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Abstract—Effective emotion recognition based on electroen-
cephalography (EEG) is of relevant importance for the inves-
tigation of intelligence of the Brain-Computer Interface (BCI).
Neuroscientific studies suggest that investigating localized brain
activities contributes to a deeper understanding of the function-
ality of specific brain regions and the activity patterns under
different emotional states. Many deep learning-based methods
have been employed for EEG emotion recognition in recent
years; however, most of these methods fail to extract the spatio-
temporal features of EEG signals adequately. To further improve
the efficiency of EEG emotion recognition, we propose in this
work a novel spatio-temporal graph neural network, namely
MSL-TGNN, by integrating local and global brain information.
That is, the multi-scale temporal learner is employed to extract
temporal features of EEG data. To explore the spatial features
of EEG signals, considering the varying roles of different brain
regions in EEG emotion classification, we propose a brain
region learning block and an extended global graph attention
network. The brain region learning block aggregates local
channel information, and the extended global graph attention
network can effectively capture nonlinear dependencies among
regions and global brain information, thereby enhancing the
learning capability for the EEG data. We conducted subject-
dependent and subject-independent experiments on the DEAP
dataset, and the results obtained indicate that our proposed
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model outperforms compared to state-of-the-art methods.
Index Terms—Bidirectional gated recurrent unit, EEG emotion

recognition, Graph attention network, Deep learning

I. INTRODUCTION

Emotions reflect an individual’s current psychological and
physiological states, influencing various aspects of our daily
lives [1]. Accurate and efficient emotion recognition is crucial
for advancing the development of BCI. Both physiological
and non-physiological signals can convey a person’s emotional
state. Non-physiological signals include facial expressions [2],
language [3], body posture [4], among others. Physiological
signals encompass EEG, EOG, ECG, and the like. Compared
to non-physiological signals’ more easily disguised nature,
physiological signals authentically represent a person’s emo-
tions. Additionally, due to its non-invasive, convenient, and
cost-effective nature, EEG is widely employed in emotion
recognition [5].

One of the challenges in EEG emotion recognition is
designing a more efficient method with good adaptability and
generalization for automatically extracting relevant informa-
tion from EEG signals. Traditional EEG emotion recognition
often relies heavily on manual feature extraction. The most
commonly used features are frequency domain features. The
brainwave signals are initially decomposed into five frequency
bands through Fourier Transform [6], [7]. Features are then
extracted from each frequency band. The Power Spectral



Density (PSD) [8], the Differential Caudality (DCAU) [9], the
Differential Entropy (DE) [10], [11], the Rational Asymmetry
(RASM) [12], and the Differential Asymmetry (DASM) [13]
are examples of frequently used EEG features. Shi et al.
[14] first proposed the DE features and demonstrated their
effectiveness in EEG signal characterization. Zheng et al.
[15] extended traditional DE features to dynamic DE features,
achieving higher accuracy in EEG emotion classification. Gao
et al. [16] fused both frequency domain and time domain
features for EEG emotion recognition, showing that feature
fusion can effectively enhance recognition accuracy. However,
these traditionally manually extracted features often fail to
extract the temporal and spatial information from EEG signals
fully. Additionally, frequency domain features are typically
based on static analysis of the entire EEG signal, failing to
capture the dynamic changes in the signal over time.

The growth of deep learning has recently been boosted fast,
and its application to EEG emotion recognition has expanded
dramatically. Fourati et al. [17] proposed a model based
on Echo State Network (ESN) and utilized filtered signals
as network inputs without employing any feature extraction
methods. Li et al. [18] utilized the Bidirectional Long Short-
Term Memory (BiLSTM) to extract spatio-temporal features,
introducing a collaborative working mechanism between a
classifier and discriminator to help reduce the disparities in
emotion recognition across domains. Tao et al. [19] employed
a Convolutional Neural Network (CNN) and Recurrent Neu-
ral Network (RNN) combined with attention mechanisms to
address EEG emotion recognition problems. Ding et al. [20]
used multiple one-dimensional convolutions and Graph Neural
Network (GNN) to explore the spatio-temporal features of
EEG signals. Gu et al. [21] utilized Generative Adversarial
Networks (GAN) in conjunction with GNN and long short-
term memory (LSTM) to explore EEG emotion classification.
Zhang et al. [22] explored deep-level information of graph-
structured data by stacking multiple graph convolution layers.
Nevertheless, several problems still require research to in-
crease the accuracy of EEG emotion classification, since EEG
signals have excellent temporal resolution but poor spatial
resolution [1], as many methods struggle to extract spatial
information from different brain regions adequately. The brain
is a highly organized and differentiated organ, composed of
various regions responsible for different functions. Complex
connections and interactions exist between these regions,
and studies indicate that the strength of interaction between
brain regions attenuates with increasing physical distance
[23]. Understanding the local activities of the brain is crucial
in neuroscience and clinical fields for exploring cognitive
functions, neurological disorders, and the impact of brain
injuries. In EEG emotion recognition, another challenge is
how to simultaneously focus on the brain’s overall structure
and information from individual local regions.

