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ABSTRACT:

Natural disasters cause considerable losses to people’s lives and property. Satellite images can provide crucial information of
the affected areas for the first time, conducive to relieving the people in disaster and reducing the economic loss. However, the
traditional satellite image analysis method based on manual processing drains workforce and material resources, which slowed the
government’s response to the disaster. Aiming at the natural disasters like floods and earthquakes that often happen in the south
of China, we propose a dual-stage damage assessment method based on LEDNet and ResNet. Our method detects the changes
between the satellite images captured before and after a disaster of the same area, segments the buildings, and evaluates the damage
level of affected buildings. In addition, we calculate influence maps based on the damage scale to the building and estimate the
damage situation for electrical facilities. We used images related to earthquakes and floods in the xBD dataset to train the network
model. Moreover, qualitative and quantitative evaluations demonstrated that our method has higher accuracy than the xBD baseline.

1. INTRODUCTION

Natural disasters have brought significant losses to human so-
ciety. Haiti earthquake caused 8 to 14 billion dollars loss, and
more than 3 million people have been affected (Margesson and
Taft-Morales, 2010). From June 2020, nearly 40 million people
were displaced by the flood in the Yangtze River’s upper and
middle basins (Zhang and Xia, 2022). The frequency of sud-
den natural disasters increases due to climate change and global
greenhouse gas emissions. Extreme storms hit Zhengzhou on
20 July 2021 with average precipitation 457.5mm (Cai et al.,
2021).

After sudden natural disasters occur, accurate information and
timely response are crucial to saving lives and reducing eco-
nomic losses. It is slow to acquire affected area situations
by capturing images on the ground. At worst, it may be im-
possible to take pictures from the ground like (Xiong et al.,
2021) because of the environmental conditions after the dis-
aster. Whereas satellite imagery can remote sense the af-
fected area on a larger scale to grasp disaster information first.
Through signal processing technologies such as image inpaint-
ing and super-resolution similar to (Wen et al., 2017), detailed
information about the disaster area can be obtained in satel-
lite images. We noticed that the traditional way of manual
processing and analysis of satellite images by experts is time-
consuming and laborious. This method tends to delay the dis-
aster relief work, especially in flood, earthquake, and other
large-scale disaster scenarios. Rapid and accurate automatic
analysis methods are urgently needed to solve this problem.

In recent years, learning-based computer vision technology
represented by the convolutional neural network(CNN) has
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Figure 1. Results of our method.

made remarkable progress in image processing. Object de-
tection network YOLO (Bochkovskiy et al., 2020) can detect
and locate objects in the image. Semantic segmentation net-
work SegNet (Badrinarayanan et al., 2017) can determine the
object class of each pixel in the image. Instance segmenta-
tion network Mask-RCNN (He et al., 2017) can further seg-
ment the pixel mask of the object area in the image. These
essential works provide the possibility to achieve the classi-
fication and segmentation on satellite images, such as detec-
tion of vehicles and other objects (Van Etten, 2018), analysis
of flood area (Rahnemoonfar et al., 2020), extraction of fire
boundary (Doshi et al., 2019), assessment of damaged build-
ings (Cooner et al., 2016).

We proposed a new method to assess the damage of buildings
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and power facilities by using multi-temporary satellite images.
At first, a two-stage procedure was used to evaluate damaged
buildings. Similar to xBD baseline (Gupta et al., 2019), se-
mantic segmentation was performed in the first stage to obtain
the building mask. The second stage assessed the damage level
of the buildings within the mask. LEDNet (Wang et al., 2019)
was used to replace the U-Net (Ronneberger et al., 2015) of se-
mantic segmentation in xBD baseline (Gupta et al., 2019). This
pipeline was trained on xBD dataset (Gupta et al., 2019) by us-
ing the pre-disaster images and post-disaster images. The res-
ults of our experiment show that the average time of building
damage assessment was decreased with better accuracy. The
information of electrical facilities is also vital for disaster relief
work, but there is no label about power utilities in the xBD data-
set. Considering this, we computed influence maps to estimate
the damage level of electrical facilities based on the damaged
level of nearby buildings.

