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Abstract. In recent years, self-supervised monocular depth estimation
has been widely applied in fields such as autonomous driving and robotics.
While Convolutional Neural Networks (CNNs) and Transformers are
predominant in this area, they face challenges with efficiently handling
long-term dependencies and reducing computational complexity. To ad-
dress this problem, we propose MonoViM, the first model integrating the
Mamba to enhance the efficiency of self-supervised monocular depth esti-
mation. Inspired by recent advancements in State Space Models (SSM),
MonoViM integrates the SSM-based Mamba architecture into its encoder
stage and employs a 2D selective scanning mechanism. This ensures that
each image block acquires contextual knowledge through a compressed
hidden state while maintaining a larger receptive field and reducing com-
putational complexity from quadratic to linear. Comprehensive evalua-
tions on the KITTI dataset, with fine-tuning and zero-shot on Cityscapes
and Make3D, show that MonoViM outperforms current CNN-based and
Transformer-based methods, achieving state-of-the-art performance and
excellent generalization. Additionally, MonoViM demonstrates stronger
ability in inference speed and GPU utilization than Transformer-based
methods, particularly with high-resolution inputs. The code is available
at https://github.com/aifeixingdelv/MonoViM.

Keywords: Monocular Depth Estimation · Self-Supervised Learning ·
State Space Models.

1 Introduction

Depth perception serves as the foundation for numerous advanced computer
vision applications such as autonomous driving, robotics, and augmented real-
ity [29]. In recent years, significant advancements have been made in depth learn-
ing methods, enabling supervised monocular depth estimation algorithms [34] to
infer depth autonomously from a single RGB image. However, these methods re-
quire a large collection of images annotated with depth labels for effective train-
ing, which is costly. Consequently, there has been a surge of interest in utilizing
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vast amounts of unlabelled real-world data, driving research into self-supervised
methods [7,37] that use monocular video as input. These methods assume static
scenes and reframe the depth estimation task as a cross-view consistency prob-
lem, where the difference between the current frame and its neighboring frames’
reprojections serves as the image reprojection loss function.

Current self-supervised depth estimation networks predominantly utilize ei-
ther CNN [16] architectures or Transformer [30] architectures. While CNNs are
efficient and excel at capturing local features, their limited receptive field ham-
pers understanding global context. On the other hand, Transformers, with their
self-attention mechanism, can capture long-range dependencies and global con-
text but suffer from high computational complexity and slow inference speeds,
particularly when processing high-resolution images. These limitations impede
real-time application of self-supervised depth estimation models and deploy-
ment on resource-constrained devices. Our research aims to design an efficient
and robust self-supervised depth estimation model utilizing strengths of both
architectures while mitigating respective weaknesses to address these challenges.

In this paper, we propose MonoViM, a novel model designed to enhance the
efficiency of monocular self-supervised depth estimation algorithms. MonoViM
incorporates the Mamba [12] module, inspired by recent advancements in effi-
cient long-sequence modeling within the state space model (SSM) domain [11].
The visual Mamba [21,38] module significantly improves the visual backbone
network’s capability to handle long sequences by achieving efficient visual repre-
sentation while maintaining linear computational complexity through the SSM
and 2D selective scanning mechanism. By integrating the visual Mamba module,
we enhance the overall accuracy and efficiency of the self-supervised monocu-
lar depth estimation model. Additionally, the visual Mamba module extends
MonoViM’s ability to process higher resolution input images.

The contributions of this study can be summarized as follows:
– We propose MonoViM, the first self-supervised monocular depth estima-

tion model based on the SSM architecture. By integrating the SSM-based
Mamba module, our model ensures a global receptive field while avoiding
the quadratic computational complexity associated with Transformer mod-
els, thus improving real-time performance even achieving better depth esti-
mation accuracy. Additionally, our model extends the capability to handle
high-resolution input images.

– We conduct extensive evaluations of the MonoViM model on the KITTI
dataset. Experimental results demonstrate that our model surpasses exist-
ing self-supervised monocular depth estimation methods based on CNNs
and Transformers in terms of accuracy, achieving state-of-the-art perfor-
mance. Furthermore, to validate the generalization capability of the model,
we tested its fine-tuning and zero-shot transfer performance on the Cityscape
and Make3D datasets.