To address the challenges mentioned above in EEG emo-
tion recognition, we propose a novel neural network model,
namely MSL-TGNN, to automatically extract spatio-temporal
information from EEG signals through deep learning whilst

considering the distinctiveness of different brain regions in
emotional expression. Inspired by Ding et al. [24], we intro-
duce a multi-scale temporal learner, employing three parallel
Bidirectional Gated Recurrent Units (BiGRU) to capture dif-
ferent frequency representations in EEG signals. EEG data
typically contain signals of multiple frequencies, and these
frequencies may play crucial roles at different time points. The
superposition of different hidden layer states in BiGRU can
comprehensively handle information from different frequency
dimensions, aiding the model in achieving a multi-scale rep-
resentation of the signals. Additionally, by introducing a brain
region learning block to aggregate local channel information,
the model better understands the roles played by various brain
regions in EEG emotion classification. Simultaneously, we
integrate the multi-dimensional ”t2t” self-attention mechanism
[25] into the Graph Attention Network (GAT) to capture
intra-node dependencies and inter-node connectivity. GAT is
effective in learning interactions between nodes, and the multi-
dimensional ”t2t” self-attention mechanism can learn rela-
tionships between multi-dimensional features within nodes.
The extended global graph attention network comprehends
relationships between nodes at a higher level and captures
global patterns more effectively. The main contributions of
this work include the following aspects:

• To propose a novel end-to-end deep learning framework
to overcome the limitations of manually extracting fea-
tures. The proposed model can automatically learn spatio-
temporal features from EEG signals, demonstrating better
adaptability and generalization across different subjects.
It can comprehensively capture the complexity of EEG
signals.

• By leveraging learned local weights, we perform a
weighted fusion of information from each brain region.
This enables the model to understand better each brain
region’s unique roles in EEG emotion recognition. Fur-
thermore, introducing the extended global graph attention
network strengthens the model’s capacity to capture non-
linear dependencies between nodes and global informa-
tion, as integrating local and global modules ensures that
the model adequately acquires spatial information from
the brain.

• Extensive subject-dependent and subject-independent ex-
periments conducted on the DEAP dataset have demon-
strated that the proposed MSL-TGNN method can sig-
nificantly improve performance. Additionally, ablation
studies illustrate the effectiveness of each module in the
proposed method.

The remainder of this work is organized as follows. The
background of the proposed model is provided briefly in
Section 2, a comprehensive description of the proposed MSL-
TGNN and its application in EEG emotion recognition is pro-
vided in Section 3, the experimental details and the discussions
of results are presented in Section 4, and finally, the concluding
remarks and future directions are depicted in Section 5.



II. RELATED WORK

This section briefly introduces methods that serve as the
foundation for the proposed model.

A. BiGRU

EEG data comprise multi-channel information that varies
over time, and RNNs are good at learning long-term depen-
dencies [26]. In recent years, RNN has found widespread
application in EEG data. However, RNN suffers from issues
such as exploding and vanishing gradients. To overcome the
shortcomings of traditional RNN, Hochreiter et al. [27] pro-
posed LSTM. To simplify the structure of LSTM for improved
training efficiency, Chung et al. [28] introduced modifications
based on LSTM and presented GRU. Unidirectional GRU
performs a state transition from past to future. In specific
tasks, particularly those requiring simultaneous consideration
of past and future information, unidirectional models may fail
to utilize all available contextual information fully. However,
EEG data typically contain intricate spatio-temporal informa-
tion, and the signal feature may depend on both past and future
time points. BiGRU can capture past and future information
in sequence data by considering forward and backward hidden
states simultaneously. So BiGRU assists in handling the time
dependencies in EEG data, facilitating a more effective capture
of dynamic information at different time points. Abgeena et
al. [29] proposed a CNN-BiGRU model, demonstrating its
effectiveness in emotion classification based on EEG signals.
However, it still fails to extract spatial information from the
brain entirely.