Figure 1 shows the results of our method. Figure 1 (a) and Fig-
ure 1 (b) are the pre-disaster and post-disaster satellite images
from the xBD dataset. Figure 1 (c) is the ground truth of build-
ing damage level, where Figure 1 (d) is the building damage
assessment result of our method. Different colors of the pixels
indicate different levels of building damage: green repres-
ents “no-damage”, yellow-green represents “minor-damage”,
orange represents “major-damage”, and red represents “des-
troyed”. Gray pixels in (c) indicate that the damage level can-
not be determined (see Section 4.1 and Table 1). Figure 1 (e)
and Figure 1 (f) are the influence maps of two damage levels,
“minor-damage” and “destroyed”, and the circles in the image
are the locations of power facilities. Based on the above in-
fluence maps we can estimate the scale of damage to electrical
equipment based on the level of damage to the building. See
Section 3.4 for details.

The main contributions of this paper are summarized as three
points:

• We replaced U-Net in the xBD baseline model with LED-
Net, achieved a more accurate and time-efficient assess-
ment of damaged buildings.

• Based on the assessment of neighboring damaged build-
ings, we computed influence maps to evaluate the damage
level of electrical facilities.

• By analyzing the evaluation results on the xBD dataset, we
explained the strengths and weaknesses of damage assess-
ment methods for buildings and electrical facilities and put
forward the direction of improvement.

The organization of the rest of the paper is as follows. Section 2
reviews related works on change detection and assessment of
buildings damaged on satellite imagery. We present our new
method for damaged buildings and electrical facilities assess-
ing in Section 3 . Section 4 describes the performance of this
method on the testing set in the xBD dataset. Finally, we draw
conclusions in Section 5.

2. RELATED WORK

The damage assessment’s primary purpose is to segment the
building mask out and classify the damage level, such as no-
damage, major-damage, and destroyed. Due to the lack of ap-
propriate labeling in available datasets, most early research sim-
plified the multi-classification task of building damage assess-
ment to the change detection task of binary classification. These

methods can determine whether a building is damaged but can-
not get a damage level. This section introduces related research
work from two aspects of change detection and building dam-
age assessment.

2.1 Change detection of satellite imagery

The change detection task of satellite images was used to judge
whether the ground surface features like forest have changed
over a while. For example, Qi Zhixin et al. combine change
vector analysis and support vector machines to detect land cover
changes using polarimetric synthetic aperture radar (PolSAR)
images (Qi et al., 2015). Inspired by the theory of meta-
learning, Liu Hongying et al. improved the convolutional neural
network and combined it with a graph neural network to achieve
change detection in synthetic aperture radar and multispectral
images (Liu et al., 2019). In order to explore the role that deep
learning play in building damage detection, Francesco Nex et
al. tested and evaluated the structural damage of buildings by
using a convolutional neural network based on unmanned aerial
vehicle (UAV) captured images (Nex et al., 2019). In terms of
pure visible light satellite images, Maria Papadomanolaki et al.
combined the fully convolutional neural network similar to U-
Net (Ronneberger et al., 2015) structure and the long-short time
modeling neural network of LSTM to present a new deep learn-
ing algorithm for the detection of urban environmental changes
based on satellite imagery (Papadomanolaki et al., 2019).

If we have such prior that natural disasters cause changes in the
ground surface, the damaged buildings will seem like changed
between pre-disaster and post-disaster satellite images. From
this point of view, FooldNet (Rahnemoonfar et al., 2020) de-
termined whether buildings in flooded areas were affected can
further help judge whether buildings are damaged. Ken Sakur-
ada et al. was inspired by the change detection method and used
CNN to determine whether buildings were washed away after
the tsunami (Fujita et al., 2017). These change detection-based
methods can usually only give a binary label of the damage to
the building: the building is damaged (i.e., changed), or the
building is not damaged (i.e., not changed), which are helpful
for post-disaster analysis and assessment. However, consider-
ing the shortage of personnel and materials after the disaster,
the more detailed information of building damage level we get,
the more reasonable allocation of disaster relief resources can
be executed. Although relevant work, has conducted multi-
category change detection, such as Lu Hui et al. from Tsinghua
University, more attention is paid to cultivated land area change,
water area change, and urban area change (Lyu et al., 2016).
The specific task of building damage rating assessment has at-
tracted the researchers’ interest.

2.2 Assessment of damaged buildings

Different from most change detection works, building damage
assessment can be divided into two sub-tasks. One task is build-
ing segmentation or building localization, that is, to determ-
ine the number and location of buildings in satellite images,
which can be regarded as an image segmentation task. The
other is detection or classification of building damage level, that
is, to determine whether the building is no-damaged, minor-
damaged, or major-damaged on the building mask, which can
be regarded as an image classification task. Therefore the xBD
baseline (Gupta et al., 2019) uses two networks for the building
damage assessment. One segments the building area based on
U-Net, and another classifies the damage level of each building.
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Figure 2. Pipeline of our method.

