the oxidation 

resistance of NiAlHf coatings [64]. 

Pt modified coatings also exhibit better corrosion resistance 

and lower mass gain due to the transformation of 𝜃- Al2O3 

to α- Al2O3 at initial stages of hot corrosion and formation of 

Cr2O3 which hinders oxygen, sulfur, and chlorine [65].  

 

C) Composite / Gradient NiCoCrAlYSi 

Coatings 

The composite coatings, inner NiCoCrAlYSi layer, and outer 

AlSiY layer exhibit better corrosion resistance[66]. The 

gradient NiCoCrAlYSi coatings are prepared by depositing 

NiCoCrAlYSi target first for 40 microns and then Al target for 

10 microns. Normal NiCoCrAlYSi coatings have a thickness 

of 40 microns. During hot corrosion, Al is consumed rapidly 

from the normal coating as it offers less resistance to Al 

diffusion. In composite and gradient coatings more ꞵ-NiAl 

phase is formed which is corrosion resistant. It also serves as 

an Al reservoir in reaction with corrosive salts thus increasing 

resistance of composite and gradient coatings. Experiments 

have shown that gradient coatings have lower mass gain and 

higher corrosion resistance. 

In a recent study, an alloy with chemical composition of Ti-

48Al-2Nb-2Cr known as γ-TiAl is employed as substrate. One 

sample contain one layer and second contains two layers. The 

experiment was conducted to investigate the microstructure 

and isothermal oxidation resistance at 1050℃. It was found 

that due to presence of oxide layers of ZrO2 and Y2O3 a 

better high isothermal oxidation resistant TBCs are formed. 

Fig. 8. Shows XRD experimental results of the single and 

double layered coatings on γ-TiAl substrate [67]. 

 
 

Figure 8 XRD patterns (a) single coating on γ-TiAl (b) double 

coating on γ-TiAl [67]. 

 

A  

B  



 

V. CONCLUSION 

Hot corrosion occurs at a temperature range of 650 to 950 

°C and in the presence of molten sodium salts and vanadium 

oxide. Resistance against hot corrosion is essential for 

avoiding premature failures in turbine blades. 

Nanostructured, rare earth element codoped, and multiple 

layered thermal barrier coatings have improved hot 

corrosion resistance. These coatings avoid tetragonal to the 

monoclinic transformation of zirconia and the formation of 

large crystalline corrosion products. However, conventional 

YSZ fails in resisting these two phenomena. Hot corrosion 

also degrades metallic bond coatings by spallation of 

protective alumina layer and depletion of aluminium. The 

addition of nano reinforced particles, rare earth elements, 

and gradient coatings improve the hot corrosion resistance 

of metallic bond coats. These additions increase aluminium 

content, stabilize the protective layer, and prohibit 

interdiffusion of elements between substrate and coating. 

XRD, SEM, and corrosion kinetic curves are used to 

evaluate different types of coatings.  

VI. FUTURE WORK 

Based on the above discussion it is likely that the hot 

corrosion resistance of turbine blades can be enhanced by 

the addition of nanoparticles, rare-earth metals, and gradient 

coatings. However, there is a need to analyze their effects on 

the properties of coatings, the cost-effectiveness of 

modifications, and also the comparison of coating 

techniques like EB-PVD, HVOFC, APS, etc. 

 

VII. RECOMMENDATIONS 

A standard hot corrosion testing procedure can be defined as 

the parameters vary between research works. Fatigue and 

creep testing of modified coatings may also be done in hot 

corrosive environments as they are the most affected.  
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