B. GAT

GNNs are widely used in various fields [30]–[33], and GAT
is a special type of GNN. Compared to Graph Convolutional
Networks (GCN), GAT possesses unique advantages. Different
from GCN that employs uniform neighbor aggregation, thus
disregarding the heterogeneity among nodes, GAT introduces
an attention mechanism that assigns different weights to
neighboring nodes for each node, allowing for a more flexible
capture of the graph structure [34]. Because of this, GAT
handles complicated graph structures very well and provides
a more accurate representation of the relationships between
nodes. Zhao et al. [35] offered an epilepsy detection method
based on GAT and highlighted the potential advantages of
GAT in handling multi-channel biological signals. However,
little study has been done on applying GAT to EEG emotion
recognition.

C. Self-Attention and Multi-dimensional Attention

The self-attention mechanism has been widely used in
various natural language processing (NLP) tasks [36]. It allows
models to establish weight relationships between positions in
a sequence, capturing global contextual information, so the
models can be suited for sequences of different lengths. The
multi-dimensional attention mechanism is an extension of the
attention mechanism at the feature level [25], aimed at more

comprehensively capturing relationships across multiple di-
mensions in input data. Compared to traditional self-attention,
multi-dimensional attention introduces independent attention
to different feature dimensions. Each feature dimension has its
weight allocation in multi-dimensional attention, allowing the
model to attend to critical information in different dimensions
flexibly. This mechanism is well-suited for handling multi-
modal data or data with multiple dimensions, such as multi-
channel EEG data. The introduction of multi-dimensional
attention enhances the proposed model’s perception of the
multi-dimensional relationships, thereby exhibiting excellent
performance in handling multi-channel data.

III. METHOD

MSL-TGNN consists of two major modules: the multi-
scale temporal learner and the spatial feature learner. The
multi-scale temporal learner automatically extracts information
from different frequency dimensions more comprehensively
by overlaying the bidirectional hidden states of multiple di-
mensions, replacing manual feature extraction. The spatial
feature learner includes the brain region learning block and
the extended global graph attention network. The brain region
learning block captures the neural activity of brain regions,
and the aggregated local channel information serves as input to
the extended global graph attention network to learn complex
relationships among different brain regions. Fig. 1 shows the
structure of the proposed MSL-TGNN.

A. Multi-scale Temporal Learner

The multi-scale temporal learner learns information from
different frequency dimensions of EEG data by configuring
parallel hidden state sizes. To comprehensively capture the
temporal dynamics in the input sequence, we set the size of the
hidden state in different proportions according to the sampling
rate f . The ratio coefficient is denoted as λi ∈ R, where
i represents the layer number of BiGRU, i = [1, 2, 3]. The
hidden state size h(i) for the i-th layer can be defined as

h(i) = λi × f, λi ∈ [0.5, 1, 2] (1)

Given the baseline-corrected EEG data Xt ∈ Rc×l, where
t is the time step of the input sequence, c is the number of
channels, and l is the sample length along the time dimension.
We apply three parallel multi-scale BiGRUs to learn dynamic
frequency representations, and the update of the hidden state
in a unidirectional GRU can be represented as

h
(i)
t = z

(i)
t ⊙ h̃

(i)
t +
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1− z

(i)
t

)
⊙ h

(i)
t−1 (2)

where z
(i)
t is the output of the update gate, h̃(i)

t is the output
of the memory cell after activation function and ⊙ represents
the dot product operation.