Chen et al. also used a two-stage method (Chen, 2021), which
linked the RGB channels of pre-disaster and post-disaster im-
ages together. Then they studied the distribution characteristics
of categories in the dataset and tested different loss functions
to evaluate the effect for the network model. Finally, an in-
terpretable heat map was given to show which parts of build-
ings have the most critical impact on damage classification. Liu
Lanfa et al. noticed that the number of damaged buildings was
not equal to the number of no damaged buildings, then intro-
duced the categorical sample balance strategy in dataset pro-
cessing (Ji et al., 2018). In the end, they compared the situ-
ation of building damage in the Haiti earthquake with a variety
of different convolutional neural network models and assessed
building damage based on CNN.

In theory, building damage assessment only needs to use post-
disaster images. However, inspired by the change detection
methods and the purpose of improving accuracy, the existing
studies mostly use a pair of pre-disaster and post-disaster im-
ages to carry out the damage assessment of buildings. We
call that “multi-temporal”. Jihyeon Lee et al. proposed us-
ing multi-temporal images for building damage detection (Xu
et al., 2019). Since there are some commonalities in feature
extraction of multi-temporal images, the siamese network is
suitable for building damage assessment. Hanxiang Hao et
al. explored the utilization of multi-temporal images (Hao et
al., 2020). After experiments such as channel cascade and
multi-temporal image difference, siamese network and atten-
tion mechanism were introduced to improve the detection ac-
curacy. Rodrigo Caye Daudt et al. explored three fully convo-
lutional neural network models with different composite modes
for multi-temporal satellite image change detection, and the fi-
nal experiment proved that the siamese network achieved the
best performance (Daudt et al., 2018). In addition, some net-
work architectures focus on feature extraction combined with
pre-disaster and post-disaster images. Some methods utilized
two regions with CNN feature(R-CNN) models with shared

weight to extract the features on pre-disaster and post-disaster
images and classify the damage level of buildings after con-
necting them into one feature (Weber and Kané, 2020). Res-
cueNet (Gupta and Shah, 2021) is a unified model for building
segmentation and damage classification tasks. Átrous Spatial
Pyramid Pooling (ASPP) module was used on top of the back-
bone CNN features to obtain multi-scale features in pre-disaster
and post-disaster images. Then change detection head utilizes
the temporal features to classify each pixel into the damage cat-
egories.

3. METHOD

This section introduces the methods of this paper. First, we give
an overview of the whole pipeline. The architectures of the xBD
baseline model and LEDNet model are introduced. Finally, we
computed influence maps to estimate the damage level of power
facilities.

3.1 Overview

Our pipeline consists of two stages, as shown in Figure 2. In the
first stage, an image segmentation task was performed for a pre-
disaster satellite image. Pixels were divided into two categories:
building and nonbuilding. Based on the mask of the building,
polygons of each building were computed. Furthermore, the
bounding boxes of polygons were extracted and used to crop
the post-disaster image to obtain the image patches containing
the building. More specifically, each image patch contains one
building. In the second stage, a damage level classification task
was performed to assess the damage scale of each building in
the image patch. There are four categories to indicate the level
of damage: “no-damage”, “minor-damage”, “major-damage”,
“destroyed”(see Table 1). Based on the above results, a group of
influence maps was computed for power facilities according to
the assessment of buildings damage. We estimated the damage
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Figure 3. Architecture of network model in the xBD baseline
for damage level classification.

level to the electrical facilities based on the building damage
assessment results.

3.2 Architecture of the xBD baseline

As mentioned in Section 2.2, two separate networks were used
to solve the problems of building segmentation and damage
level classification in the xBD baseline. For building segment-
ation, a pre-disaster satellite image was fed to a modified U-
Net (Ronneberger et al., 2015). The damage level classification
used a ResNet50 (He et al., 2016) backbone pre-trained on Im-
ageNet (Deng et al., 2009) with ReLU activation in all convolu-
tional layers, as shown in Figure 3. Besides, additional features
from shallow convolutional neural networks were concatenated
with the output from ResNet50 and passed into dense layers for
a one-hot encoded vector output. Each element in the vector
represents the probability of ordinal class.

