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ABSTRACT 

                Traditionally,  in   the  analysis  of  queueing  models  based  on  complex  analysis  method   

                and  the  associated   Skip  Free  Markov  chain  based  models, Rouche’s  Theorem  is   

                invoked  to  determine  the  eigenvalues  of  the  recursion  matrix,  called  rate  matrix       

                which  is  the  solution  of  a  matrix  polynomial/ matrix  power  series  equation.  In  this   

                research  paper,  we  provide  a  simple  proof  of  the  Localization  Theorem  using  the   

                linear  algebraic  arguments.  We  also,  prove  a  generalized   Perron  Theorem  associated   

                with  a  polynomial  matrix 

1. INTRODUCTION: 
                                 Mathematical  modeling  of  systems  evolving  in  time  has  proven  to  be  

very  valuable  in  predicting  the  performance  of  dynamical  systems. Specifically, 

stochastic ( non-deterministic ) dynamical  systems  naturally  arise  in  many  interesting  

applications. Following  the  principle  of  Occam’s  Razor, Continuous  Time  Markov  Chains 

(CTMCs)  are  widely  used  in  analyzing  the   performance  of  many  stochastic  dynamical  

systems.  It  was  well  established  that  such  Markov  chains  exhibit  equilibrium  

probability  distribution  ( associated  with  the  states  in  the  state  space ).  Efficient  

computation  of  such  equilibrium  probability  distribution  is  an  ever  green  research  

problem.  For  instance,  in  the  case  of  a  birth-and-death  process ( a  special  type  of  

CTMC ),  the  equilibrium  probability  distribution  is  specified  by  a  geometric  sequence.  

Thus,  the  common-ratio, 𝜌 ( of  the  geometric  sequence ) as  well  as  the  probability  of  

the  initial  state  will  completely  specify  the  equilibrium  probability  distribution.  The  

common  ratio, 𝜌  is  the  smallest  zero/root  of  the  following  scalar  quadratic  equation: 

𝑥2𝛽 − 𝑥(𝛼 + 𝛽) + 𝛼 = 0    𝑤𝑖𝑡ℎ  𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡  𝑧𝑒𝑟𝑜  𝜌 =
𝛼

𝛽
 . 

In  the  above   equation, 𝛼  is  the  birth rate  and  𝛽  is  the  death  rate.  Also  ‘1’  is  the  
largest  zero  of  the  scalar  quadratic  equation. 

As  a  natural  generalization  of  birth-and-death  process, Quasi-Birth-and-Death  process  is 

Proposed  in  which  the  state  space  is  partitioned  into  “levels”  that  are  groups  of  finitely 

many  states. As  in  the  birth-and-death  process, state  transitions  take  place  only  to  the 
adjacent ( higher, lower ) levels.  Furthermore,  the  equilibrium  distribution  has  matrix-
geometric  recursive  form  i.e. 

�̅�(𝑛 + 1) =  �̅�(𝑛) 𝑅 , 𝑤ℎ𝑒𝑟𝑒 ……………………………….(1) 



  

�̅�(𝑛)  is  the  row  vector  of  equilibrium  probabilities  of  states  at  level  ‘n’  and  R  is  called  
the  rate  matrix  which  is  the  minimal  non-negative  solution  of  the  matrix  quadratic  
equation 

𝑅2𝐴2 + 𝑅𝐴1 + 𝐴0  ≡ 0̅……………………… . . (2). 

In  the  above  matrix  equation, 𝐴𝑖
′𝑠  are  the  state  transition rate  matrices. 

For  the  vector  valued  infinite  sequence  in (1)  to  converge, it  is  necessary  that  all  the  
eigenvalues  of  rate  matrix, R  should  lie  strictly within  the  unit  circle.  As  proved  in  
Section (3),  all  the  eigenvalues  of  every  matrix  solution, �̅�  of  the  matrix  quadratic  
equation 

𝑋2𝐴2 + 𝑋𝐴1 + 𝐴0  ≡ 0̅……………………… . . (3)   

               are  the  zeroes/roots  of  the  determinental  polynomial 

𝐷𝑒𝑡( 𝜇2𝐴2 + 𝜇𝐴1 + 𝐴0) = 𝑓(𝜇)…………………… . (4). 