The output sequence of the forward GRU in the i-th layer
can be expressed as
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)
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Fig. 1: The structure of MSL-TGNN. MSL-TGNN consists of the multi-scale temporal learner and the spatial feature learner,
which further comprises the brain region learning block and the extended graph attention network. The multi-scale temporal
learner illustrates three parallel BiGRUs learning information from different frequency dimensions of multi-channel EEG data.
The brain region learning block demonstrates the information aggregation process of four brain regions. The extended global
graph attention network displays the weight distribution between nodes and the weight distribution of internal multiple feature
dimensions at the node level.

And the output sequence of the backward GRU in the i-th
layer can be expressed as

←−
h
(i)
t =

←−−−
GRU

(←−−
h
(i)
t+1, Xt

)
(4)

We concatenate the outputs of all parallel BiGRUs along
the feature dimension. Therefore, the final output of the multi-
scale temporal learner is represented as

HT = fbn

(
Γ

(−−→
h
(1)
t ,
←−−
h
(1)
t , . . . ,

−→
h
(i)
t ,
←−
h
(i)
t

))
(5)

where Γ(·) represents the concatenation operation along
the feature dimension and fbn denotes batch normalization

operation.

B. Spatial Feature Learner

1) Brain region learning block: In neuroscience studies,
researchers gain insights into the functions of specific brain
regions by focusing on the local activities of the brain. To
understand the neural activities of brain regions, we input the
output of the multi-scale temporal learner into the brain region
learning block to aggregate the local information within brain
regions. The placement of EEG electrodes on the scalp follows
the 10-20 system [37]. Following the definition in [38], the
62 electrodes were split into 17 regions, as shown in Fig. 2,



Fig. 2: Schematic diagram of EEG electrode positions. Elec-
trodes with the same color in the same hemisphere represent
a brain region. The 62 electrodes are divided into 17 regions.

with %ERS/ERD aggregated over eight areas per hemisphere.
Taking the right hemisphere as an example: anteriofrontal (AF:
Fp2, AF4, AF8), frontal (F: F2, F4, F6, F8), temporal (T: FT8,
T8, TP8), frontocentral (FC: FC2, FC4, FC6), central (C: C2,
C4, C6), centroparietal (CP: CP2, CP4, CP6), parietal (P: P2,
P4, P6, P8), and parietooccipital (PO: PO4, PO8, O2).

In the process of channel information aggregation, we first
introduce the local weight matrix Wc×j , where c denotes
the number of channels, and j represents the number of
features for every channel. Through initialization and learning
processes, this matrix can adaptively adjust the weight for each
channel. By applying different weights to each channel, we can
more finely capture local features of brain regions. Then, we
use the aggregation function Fagg(·) to aggregate the channel
information output by the multi-scale temporal learner. After
extensive experimentation with aggregation operations such as
average, sum, and variance, we chose the average operation.
Therefore, the output Harea of the brain region learning block
can be represented as

Harea = Fagg (Wc×j ⊙HT ) (6)

2) Extended global graph attention network: As seen in
the right half of Fig. 1, the extended global graph attention
network aims to learn the correlations between different brain
regions. We integrate the multi-dimensional ” t2t ” self-
attention mechanism into the GAT to focus on the multi-
dimensional features within nodes. Each subject’s raw data are
represented as a new structured time series and serve as input
to the extended global graph attention network after being
processed by the multi-scale temporal learner and brain region

learning block. Initially, each subject’s data is treated as a
cyclic-free graph. Then, a correlation matrix is generated based
on the neural activity relationships between brain regions,
representing the adjacency matrix of the corresponding graph.
After obtaining the associations between nodes through GAT,
we further enhance the expression capability of nodes’ internal
features using the multi-dimensional ” t2t ” self-attention
mechanism.

Inspired by Zhao et al. [35] and Wang et al. [39], we
consider the information of each subject’s brain as a graph.
The information aggregated from each region is regarded as
a node in the graph, and the associations between each pair
of regions are considered edges. Pearson correlation matrix is
employed to calculate spatial correlations.