Notably, the damage levels of different buildings are interre-
lated. For example, the loss between category “no-damage”
and category “destroyed” is more significant than category “no-
damage” and category “minor-damage”. The traditional cross-
entropy loss function can not accurately describe this situation,
so the xBD baseline utilized the ordinal cross-entropy loss func-
tion instead. Unlike traditional methods, ordinal cross-entropy
loss considers the distance between the ground truth and the
predicted class and gives the network model the ability to dis-
tinguish between different levels of damage.

3.3 LEDNet for building segmentation

In this paper, we replaced the U-Net with LEDNet (Wang et al.,
2019) for building segmentation. LEDNet employed an asym-
metric encoder-decoder architecture for semantic segmentation
in real-time, as shown in Figure 4. The encoder included a split
shuffle non-bottleneck (SS-nbt) unit and a down-sampling unit.
In the SS-nbt unit, two operators, channel split and shuffle, were
added in the residual layer to balance performance and effi-
ciency. This unit can be regarded as a feature reuse strategy
that expands network capacity but does not significantly in-
crease computational complexity. The downsampling unit can
make the deep neural network reduce the amount of compu-
tation when extracting information. Inspired by the attention
mechanism, the attention pyramid network(APN) was applied
to integrate features from three different pyramid scales in the
decoder. Depending on the pyramid architecture, APN can cap-
ture cues at multiple scales, expand receptive fields, and gen-
erate pixel-level attention to features of the convolution layer.
The building segmentation stage can execute faster with better

accuracy, benefiting from the asymmetric encoder-decoder ar-
chitecture. More experimental details are in Section 4.4.

Input image SS-nbt
Down-sampling
unit Convolution

Up-
sampling
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Figure 4. Architecture of LEDNet.

3.4 Damage assessment for electrical facilities

It is equally important to grasp the damage of power facilities in
time. However, the xBD dataset (see Section 4.1) has no label
of power facilities. Therefore, we compute influence maps to
infer the damage of nearby power facilities based on the lever-
age of affected buildings.

At first, we stratified the damage results of the building ac-
cording to the damage level. In other words, there were four
image layers representing the building mask of four damage
levels, “no-damage”, “minor-damage”, “major-damage” and
“destroyed”. We call that “hierarchical damage layers”, de-
noted by the symbol Li, where i = 1, 2, 3, 4 indicates the ID
of damage level in Table 1. Considering that the closer the dis-
tance between power facilities and a building, the more similar
the damage scale is to the building, we computed the influence
maps. We marked the influence map for corresponding hier-
archical damage layer Li as Ii. Li and Ii have the same size.

For the mask of building M i,j in Li,

Ii,j(p) = W (D(p,M i,j)) (1)

where Ii,j = the influence map for M i,j

j = the ID of building mask in Li

p = image coordinate in Li

Ii,j(p) = the value at position p in Ii,j

D(p,M i,j) = the distance between p and M i,j

In the code implementation for D(p,M i,j), we use OpenCV
to extract the footprint of the building polygon mask M i,j and
calculate the distance to p. In particular, we set D = 0 if p ∈
M i,j .

As the influence of buildings on surrounding pixels decreases
rapidly with the increase of distance, we designed function W
to weight the distance D in the following way to model this
non-linear transformation:

W (D) = − 2

1 + exp (−α |D |) + 2 (2)

where W (D) = transformed distance D
α = range factors

Notice that 1 ≥ W (D) > 0, and α are range factors that repres-
ents the strength of influence of damaged buildings. Especially
if there are no building masks in Li, we set Ii(p) = 0 for each
p. Visualized influence maps Ii,j are shown in Figure 5.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-133-2022 | © Author(s) 2022. CC BY 4.0 License.

 
136

Rectangle

Rectangle

Rectangle

Rectangle

Rectangle



…

…

… …

Damage level 
labels of buildings

No-damage

Minor-damage

Major-damage

Destroyed

Hierarchical damage layers Influence map for each building

AggregateSeparate

�()

�()

�()

�()

��

��

��

��
��

��

��

��

��,�

��,�

��,�

��,� ��,�

��,�

��,�

��,�

Figure 5. Calculation of influence map.

Table 1. Joint damage scale descriptions in the xBD dataset.

Damage level ID Description
Unclassified 0 The damage level could not be

determined, usually due to cloud
cover or building areas being
cropped to the edge of a
satellite image.

No-damage 1 No affected, no sign of water,
structural or shingle damage.

Minor-damage 2 Water surrounding building, roof
elements missing or visible cracks.

Major-damage 3 Partial wall or roof collapse, or
surrounded by water and mud.