               Thus, as  reasoned  in  Section (2),  there  should  be  only  ‘N’ zeroes  of  𝑓(𝜇)  which  lie                      

                within  the  unit  circle  and  all  other  zeroes  are  on  or outside  the  unit  circle. As  discussed   

                in  detail  in  Section (2),  traditional  proof  that  there  are  only  N  zeroes  of  𝑓(𝜇)   

                (in equation (4) )  which  lie  strictly  within  the  unit  circle  is  by  the  so  called  “Complex  

                Analysis”  method.  The  method  involves  invoking  the  ROUCHE’s  THEOREM  from  complex  

                Analysis.  In  the  PhD  thesis  [1],  the  author  explored  an  alternative  proof  of  the  fact  

                without  invoking  Rouche’s  theorem. This  research  paper  provides  a  much simpler  proof   

                without  invoking  the  Rouche’s  theorem  (  using  linear  algebraic  argument  only ). 

                                This  research  paper  is  organized  as  follows.  In  Section  2,  the  known  

research  literature  is   briefly  reviewed.  In  Section 3,  localization  Theorem  associated  

with  the  matrix  polynomial  equation  satisfied  by  the  rate  matrix  is  proved.  Also,  an  

interesting  generalized  Perron  theorem  is   proved.  The   research  paper  concludes  in  

Section 4. 

2. Matrix  Analytic  Methods  in  Queueing  Theory:  Rouche’s  Theorem: 
                                                                                                                                 Queueing  theorists  
proposed  models  of  queueing  systems   which  are  in  the  most  general  case,  
generalizations   of  Quasi-Birth-and-Death  (QBD)  process.  Those  queueing  systems  are  
modeled  as  a  G/M/1-type  Markov  chain.  The   generator  matrix  of  such  an  infinite  
state  space  CTMC  is  of  the  block  Toeplitz  form 
 
The    equilibrium  PMF  vector  ( infinite  dimensional )  of  such  a  CTMC   has  the  
associated   Matrix  Geometric   Recursion  
                                              �̅�(𝑛 + 1) =  �̅�(𝑛) 𝑅   𝑓𝑜𝑟  𝑛 ≥ 0, 𝑤ℎ𝑒𝑟𝑒 ……………………………….(1) 

                �̅�(𝑛)  is  the  row  vector  of  equilibrium  probabilities  of  states  at  level  ‘n’  and  R  is  the   

               minimal  nonnegative  solution  of  the  matrix  power  series  equation 

                                                                          ∑ 𝑅𝑖𝐴𝑖 ≡ 0̅,𝑤ℎ𝑒𝑟𝑒   ∞
𝑖=0  ……………………………………………….(2)             

                𝐴𝑖
′𝑠  are  the  submatrices  of  the  generator  matrix ( infinite  dimensional )  corresponding  



  

                to  the  state transition  rates  on  level  ‘n’.  It  readily  follows  that  the   eigenvalues  are   

                necessarily  the  zeroes  of  the  transcendental  function 

                                          ℎ(𝜇) =   𝐷𝑒𝑡  ( ∑ 𝜇𝑖𝐴𝑖 
∞
𝑖=0 ). ………………………………………………………………..(3) 

                This  result  follows  from   a  generalization  of  Factorization  Lemma in [1].  In  the   

                 Complex analysis  based  approaches  ( in queueing  theory ), Rouche’s  Theorem  is   

                 Invoked  to  prove  that  ℎ(𝜇)  has  exactly  ‘N’ zeroes  that  are  the  roots   ( of  the  

                  Transcendental  function )  of  interest  in  determination  of  the equilibrium  probabilities.   

                  From   complex  analysis,  Rouche’s  theorem  leads  to  the  following  result: 

                  If f(z) and g(z) are two analytic functions within and on a simple closed curve C such that 

                 |f(z)| > |g(z)| at each point on C, then both f(z) and f(z) + g(z) have the same number of  

                  zeros inside C. 

                 In    [1],  for  the  first  time,  a  NOVEL  PROOF  of  the  fact  that  ℎ(𝜇)  has  N  zeroes  

                strictly  inside the  unit  circle  was  provided    based  on  linear  algebraic  arguments.  The   

                result  was  coined  as  a  “Localization  Theorem”.  In  this  research  paper,  we  provide  a   

                simpler  proof  of  localization  theorem  without  invoking  the  Rouche’s  Theorem. Most   

                results  in  queueing  theory  based  on  Rouche’s  Theorem  could  be  interpreted/arrived   

               at  by  the  Localization  Theorem.          