The input of GAT consists of a set of node features
V = {v1, v2, . . . , vN} , vN ∈ RF , and the corresponding
adjacency matrix. Here, N denotes the number of brain regions
or nodes, and F denotes the feature dimensions of each node.
GAT initially performs a linear transformation on each node by
multiplying it with a weight matrix. Subsequently, the attention
coefficients between each pair of nodes are calculated as

eij = a (Wvi,Wvj) (7)

where W ∈ RF×F ′
, with F ′ representing the feature

dimensions of the output nodes, i and j denote any two nodes
and a(·) represents a feedforward neural network that con-
catenates the resulting vectors to accomplish feature mapping.
Next, we compute the attention coefficients of node i to all
other nodes and employ softmax to normalize the attention
weights, obtaining the ultimate attention coefficients αij . The
calculation formula is defined as

αij =
exp

(
LeakyRelu

(
a⃗T [Wvi ||Wvj ]

))∑
k∈Ni

exp (LeakyRelu (⃗aT [Wvi ||Wvk]))
(8)

where k represents any node, || is the concatenation oper-
ator. Finally, during the convolution process, we employ the
multi-head attention mechanism. After being processed by the
GAT layer, the features of node i can be represented as

v′i = σ

 1

K

K∑
k=1

∑
j∈Ni

αk
ijW

kvj

 (9)

where k denotes any head, and i denotes any node.
The attention mechanism is applied in a shared manner to

all edges in the graph. Unlike GCN, where each neighboring
node equally influences the representation of the target node,
the proposed model assigns different attention weights to
adjacent nodes, permitting the model to flexibly consider
different relationships between nodes when updating node
representations, aiding in capturing local information within
the graph. The final output of the GAT layer is denoted as
XG.

To simultaneously focus on the multiple dimensions of
features within nodes, we introduce a multi-dimensional ” t2t ”
self-attention mechanism to assign weights to different features
of nodes. In contrast to traditional self-attention mechanisms



that primarily focus on relationships between different nodes
within a sequence, the multi-dimensional ”t2t” self-attention
mechanism can comprehensively capture information in the
input sequence by considering the multi-dimensional features
of each node and calculating attention scores across multiple
feature dimensions. Let Xk represent the k-th sample in
XG, and sk denote the inherent correlation between different
feature dimensions xi and xj of Xk. The multi-dimensional
”t2t” self-attention mechanism adds biases both inside and
outside the activation function. Let W and b represent the
weight and bias of the σ function, respectively. Thus, sk can
be expressed as

sk = f (xi, xj) = WTσ (W1xi +W2xj + b1) + b (10)

For each xi, we calculate a probability matrix P =
{p1, p2, . . . , pr}. The calculation output for xi is defined as

Yi =

n∑
j=1

pj ⊙ xj (11)

The output of the multi-dimensional ”t2t” self-attention
mechanism for all samples XG is denoted as Y =
[Y1, Y2, . . . , Yk].

IV. EXPERIMENTAL RESULTS

In this section, we first briefly introduce the dataset and
the pre-processing steps. Then, we describe the experimental
settings and model parameters. Subsequently, we present the
results of subject-dependent and subject-independent experi-
ments of MSL-TGNN and engage in relevant discussions.

A. DEAP Dataset

The DEAP dataset [40] was collected from 32 volunteers
(16 males, 16 females) with ages ranging from 19 to 37
years, and 26.9 as average age. Each participant underwent
40 trials, where they watched emotionally evocative music
videos lasting one minute each to induce corresponding emo-
tional states. Simultaneously, EEG data from 32 channels
and peripheral physiological signals from 8 channels of each
participant were collected. After each trial, participants rated
their arousal, valence, dominance, and liking for each video
using a continuous 9-point scale. In this investigation, we
utilized EEG data from 32 channels.

B. Data Preprocessing

Due to our model being an end-to-end framework, for
the DEAP dataset, we only performed baseline correction
on the pre-processed data provided by the authors. Baseline
correction is applied to reduce errors caused by scalp potential
variations, equipment drift, or other environmental interfer-
ences, aiming to obtain EEG data with a high signal-to-noise
ratio [41]. The original EEG data were downsampled to 128
Hz. We selected the stable-state EEG data before the stimulus
as the baseline, corresponding to the first 3 seconds of each
trial in the DEAP dataset. The average of this baseline was
calculated and considered as the baseline level, representing
the resting state of the measured brain region. Subsequently,

the value at each time point in the entire EEG signal was
subtracted by the corresponding value of the baseline at that
time point. This process shifts the signal as a whole to a
zero baseline level. Finally, the 3-second baseline data were
removed. For the label processing, we projected the continuous
9-point scale onto high and low classes for each dimension
by thresholding the valence and arousal at 5. Following the
approach outlined in [42], we segmented the data from each
trial into non-overlapping segments of 3 seconds, further
splitting each segment into three 1-second data segments.