Destroyed 4 Completely collapsed, partially or
entirely covered with water and
mud.

For damage level i, influence map Ii was aggregated by the
following strategy.

Ii (p) = max Ii,j (p) (3)

Finally, the damage level of electrical facilities can be inferred
from each damage level of buildings:

l(p) =
∑
i

βiIi(p) + 1 (4)

where βi = damage level weighting factor
l(p) = estimated damage level ID (see Table 1)

In general, l(p) is not an integer, but we can still refer to Table 1
to get the damage level of power facilities.

Figure 5 shows the framework of this algorithm. For visualiza-
tion purposes, different damage levels are represented in differ-
ent colors. The darker the pixel in the influence map, the more
significant the impact of nearby buildings on the electrical in-
frastructure that land on the position of this pixel.

4. EXPERIMENTS

In this section, we introduce the xBD dataset and the metric for
evaluation. After that, qualitative and quantitative evaluation
about the assessment of buildings and electrical facilities show
the effectiveness of our method.

4.1 xBD Dataset

We used the xBD dataset (Gupta et al., 2019) to train and eval-
uate our network model. xBD dataset is the first building dam-
age assessment dataset, including high-resolution satellite im-
ages of 19 natural disaster data of earthquakes, volcanoes, forest
fire, flood, typhoon and other types, covering more than 45000
square kilometers of Guatemala, Portugal and the United States.
DigitalGlobe provided 1024×1024 satellite images of the same
area before and after the disaster within 24 to 48 hours. Each
pixel in the image represents 30cm on the ground. The data-
set provides over 850,000 building polygons. More specific-
ally, the xBD dataset provides labels for each building polygon
in post-disaster images with joint damage scale, including four
levels of no-damage, minor-damage, major-damage, and des-
troyed, as shown in Table 1. In addition, satellite images also
contain meta-data, including the capture time, the satellite’s at-
titude relative to the ground, the name of the satellite, the type
and location of natural disasters, which can be used for other
analyses.

4.2 Training

We were concerned about two types of disasters types, flood,
and earthquake. Therefore, images belonging to these two types
of disasters in the training set of the xBD dataset were used to
train our network model, in which 25% of the images consti-
tute the verification set. In addition, we noticed a large num-
ber of images with floods caused by a hurricane, so we also
use images that meet these conditions to enrich the training
set. LEDNet was trained as a binary semantic segmentation
network for building segmentation. In the first stage, the net-
work only focuses on where buildings exist on the pre-disaster
satellite images and ignores the damage of buildings in corres-
ponding regions. To classify building damage level, we cropped
the post-disaster image in the bounding box of each buildings’
polygon from ground truth. These image patches were sent to
the ResNet50 backbone network for training.

4.3 Metrics

Similar to the metric proposed in the xBD dataset, we use the F1
score as the accuracy metric for building damage assessment.
For each damage level i showed in Table 1.

F1i =
2TPi

2TPi + FPi + FNi
(5)

where TPi = the number of true-positive pixels
FPi = the number of false-positive pixels
FNi = the number of false-negative pixels
F1i = the F1 score of damage scale i

The evaluation metric F1 for the final damage scale classific-
ation is defined as the harmonic mean of the F1 scores for all
damage scales:

F1 = 4

4∑
i=1

1

F1i
(6)

Note that the category “unclassified” was not considered.
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Table 2. Quantitative evaluation for buildings damage assessment.

Methods Overall No-damage Minor-damage Major-damage Destroyed
(F1) (F11) (F12) (F13) (F14)

U-Net + ResNet50 (xBD baseline) 0.3661 0.7954 0.0968 0.0922 0.4799
LEDNet + ResNet50 (ours) 0.3739 0.8080 0.0943 0.1084 0.4851

Pre-disaster Post-disaster U-Net + ResNet50
(xBD baseline)

LEDNet + ResNet50
(ours)

Ground truth

Figure 6. Qualitative evaluation for building damage assessment.

4.4 Evaluation of building damage assessment

In order to evaluate our method, we utilized the images in the
xBD dataset testing set for evaluating performance. Similarly,
we only used images of disasters such as floods and earth-
quakes, and those images with floods caused by hurricanes were
also used for evaluation.

Table 2 shows the quantitative evaluation results of the xBD
baseline and our methods for building damage assessment.
Compared with the xBD baseline, our method is more accur-
ate in most damage levels. In terms of time consumption, the
improvement of our method is in the segmentation stage. For
LEDNet, the average time on the images in the testing set was
23.62ms, while U-Net was 147.38ms. Our method is about six
times faster than the xBD baseline for building segmentation.