– We also evaluate the inference speed and GPU utilization across various im-
age resolutions between different architecture models. The results show that
our model significantly outperforms Transformer-based methods, demon-
strating its practicality and ability to handle high-resolution images.
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2 Related Work

2.1 Self-supervised monocular depth estimation

Estimating depth from a single image is inherently complex and ambiguous. De-
spite significant advances from fully supervised deep learning techniques [23],
obtaining precise depth labels in real-world scenarios remains difficult. Self-
supervised methods offer a promising alternative by eliminating the need for
hard-to-acquire ground truth annotations and reducing training costs. Building
on Zhou et al.’s work [37], which made significant strides through joint opti-
mization of depth and pose networks using image reconstruction loss, the field
has advanced notably. The choice of backbone network architecture, whether
CNN-based or Transformer-based, is critical to performance in monocular depth
estimation.

In the realm of CNN-based structures, Gordon et al. [8] introduced two
CNN-based Unet networks for single-image depth estimation, predicting ego-
motion, object motion, and camera intrinsics, incorporating an occlusion-aware
consistency loss. Lyu et al. [22] developed HR-Depth, an improved Unet for
high-resolution monocular depth estimation, enhancing skip connections and in-
corporating a feature fusion Squeeze-and-Excitation module. Zhou et al. [36]
presented DIFFNet, an encoder-decoder network utilizing HRNet to effectively
utilize semantic information during downsampling and upsampling.

In the realm of Transformer-based structures, Han et al.’s TransDSSL [14]
combine Transformers with self-supervised learning, introducing pixel-wise skip
attention and self-distillation loss for improved detail and stability. Karpov et
al.’s VTDepth [15] uses the Pyramid Vision Transformer for augmented reality
applications. Zhao et al.’s MonoViT [35] blend CNN and Vision Transformer
Hybrid architectures, achieving both local and global reasoning.

2.2 State Space Models (SSM) Architecture

Vision Transformer (ViT) architectures have been widely adopted in visual tasks,
but the quadratic computational complexity of Transformers can impact per-
formance when handling high-resolution images or long input sequences. Re-
cently, models based on structured State Space Models [10] have emerged as
compelling alternatives to Transformers for managing long-range dependencies.
For improved practical feasibility, the S4 [11] model further proposed normalizing
the parameter matrix to a diagonal structure. Subsequently, various structured
SSM models were developed with different architectural enhancements. Notably,
the Mamba [12] architecture, incorporating selection mechanisms, combines sig-
nificant advantages of both CNN and Transformer backbones, making it a highly
promising model. In computer vision, Mamba-based backbone networks [21,38]
have been introduced and can be broadly categorized as Pure Mamba or Hybrid
Mamba. Many of these models have demonstrated effectiveness in downstream
tasks like medical image segmentation, 3D reconstruction, and 3D object detec-
tion.
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3 Method

In this section, we first introduce the algorithmic framework for self-supervised
monocular depth estimation. Next, we provide a detailed description of the pro-
posed MonoViM DepthNet and PoseNet. Finally, we present the loss functions
used for the self-supervised training of the depth estimation framework.

Fig. 1. Self-supervised monocular depth estimation algorithmic framework. The blue
and orange blocks make up DepthNet and the yellow block represents PoseNet.

3.1 Self-Supervised Monocular Depth Estimation Framework

The self-supervised monocular depth estimation algorithm framework is shown in
Fig. 1. Following the method proposed in [37], we use adjacent frames of keyframe
It±1 to train the self-supervised depth network. This algorithm utilizes a depth
estimation network to obtain the predicted depth information of the keyframe
It and a pose estimation network to estimate the 6-DOF pose changes between
the keyframe It and reference frame It±1. Subsequently, under the static scene
assumption, the algorithm synthesizes the scene from the keyframe’s perspective
using the predicted depth map of the keyframe, the relative pose transformation
of the reference frame, and the input image of the reference frame. Compared
to many multi-frame self-supervised models, we only use the adjacent frames of
the keyframe as reference frames. Based on structure-from-motion (SfM), the
projection formula mapping each pixel of the keyframe It to the previous and
next frames is as follows:

pt±1 ∼ KTt→t±1Dt(pt)K
−1pt (1)