 

3. Matrix  Polynomial  Equations: Localization  Theorem: 

                                                                                                     Consider  a  G/M/1-type  Markov  

Chain  in  which  the  states  at  any  level  can  only  receive  downward  transitions  from  

the  states  that  are  only  finitely  many  ( specifically   ‘L’  levels )  levels  up.  In  such  a  

case,  the  rate   matrix  is  a  solution  of  the  following  matrix  polynomial  equation i.e. 

∑𝑅𝑖𝐴𝑖 ≡ 0̅ …………………………………………………………… . . (4)   

𝐿

𝑖=0

 

The  following  factorization  lemma  enables  characterization  of  eigenvalues  of  rate  

matrix  R 

 

Lemma  1:  Consider  a  matrix  polynomial  equation  in  unknown  matrix  X  and  coefficient  

matrices  𝐵𝑖
′𝑠  i.e.  ∑ 𝑋𝑖𝐵𝑖 ≡ 0̅  .   𝐿

𝑖=0   We  readily  have  the  following  factorization 

                      

𝐺(𝜇) = ∑ 𝜇𝑖𝐵𝑖 ≡ ( 𝜇  𝐼 − 𝑋 ) ( 𝜇𝐿−1𝐶1 + 𝜇𝐿−2𝐶2 + ⋯+ 𝜇𝐶𝐿−1 + 𝐶𝐿 ), 𝑤ℎ𝑒𝑟𝑒     

𝐿

𝑖 =0

 

𝐶1 = 𝐵𝐿 , 𝐶2 = 𝐵𝐿−1 + 𝑋 𝐵𝐿 ,   𝐶3 = 𝐵𝐿−2 + 𝑋 𝐵𝐿−1 + 𝑋2𝐵𝐿 ……………. 

𝐶𝐿−1 = 𝐵2 + 𝑋 𝐵3 + ⋯+ 𝑋𝐿−2𝐵𝐿     𝑎𝑛𝑑  

𝐶𝐿 = 𝐵1 + 𝑋 𝐵2 + ⋯+ 𝑋𝐿−1 𝐵𝐿 



  

Proof:  Refer [2] 

 

Thus, the  above  Lemma  applies  to  the  matrix  polynomial  equation  satisfied  by the  rate  

matrix  R.  Using  the  factorization  Lemma, a  Localization  Theorem  associated  with  the  

eigenvalues  of  R  was  first  proved  in  [1]. 

 

LOCALIZATION   THEOREM : Consider  the  matrix  polynomial  equation  satisfied  by  the  

rate  matrix, R  i.e. 

∑𝑅𝑖𝐴𝑖 ≡ 0̅     𝑤𝑖𝑡ℎ  

𝐿

𝑖=0

                      

∑𝜇𝑖𝐴𝑖 ≡ ( 𝜇  𝐼 − 𝑋 ) 𝐻(𝜇) =   ( 𝜇  𝐼 − 𝑋 ) ( 𝜇𝐿−1𝐷1 + 𝜇𝐿−2𝐷2 + ⋯+ 𝜇𝐷𝐿−1 + 𝐷𝐿 ), 𝑤ℎ𝑒𝑟𝑒   

𝐿

𝑖=0

 

𝐷1 = 𝐴𝐿 , 𝐷2 = 𝐴𝐿−1 + 𝑅 𝐴𝐿 ,   𝐷3 = 𝐴𝐿−2 + 𝑅 𝐴𝐿−1 + 𝑅2𝐴𝐿 ……………. 

𝐷𝐿−1 = 𝐴2 + 𝑅 𝐴3 + ⋯+ 𝑅𝐿−2𝐴𝐿     𝑎𝑛𝑑  

𝐷𝐿 = 𝐴1 + 𝑅 𝐴2 + ⋯+ 𝑅𝐿−1 𝐴𝐿 . 

For  |𝜇| < 1, 𝐻(𝜇)  is  a  non-singular  matrix.  Hence,  all  the  zeroes  of   𝐷𝑒𝑡 (∑ 𝜇𝑖𝐴𝑖 )  
𝐿
𝑖=0  

which  lie  within  the  unit  circle   are  all   eigenvalues  of  the  rate matrix, R. 