C. Experiment Settings

We conducted subject-dependent and subject-independent
experiments on the DEAP dataset to evaluate MSL-TGNN.
In the subject-dependent experiments, after the pre-processing
stage, each data sample from a subject is represented as
Xi ∈ R3×32×128, where i = [1, 2, . . . , 800]. All samples
from different trials were shuffled for every subject. In the
subject-independent experiments, we combined all subjects’
samples and shuffled them. The data samples can be repre-
sented as Xj ∈ R3×32×128, where j = [1, 2, . . . , 25600]. The
experiments employed 10-fold cross-validation to evaluate the
model’s performance, and the average performance was taken
as the final experimental results. Our model was implemented
with the PyTorch framework and trained on an NVIDIA
GeForce RTX 3080 Ti GPU. The GAT layer was set to 1,
and the number of nodes was set to 17. We used the Adam
optimizer with a learning rate 10−4 to update the model pa-
rameters, minimizing the cross-entropy loss function. During
the training process, dropout operations randomly discarded
input neurons with probability 0.5, and batch normalization
was applied for each mini-batch, addressing the vanishing
gradient problem, accelerating the training process, and im-
proving model generalization.

D. Comparative Studies

In this subsection, we present the results of subject-
dependent and subject-independent experiments to validate the
effectiveness of the proposed method, followed by a brief
analysis.

1) Subject-dependent experiments: We compared our
method with five recent deep learning methods and one tradi-
tional machine learning method, including GAT [35], STFFNN
[43], GCNN [6], DCNN+ConvLSTM [44], STS-Transformer
[45], and Decision Tree (DT) [46]. In [35], GAT was used
for epilepsy detection based on EEG data. STFFNN captures
electrode dependencies using power topography maps, em-
ploys CNN for spatial feature learning, utilizes feedforward
networks for temporal feature learning, and integrates spatial-
temporal features using BiLSTM. GCNN is a traditional graph
convolutional neural network, and we use DE features as the
input to GCNN. In [44], the authors used Deep Convolutional
Neural Network (DCNN) and ConvLSTM to extract features
separately and then concatenated the features with attention
mechanism-weighted fusion. STS-Transformer relies on the
transformer and attention mechanisms for feature extraction



and weight allocation. We either directly cite their results from
the literature or reproduce them based on the code they have
released to guarantee an effective comparison with our method.
In Table 1, we list all the features that each method used in
detail.

Table 1 shows that MSL-TGNN achieves the highest accu-
racy of 93.09% (valence) and 93.74% (arousal). Additionally,
DT outperforms GAT significantly on both valence and arousal
classification tasks. We speculate that this may stem from
DT utilizing DE features, which providing more favorable
abstract representations for emotion recognition. In contrast,
GAT directly employs raw data, even though it offers more
flexibility in handling spatial relationships, it might result in
relatively lower performance due to the multiple channels and
complexity of the data. This also emphasizes the crucial role
of feature selection in emotion recognition tasks. Our method
employs raw data as the model input. Compared with GAT and
DT, MSL-TGNN achieves an average accuracy improvement
of approximately 20.38% and 16.35%, respectively. Although
GCNN takes manually extracted DE features as input, our
approach still outperforms GCNN by approximately 5.5%,
indicating the effectiveness of our improvements to the GCNN.
For STFFNN, DCNN+ConvLSTM, and STS-Transformer, we
used the same features mentioned in the original papers as
inputs. Our method outperforms these approaches by approx-
imately 7.6%, 5.65% and 5%, respectively. This significant
performance improvement indicates that our method has a
clear advantage in feature extraction.