It±1→t[pt] = It±1⟨pt±1⟩ (2)

where <> represents the sampling operation, K represents the camera intrinsics
matrix, pt±1 represents the pixel in the It±1 image, and Dt(pt) and T respectively
represent the predictions from the depth network and the pose network. Based
on Equa.(1) and (2), we can obtain the synthesized keyframe It±1→t from the
sampled It±1 by using the sampling operation.
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At training time, both the DepthNet and PoseNet are optimized jointly by
minimizing the photometric reprojection error Lp (see Equa.(3)). More details
on photometric error pe can be found in Section 3.4.

Lp = min
t′

pe (It, It±1→t) (3)

3.2 MonoViM DepthNet

MonoViM Overall Architecture. MonoViM DepthNet details are shown as
Fig. 2. During downsampling in the model, the input image (with dimensions
H × W ) first passes through the conv-stem layer, transforming it into an em-
bedding feature with dimensions 4H × 4W . Due to Mamba being more suitable
for long sequence inputs [32], we apply a long sequence train strategy in which
the feature size is set to 2H × 2W for better model accuracy at relatively low
input resolutions. The channel number changes from 3 to C (typically set to 96)
at this point. Subsequently, the embedding features are fed into the encoder to
further extract features with larger local receptive fields and spatial dimensions.

Fig. 2. Details of MonoViM DepthNet. Left: the U-Net architecture, starting
with an input image and processing it through Conv-stem, Mamba Blocks, downsam-
pling, and upsampling stages. Right: the details of three key modules: Disparity Head,
Feature Fusion, and Mamba Block.

The encoder is divided into four stages, each consisting of multiple visual
Mamba blocks and a downsampling block (except for the lowest stage, which
lacks a downsampling block). The number of visual Mamba blocks stacked per
stage is [2, 2, 6, 2], with each stage having an input feature channel number of
[C, 2C, 4C, 8C]. Since the lowest stage lacks a downsampling block, its output
feature channel number remains 8C. The pyramid features obtained through the
encoder are denoted as x1, x2, x3, and x4, with dimensions H/8 × W/8 × 2C,
H/16×W/16× 4C, H/32×W/32× 8C, and H/32×W/32× 8C respectively.
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In the upsampling stage of the model, the final output feature x4 from the
encoder is fed into the lowest layer of the decoder. Similarly to the encoder, the
decoder is divided into four stages, each consisting of feature fusion modules
and upsampling modules. To simplify the structure of the model and enhance
its scalability, the decoder uses the most simple convolution operations. The
feature fusion modules are designed to receive skip-connected features and fuse
them with the upsampled intermediate features. The number of input feature
channels for each stage of the decoder is [8C, 4C, 2C, C].

Additionally, to obtain multi-scale depth predictions for supervision, the de-
coder includes four disparity heads, each composed of a 3 × 3 convolution and
a Sigmoid activation function. These heads generate four different-sized single-
channel depth prediction maps from the intermediate and final features of the
four decoder stages, which are used for model training.

The skip connections in the model utilize the most simple addition oper-
ations, avoiding redundant additional parameters and reducing computational
overhead, thereby improving inference speed.
State Space Models Architecture. State space models (SSM) originate from
the Kalman filter and provide a method for describing dynamic systems. They
use state equations and observation equations to represent the relationship be-
tween system state evolution and outputs. Continuous-time SSMs can be repre-
sented as linear ordinary differential equations, as shown in Equa.(4). The state
equation describes the temporal evolution of the system state, while the obser-
vation equation describes the relationship between system output and state.

h′(t) = Ah(t) +Bu(t),

y(t) = Ch(t) +Du(t).
(4)

Subsequently, S4 [11] and S6 (Mamba) [12] discretize continuous-time SSMs
using the zero-order hold method, as shown in Equa.(5). In this Equation, ∆
represents the time scale parameter, while A and B denote the discretized weight
parameters.