 

Proof:   We   now  provide  a  new,  simpler  proof  of  the  localization  theorem  dealing with  

the  eigenvalues  of  rate  matrix,  R.     From  the  factorization  Lemma, we  have  that 

∑𝜇𝑖𝐴𝑖 ≡ ( 𝜇  𝐼 − 𝑋 ) 𝐻(𝜇),   𝑤ℎ𝑒𝑟𝑒  𝐷𝑖}𝑖=1
𝐿−1    𝑎𝑟𝑒   𝑎𝑙𝑙  𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠,

  

𝐿

𝑖=0

 

𝑠𝑖𝑛𝑐𝑒, 𝑅  𝑖𝑠  𝑎  𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒  𝑚𝑎𝑡𝑟𝑖𝑥  𝑎𝑛𝑑   𝐴𝑖}𝑖=2
𝐿   𝑎𝑟𝑒  𝑎𝑙𝑠𝑜  𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒. 

𝐹𝑢𝑟𝑡ℎ𝑒𝑟, 𝑡ℎ𝑒  𝐴𝑖
, 𝑠   𝑏𝑒𝑖𝑛𝑔  𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠  𝑜𝑓  𝑡ℎ𝑒  𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟  𝑚𝑎𝑡𝑟𝑖𝑥  𝑜𝑛  𝑎  𝑙𝑒𝑣𝑒𝑙,   

𝑤𝑒  ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡   (∑𝐴𝑖

𝐿

𝑖=0

) �̅�  =   0̅,

𝑤ℎ𝑒𝑟𝑒   �̅� = ( 1 1…1 )𝑇 𝑖. 𝑒.  𝑎  𝑐𝑜𝑙𝑢𝑚𝑛 𝑣𝑒𝑐𝑡𝑜𝑟  𝑜𝑓  𝑎𝑙𝑙  𝑜𝑛𝑒𝑠. 

Also, from  the factorization  lemma   satisfied  by  R,  for  𝜇 = 1, 𝑤𝑒   ℎ𝑎𝑣𝑒  𝑡ℎ𝑎𝑡 

∑𝐴𝑖

𝐿

𝑖=0

= ( 𝐼 − 𝑅 ) (∑𝐷𝑖

𝐿

𝑖=1

)    𝑎𝑛𝑑   

 

(∑𝐴𝑖

𝐿

𝑖=0

) �̅� = ( 𝐼 − 𝑅 ) (∑𝐷𝑖

𝐿

𝑖=1

) �̅�  =   0̅. 

But,  since  the  spectral  radius  of   R   is  strictly  less  than  one  ( for  arriving  at  the  

equilibrium  probability  distribution  from  the  matrix  geometric  recursion ) 

(∑𝐷𝑖

𝐿

𝑖=1

) �̅�  =   0̅. 

Also,  from  the  definition ( in   the  factorization  lemma  applied  to  R ), we  have   that 

𝐷𝐿 = 𝐴1 + 𝑅 𝐴2 + ⋯+ 𝑅𝐿−1 𝐴𝐿. 

Thus,  it  readily  follows  that  𝐷𝐿  has  negative  diagonal  elements  and  non-negative  off  

diagonal  elements.   Since,  𝐷𝑖}𝑖=1
𝐿−1  are  all  non-negative,  it  follows  that,  for  |𝜇| < 1 



  

( 𝜇𝐿−1𝐷1 + 𝜇𝐿−2𝐷2 + ⋯+ 𝜇𝐷𝐿−1 + 𝐷𝐿 ) 

Is  a  diagonally  dominant  matrice  with  negative  diagonal  elements,  non-negative  off  

diagonal  elements  and  all  the  row  sums  being  strictly  less  than  one. 

 

Thus,  for  |𝜇| < 1 , 𝐻 (𝜇 )  𝑖𝑠  𝑎  𝑛𝑜𝑛 − 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟  𝑚𝑎𝑡𝑟𝑖𝑥.  Hence, all  the  zeroes  of  

𝐷𝑒𝑡 (∑ 𝜇𝑖𝐴𝑖 )  
𝐿
𝑖=0  which  lie  within  the  unit  circle   are  all   eigenvalues  of  the  rate 

matrix, R.  Q.E.D. 

 

Note:  The  proof  argument  generalizes  for  the  matrix  power  series  equation  satisfied  

by  the  rate  matrix  R ( in  the  case  of  arbitrary  G/M/1 type  Markov  chain ).  Details  are  

avoided  for  brevity. 

 

Based  on  the  factorization  lemma1  above,  we  now  provide  the  following   

generalization  of   Perron’s  Theorem  after  stating  the  Perron’s  theorem  for  

completeness 

 

Perron’s  Theorem:  Any  real square matrix , J with positive entries has a unique eigenvalue 

of largest magnitude and that eigenvalue is real. 