2) Subject-independent experiments: In the subject-
independent experiments, we compared our approach with
four advanced deep learning methods: GAT, CapsNet [47],
STFFNN, and STS-Transformer. In [47], the frequency
domain, frequency band characteristics, and the spatial
characteristics of the EEG signals are fused and input into
CapsNet for emotion classification. Table 2 displays the
results of the comparison. Even when using raw data as
the model input, our method performs well compared to
other models. Notably, our approach’s accuracy (84.14%)
is comparable to STS-Transformer (84.75%), significantly
outperforming GAT and CapsNet in valence classification
tasks. Additionally, our method surpasses STS-Transformer
and the other three methods, achieving an accuracy of 83.99%
in arousal classification tasks, demonstrating the effectiveness
of our method in capturing emotional states. Furthermore,
our method achieves better classification accuracy despite
STFFNN taking pre-processed EEG features as model input.
Our method achieved better F1 scores in both valence and
arousal tasks, which further confirms the robustness of our
method. The experiment results indicate that by effectively
capturing the spatio-temporal features of EEG data, the model
can better understand the similarities and differences of EEG
signals among different subjects.

E. Ablation Study

To validate the performance of each module in our proposed
method, we designed three models, namely L-TGNN, MS-

TGNN, and MSL-GAT. In the first ablation study, aiming
to emphasize the contribution of the multi-scale temporal
learner, we replaced it with a single BiGRU, resulting in L-
TGNN. In the second ablation experiment, we removed it
from the proposed model to verify the importance of the brain
region learning block, resulting in MS-TGNN. Finally, in the
third ablation experiment, we replaced the original model’s
extended global graph attention network with a regular GAT
layer to verify its effect, resulting in MSL-GAT. To control
variables, we maintained consistency with the original model
in data pre-processing methods. Also, we utilized the average
performance from 10-fold cross-validation as the final results
for all ablation experiments.

From Table 3, we can observe that MSL-GAT and L-TGNN,
in the subject-dependent experiments, the accuracy decreased
by approximately 3.55% and 3.44%, respectively, compared
to MSL-TGNN. However, in the subject-independent experi-
ments, the accuracy decreased by 7.38% and 5.09%. This indi-
cates that these models are more likely to adapt to individual-
specific patterns in subject-dependent experiments, resulting
in relatively minor performance differences between models.
This also suggests that the extended global graph attention
network contributes more to the model than the multi-scale
temporal learner. MS-TGNN exhibited a minor decrease in
accuracy compared to MSL-GAT and L-TGNN, indicating
a relatively more minor contribution from the brain region
learning block than the significant contributions of the multi-
scale temporal learner and extended global graph attention
network. In the ablation study of subject-dependent, each of
our methods was experimented on all subjects to validate
the contributions of various modules in our model. Fig. 3
and Fig. 4 display the classification accuracy and standard
deviation for each subject on each label task. The figures
show that MSL-TGNN achieves higher accuracy on both labels
than L-TGNN, MS-TGNN, and MSL-GAT, with more minor
standard deviations. This indicates that each module in our
model plays a unique role, resulting in better generalization
and adaptability of the final model. We can observe that there
is variability in the accuracy of different individuals. Since our
model takes raw EEG data as input without additional feature
extraction, differences in age, gender, and physical conditions
are prominently reflected in our experimental results. In addi-
tion, due to individual differences, the classification accuracy
of the subject-dependent experiments is higher than that of the
subject-independent experiments.

F. Discussion

As shown in Fig. 5, MSL-TGNN achieves recognition
accuracies of 94.35% (positive) and 91.52% (negative) on
valence, and 95.45% (positive) and 91.41% (negative) on
arousal in the subject-dependent experiments. This indicates
that the model performs better in identifying high valence
and high arousal emotions, suggesting a better ability to
recognize positive emotions. The confusion matrices of the
subject-independent experiments also show similar results.
This observation is consistent with previous research [48].



TABLE I: Comparison of Input Features and Performance of Different Methods
on the DEAP Dataset in the Subject-dependent Experiments

Methods Features Valence Arousal
Acc(%) F1(%) Acc(%) F1(%)

GAT(2021) Raw signals 72.05 73.29 74.03 73.2
DT(2018) Differential entropy 75.95 - 78.18 -

STFFNN(2022) PSD+temporal statistics 85.42 84.33 86.16 85.5
DCNN+ConvLSTM(2021) Raw signals 87.84 - 87.69 -

GCNN(2018) Differential entropy 88.24 - 87.72 -
STS-Transformer(2023) Raw signals 89.86 - 86.83 -