A = exp(∆A),

B = (∆A)−1(exp(∆A)− I) ·∆B,

ht = Aht−1 +Bxt,

yt = Cht.

(5)

Meanwhile, to effectively address the long-range dependency problem in se-
quence modeling within limited storage space, the Mamba model employs the
HiPPO [9] function to approximate the optimal solution for generating the
state matrix A. HiPPO, as a general framework, projects continuous signals
and discrete-time sequences onto a polynomial basis, achieving online data com-
pression (as shown in Equa.(6)).

Ank =


(2n+ 1)1/2(2k + 1)1/2 everything below the diagonal

n+ 1 the diagonal

0 everything above the diagonal

(6)
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Visual Mamba Block. Although the Mamba module’s scanning order aligns
with the temporal sequence of processing natural language data, in visual pro-
cessing the model must handle spatial features of images. Therefore, as in other
studies [21], we incorporate 2D selective scanning into the Mamba module, form-
ing the SS2D block. The scanning algorithm captures key spatial information by
scanning in four directions, improving the global receptive field of the visual
Mamba module (shown in Fig. 3). Moreover, this algorithm can dynamically
adjust scanning direction and region based on application scenarios for efficient
resource allocation.

Building on the SS2D module, we integrate a feedforward neural network
(FFN), layer normalization (LN), depthwise separable convolution (DWConv),
activation function (SiLU), and residual connections to construct the visual
Mamba block, as illustrated in Fig. 2. When the feature map enters the Mamba
block, it first passes through a normalization layer for standardization. The nor-
malized data are then fed into the SS2D module to extract feature information.
Concurrently, residual connections allow the data to bypass the SS2D layer and
combine with the SS2D output features before being input into the FFN. This
mechanism alleviates the problem of vanishing gradients and improves training
speed and performance. Finally, the visual Mamba block sums the output fea-
tures of the FFN with the results of the residual connection, producing the final
output of the module.

Fig. 3. 2D Selective Scan Mechanism. Input patches are traversed along four dis-
tinct scanning paths (Cross Scan), with each sequence independently processed by
different Mamba blocks. The results are then combined to form a 2D feature map as
the final output (Cross Merge).

3.3 Pose Estimation Network
Our pose estimation network employs the most simple, yet efficient implemen-
tation. Specifically, the PoseNet utilizes a lightweight ResNet18 architecture. It
takes concatenated image pairs as input and outputs the 6-DoF relative pose
between adjacent frames in an image sequence.
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3.4 Self-Supervised Learning Loss Function

Photometric Loss. Following [7], we use a combination of the Structural
Similarity (SSIM) loss Lssim and the photometric loss L1 as our photometric
loss function Lpe, as shown in Equa.(3) and (7). Here, α is a hyperparameter
used to balance the photometric and structural losses.

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)∥Ia − Ib∥1 (7)

Gradient-Aware Smoothing Loss. To regularize depth in textureless regions
and smooth object edges, we incorporate a gradient-aware smoothness loss Ls

into the loss function, as shown in Equa.(8).

Ls = |∂xd∗t |e−|∂xIt| + |∂yd∗t |e−|∂yIt| (8)

Motion Object Masking Strategies. In self-supervised monocular training,
it is typically assumed that the camera is moving and the scene is static. How-
ever, if the camera is stationary or there are moving objects in the scene, per-
formance may degrade significantly due to violation of this static assumption.
During testing, this manifests as holes of infinite depth in the predicted depth
map in regions with moving objects. Many studies [27] attempt to use instance
segmentation models to construct masks of moving objects, but these methods
consume substantial hardware resources during training, and false detections
by the segmentation model can interfere with training. To keep the scalability
of the model, we adopt the most simple yet effective automasking strategy [7]
that filters out relatively stationary pixels and low-texture regions. This strategy
introduces a binary mask µ, representing pixel regions where the reprojection
error is lower than the original unwarped source image error, as described by
Equa.(9).

µ =
[
min
t′

pe(It, It±1→t) < min
t′

pe(It, It±1)
]

(9)

Total Training Loss Function. Based on the aforementioned moving object
masking strategy, we calculate the photometric loss and gradient-aware smooth-
ness loss between the keyframe input image It and the reconstructed image
It±1→t as the final supervised learning signal, as shown in Equa.(10). λ is a
hyperparameter used to balance the photometric and smoothing losses.