Figure 6 shows the qualitative evaluation results. The first
and second columns represent the pre-disaster and post-disaster
satellite images. The third and fourth columns are the building
damage assessment results of the xBD baseline and our method.
The same as Figure 1 (c) and Figure 1 (d), different colors of

pixels represent different damage levels: green is “no-damage”,
yellow-green is “minor-damage”, orange is “major-damage”,
and red is “destroyed”. The black pixels in the background
mean there are no buildings. The last column in Figure 6 is
the ground truth. In particular, the damage level of some build-
ings in the ground truth is “unclassified”, which is indicated in
gray in the Figure. We selected some representative images of
floods and earthquakes in US and Mexico. In the first row, the
results of our method have higher precision for the small build-
ing mask near the image center. In the second row, we see that
the buildings in the image center segmented by our method are
complete, whereas the mask segmented by the xBD baseline is
fragmentary.

Compared with the xBD baseline, the building masks segmen-
ted by LEDNet are more expansive, as shown in the third row
of Figure 6. This advantage allows the image patches to retain
more information around the building, conducive to more ac-
curate damage classification by ResNet50. That is why the pro-
posed method’s accuracy is higher than the xBD baseline. How-
ever, constrained by the lightweight architecture of the network,
LEDNet has difficulties in processing high-resolution satellite
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Figure 7. Qualitative evaluation for electrical facilities damage assessment.

images. It only improves the accuracy of our method a little
bit. Besides, we find both xBD baseline and our methods un-
able to handle cloud-covered and cropped satellite images. For
instance, the left side of the post-disaster image in the last row
of Figure 6 is cropped out, while the corresponding pre-disaster
image is unbroken. xBD baseline and our methods only seg-
ment the pre-disaster image so that the image patches of fake
buildings on the left-bottom corner were classified, while the
ground truth has no buildings in the same area. This defect re-
duces the final accuracy.

4.5 Evaluation of electrical power facilities assessment

This section introduces qualitative evaluation for electrical fa-
cility damage assessment. As shown in Figure 7, we calcu-
late the influence maps based on the building damage level in-
formation. The first column is the post-disaster image, and the
high-light area by the red box is zoomed in the second column,
which shows more details of the electrical utilities. The dam-
age to the building is shown in the third column. The following
four columns are influence maps for each damage level. In-
fluence maps with different damage levels were colored with
different colors for visualization. Darker pixels indicate more
powerful influence from nearby buildings and vice versa. Be-
sides the points sits the center of electrical facilities. We can
get the estimated damage level of electrical by equation 4 in the
last column in Figure 7.

In our experiment, α = 0.005, β0 = 0, β1 = −1, β2 = 1,
β3 = 2, β4 = 3. From the first row in Figure 7, our method
inferred that the damage level of this power facility is “minor-
damage”. The fact is consistent with the above result that some
power facilities have been flooded. Similarly, the substation in
the second row was completely flooded, and the estimated dam-
age level “major-damage” is consistent with the reality. In the
third row, most buildings at the bottom of the image were des-
troyed. By referring to buildings closer to the electric facilities,
our algorithm can still get reasonable results of “no-damage”.
That is consistent with the fact that we cannot find any damage
to the electrical infrastructure from the satellite imagery.

Our approach is based on common sense that damage to elec-
trical facilities and surrounding buildings is usually the same.

However, if the number of buildings around power facilities is
insufficient, it is difficult to obtain accurate damage estimation
by our method. This problem will be solved in further study.

5. CONCLUSIONS

This paper describe a dual-stage pipeline that uses pre-disaster
and post-disaster satellite images to assess building damage.
We replaced U-Net in the xBD baseline for the lightweight net-
work LEDNet, which improves accuracy and inference speed.
Considering that power facilities are equally crucial for disaster
relief, we computed influence maps to assess the damage level
for electrical facilities by combining the damage scale of the
building. Evaluations on the xBD dataset demonstrated the ef-
fectiveness of the proposed method.

We believe that using a unified network architecture to solve
this problem is the most effective. It can make building seg-
mentation and damage assessment use common features, con-
ducive to simultaneously improving accuracy and processing
speed. In order to gather more details for more accurate dam-
age assessment, expanding the receptive field is also helpful for
the analysis of high-resolution satellite images. This is the dir-
ection of our future study.
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