 

Note:  Suppose,  we  consider 𝐾(𝜇 ) =   𝐷𝑒𝑡(  𝐼 − 𝜇 𝐽 )  ( i.e.  a  polynomial  related  to  the  

characteristic  polynomial  of  positive  matrix  J ). Then  by  Perron’s  Theorem,  the  smallest  

zero  of  𝐾(𝜇 )  is  positive  and  real. 

The  following  is  a  generalization  of  such   result  to  the  polynomial  matrix. 

 

GENERALIZED  PERRON  THEOREM:   Consider   POSITIVE  square  matrices  𝑅𝑖}𝑖=1
𝑆 . 

Define  the  polynomial  matrix   

𝐼 −  𝜇 𝑅1 − 𝜇2𝑅2 − ⋯− 𝜇𝑆𝑅𝑆  . 

The  determinant  of  such  a  polynomial  matrix   i.e.  𝐷𝑒𝑡 ( 𝐼 −  𝜇 𝑅1 − 𝜇2𝑅2 − ⋯− 𝜇𝑆𝑅𝑆 )  

always   has   the  smallest  unique   zero  being   real   and   positive 

 

Proof:   The  main  idea  is  to  consider  the  characteristic  polynomial  of  the  following  

Block  Companion  matrix 

              �̃� =

[
 
 
 
 
0̅ 𝐼 ̅ 0̅ ⋯ 0̅ 0̅

0̅ 0̅ 𝐼 ̅ ⋯ 0̅ 0̅
⋮
0̅
𝑅𝑠
̅̅ ̅

⋮
0̅

𝑅𝑠−1
̅̅ ̅̅ ̅̅

⋮ ⋯ ⋮ ⋮

0̅ ⋯ 𝐼 ̅ 0̅

𝑅𝑠−2
̅̅ ̅̅ ̅̅ ⋯ 𝑅2

̅̅ ̅ 𝑅1
̅̅ ̅]

 
 
 
 

. 

Based  on  well  known  results  related  to  such  a  block  matrix,  it  readily  follows  that 

                            𝐷𝑒𝑡(  𝐼 − 𝜇 �̃� ) =  𝐷𝑒𝑡 ( 𝐼 −  𝜇 𝑅1 − 𝜇2𝑅2 − ⋯− 𝜇𝑆𝑅𝑆 ) . 

Thus,  using  the  Perron’s   Theorem  applied  to  the  irreducible,  non-negative  matrix, �̃� 

we  infer  that  the  smallest  zero  of  such  determinental  polynomial  is  real  and  positive. 

Q.E.D. 

 

Note:  As  in  the  case  of   Perron-Frobenius  Theorem  (  a  generalization  of  Perron’s  

Theorem ),  a  generalized  Perron-Frobenius  Theorem  can  easily  be  proved.  It  is  avoided  

for  brevity. Also,  without  using  Block  companion  matrix,  Perron’s  argument  can   be  

generalized.  Detailed  argument  is  avoided  for   brevity. 

 



  

We   now  illustrate  the  utilization  of   “generalized  Perron  theorem”  in  the  context  of  

the   rate  matrix  based  polynomial  matrix.   

Based  on  the  proof  of  localization  theorem, the  matrix  𝐷𝐿  is  a  diagonally  dominant  

matrix  with  all  diagonal  elements  being  strictly  negative.  Hence,  the  inverse  of  it  

exists  and   it   readily  follows   that   the  inverse  is  a  non-positive  matrix.  Hence,  the  

matrices,  𝑅𝑗 = −𝐷𝐿
−1𝐷𝐿−𝑗  is  a  positive/non-negative  matrix  for  all  1 ≤ 𝑗 ≤ (𝐿 − 1). 

Thus,  the  polynomial  matrix   𝐷𝑒𝑡 ( 𝐼 −  𝜇 𝑅1 − 𝜇2𝑅2 − ⋯− 𝜇𝑆𝑅𝑆 )  has  the  smallest  zero  

which   is   real  and  positive  and  it  equals  ‘1’  in  this  case. 

 

4. CONCLUSIONS: 

                           In  this   research  paper,  based  on  purely  linear  algebraic  arguments,  an  

interesting  Localization  Theorem  to  determine  the  eigenvalues  of  rate  matrix  arising  in  

equilibrium  analysis  of  Skip  Free  Markov  chains  is  proved.  This  approach  can  

potentially   provide  an  alternative  to  Rouche’s  Theorem  based  proof  utilized  in  

complex  analysis   based  methods  in  queueing  theory.  We  also  prove  a  generalization  

of  Perron’s  Theorem. 
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