L = µLp + λLs (10)

4 Experiments

In this section, we report the experiment results of MonoViM across multiple
datasets. Our findings clearly demonstrate that MonoViM not only achieves su-
perior depth estimation accuracy but also exhibits enhanced applicability com-
pared with different architecture models.
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4.1 Implementation Details

In our experiment, we implement the MonoViM model using PyTorch. During
training, we conduct 30 epochs on the KITTI dataset with a batch size of 12. We
choose AdamW as the optimizer, setting the initial learning rates for PoseNet
and Depth decoder to 1e-4, while the initial learning rate for SSM-based Depth
encoder is set to 5e-5. The SSM-based Depth encoder contain 2, 2, 6, and 2
sequential Mamba blocks in its first to fourth stages, respectively. Both PoseNet
and Depth encoder are pretrained on ImageNet [3]. Our low-resolution (640 ×
192) experiments are conducted on a single RTX 4090 GPU, whereas high-
resolution (1024× 320 and 1280× 384) experiments are performed on two RTX
4090 GPUs. Overall, network training takes approximately 20 hours. During the
experiments, we use the same data augmentation methods detailed in [7,22].

4.2 Datasets and Evaluation Metrics

KITTI[6]. The KITTI dataset provides stereo image sequences, commonly used
for self-supervised monocular depth estimation. It comprises 61 scenes with typi-
cal image resolutions of 1242 × 375. Depth ground truth is obtained using LiDAR
sensors mounted on a moving vehicle. We adopt the image split method by Eigen
et al [4], including 39,810 monocular triplets for training and 4,424 for validation.
To compare with existing solutions, we evaluate single-view depth performance
on the original LiDAR test split (697 images) [4]. In our experiments, we train
MonoViM on KITTI with minimal requirements, not using motion masks (only
employing automasking [7]) and auxiliary information. To test performance, we
retain the challenging setting of using only single-frame images as input, while
other methods may use multi-frame images to enhance accuracy.
Cityscapes[2]. The Cityscapes dataset is a challenging dataset with many
moving objects. To evaluate our model’s generalization, we fine-tune it on the
Cityscapes dataset, starting from a model pretrained on KITTI. Notably, we
don’t use motion masks in our experiments, whereas many models did. For
fairness and comparability, we use the data preprocessing scripts from [37],
converting image sequences into triplets.
Make3D[24]. The Make3D dataset contains outdoor environments and is com-
monly used to test the generalization performance of monocular depth frame-
works. We conduct a zero-shot evaluation of the MonoViM model trained on
the KITTI dataset, using the same image preprocessing steps and computing
evaluation metrics as detailed in [7].
Evaluation Metrics. For evaluation, we follow the standard metrics proposed
by Eigen et al [4]. It is important to note that for error metrics such as AbsRel,
SqrRel, RMSE, and RMSE log, lower values indicate better performance. Con-
versely, for recall metrics like δ1.25 (i.e., δ < 1.25), higher values indicate better
performance.

4.3 Depth Estimation Performance

In this section, we verify the accuracy of the MonoViM model depth estimation
by conducting precision tests on common architecture depth estimation models
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Table 1. Performance comparison on KITTI[6] eigen benchmark. Top: 640×
192 Resolution. Middle: 1024×320 Resolution. Bottom: 1280×384 Resolution. In the
Data column, S: trained with synchronized stereo pairs, M: trained with monocular
videos, MS: trained with monocular videos and stereo pairs. † stands for utilizing
long sequence training strategy. ‡ stands for the novel results from the official Github
repository, better than published ones. The best results are in bold, and the second
best are underlined. All self-supervised methods use median-scaling to estimate the
absolute depth scale.