MSL-TGNN Raw signals 93.09 93.39 93.74 93.94

TABLE II: Comparison of Input Features and Performance of Different Methods
on the DEAP Dataset in the Subject-independent Experiments

Methods Features Valence Arousal
Acc(%) F1(%) Acc(%) F1(%)

GAT(2021) Raw signals 62.88 72.19 64.62 74.27
CapsNet(2019) Band power feature matrix 66.73 - 68.28 -
STFFNN(2022) PSD+temporal statistics 80.17 79.97 81.28 81.09

STS-Transformer(2023) Raw signals 84.75 - 82.16 -
MSL-TGNN Raw signals 84.14 85.83 83.99 86.05

Fig. 3: Average accuracies on each subject of ablation experi-
ments on valence classification tasks in the subject-dependent
experiments

TABLE III: Ablation Study on the DEAP Dataset

Experiment
Schemes Methods Valence Arousal

Acc(%) F1(%) Acc(%) F1(%)

Subject-
dependent

MSL-GAT 89.07 89.58 90.67 91.01
L-TGNN 89.34 89.95 90.61 90.97

MS-TGNN 90.1 90.62 91.39 91.53
MSL-TGNN 93.09 93.39 93.74 93.94

Subject-
independent

MSL-GAT 76.33 78.69 77.04 80.07
L-TGNN 78.69 80.76 79.27 81.91

MS-TGNN 81.70 83.41 81.32 83.36
MSL-TGNN 84.14 85.83 83.99 86.05

The experiment results also show that MSL-TGNN obtains a
high F1 score while achieving high accuracy. This implies that
the model correctly identifies positive instances and effectively
captures negative instances. In other words, for the EEG data

Fig. 4: Average accuracies on each subject of ablation experi-
ments on arousal classification tasks in the subject-dependent
experiments

of all subjects, the model can robustly capture features of both
classes, demonstrating good robustness and generalization of
the model.

In this paper, we demonstrate the effectiveness of our pro-
posed model through extensive experiments. In comparative
experiments, we contrast MSL-TGNN with six deep learning
methods and one traditional machine learning method, encom-
passing a series of models widely applied in the processing
of biosignals. While extracting effective features is crucial
for EEG emotion recognition, our model achieves outstanding
results even with raw EEG data. Through ablation experi-
ments, we conduct a thorough analysis of the performance
of each module. MSL-TGNN exhibits significantly higher
accuracy on valence and arousal when compared to other



(a) (b)

(c) (d)

Fig. 5: Confusion matrices of MSL-TGNN (a)Subject-
dependent experiments of valence (b)Subject-dependent ex-
periments of arousal (c)Subject-independent experiments of
valence (d)Subject-independent experiments of arousal

ablation models, confirming the unique contributions of the
multi-scale temporal learner, brain region learning block, and
extended global graph attention network in the entire model.
Overall, our method has achieved a significant performance
improvement in emotion classification tasks by investigating
multi-scale representations of brain signals in different fre-
quency dimensions, gaining a deeper understanding of the
functionality of specific brain regions, patterns of brain activity
under different emotional states, and proposing a novel net-
work capable of considering complex graph data structure and
multi-dimensional feature representations. This has positive
implications for future research in emotion recognition and
other fields of bio-signal processing.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel graph neural network
model that employs the multi-scale temporal learner to pro-
cess different frequency dimensions in the raw EEG signals
concurrently, the brain region learning block to apply different
weights based on the function of each brain region, and the
extended global graph attention network to capture the global
patterns of brain activity. Our model can effectively capture
global and local information, achieving a balanced perspective
on global brain activity and detailed attention to specific re-
gions. Moreover, MSL-TGNN is an end-to-end model capable
of achieving robust recognition performance on raw EEG data.
Extensive subject-dependent and subject-independent experi-
mental results demonstrate the competitiveness of our method
compared to state-of-the-art methods. Whereas our method has
been proven effective in EEG emotion recognition, there may

be significant differences in emotional activity patterns among
individuals. Therefore, exploring how to reduce this variability
remains to be investigated. As future research directions, we
will focus on enhancing the model’s generalization capability,
especially in cross-dataset scenarios, which may require fur-
ther exploration of data augmentation, domain adaptation, and
transfer learning techniques.
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