Method Data Resolution lower is better higher is better
AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

Monodepth2 [7] MS 640×192 0.106 0.818 4.750 0.196 0.874 0.957 0.979
HR-Depth [22] MS 640×192 0.107 0.785 4.612 0.185 0.887 0.962 0.982
CADepth [31] MS 640×192 0.102 0.752 4.504 0.181 0.894 0.964 0.983
DIFFNet‡ [36] MS 640×192 0.101 0.749 4.445 0.179 0.898 0.965 0.983
Lite-Mono [33] M 640×192 0.101 0.729 4.454 0.178 0.897 0.965 0.983
VTDepth [15] M 640×192 0.105 0.762 4.530 0.182 0.893 0.964 0.983

TransDSSL [14] M 640×192 0.102 0.753 4.461 0.177 0.896 0.966 0.984
MonoViT [35] M 640×192 0.099 0.708 4.372 0.175 0.900 0.967 0.984
SENSE [19] M 640×192 0.104 0.693 4.294 0.177 0.894 0.965 0.984

SwinDepth [25] M 640×192 0.106 0.739 4.510 0.182 0.890 0.964 0.984
Dynamo-Depth [28] M 640×192 0.112 0.758 4.505 0.183 0.873 0.959 0.984

AQUANet [1] M 640×192 0.105 0.621 4.227 0.179 0.889 0.964 0.984
MonoViM(ours) M 640×192 0.106 0.743 4.548 0.181 0.89 0.964 0.983
MonoViM†(ours) M 640×192 0.097 0.672 4.275 0.173 0.908 0.968 0.984

Monodepth2 [7] MS 1024×320 0.106 0.806 4.63 0.193 0.876 0.958 0.98
FeatDepth [26] MS 1024×320 0.099 0.697 4.427 0.184 0.889 0.963 0.982
HR-Depth [22] MS 1024×320 0.101 0.716 4.395 0.179 0.899 0.966 0.983
DIFFNet‡ [36] M 1024×320 0.097 0.722 4.345 0.174 0.907 0.967 0.984
CADepth [31] MS 1024×320 0.096 0.694 4.264 0.173 0.908 0.968 0.984
MonoViT [35] M 1024×320 0.096 0.714 4.292 0.172 0.908 0.968 0.984
Lite-Mono [33] M 1024×320 0.097 0.710 4.309 0.174 0.905 0.967 0.984
SENSE [19] M 1024×320 0.099 0.617 4.079 0.172 0.902 0.968 0.985

MonoViM(ours) M 1024×320 0.095 0.658 4.263 0.171 0.909 0.968 0.984
MonoViM(ours) MS 1024×320 0.093 0.65 4.234 0.171 0.913 0.968 0.984

PackNet [13] M 1280×384 0.104 0.758 4.386 0.182 0.895 0.964 0.982
HR-Depth [22] M 1280×384 0.104 0.727 4.41 0.179 0.894 0.966 0.984

CADepth-Net [31] M 1280×384 0.102 0.715 4.312 0.176 0.9 0.968 0.984
MonoViT [35] M 1280×384 0.094 0.682 4.2 0.17 0.912 0.969 0.984

MonoViM(ours) M 1280×384 0.096 0.633 4.163 0.17 0.906 0.969 0.985

using KITTI, CityScapes, and Make3D datasets. Experimental results demon-
strate that MonoViM exhibits outstanding performance across all datasets, achiev-
ing the level of existing state-of-the-art models.

KITTI Results. We utilize the standard KITTI Eigen split [4] to evaluate
our model, which incorporates 697 images and original LiDAR scans. In light
of monocular scale ambiguity inherent in monocular depth models trained on
video sequences, the estimated depth is scaled by the median ground truth
for each image [37]. Table 1 compiles results from current state-of-the-art self-
supervised algorithms, including training effects at three different input image
resolutions: 640×192 (low), 1024×320 (high), and 1280×384 (higher). For com-
pleteness, we report results for methods trained using monocular (M) and stereo
(MS) inputs. MonoViM achieves state-of-the-art performance in all metrics, re-
gardless of training resolution and setting. Notably, compared to baseline models
based on ResNet and Transformer architectures, such as Monodepth2 [7] (ResNet
based), TransDSSL [14] (Swin Transformer based), VTDepth [15] (Pyramid Vi-
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Fig. 4. Qualitative results on KITTI. First column is input images. Then, predic-
tions by SoTA methods (MonoDepth2, CADepth, MonoViT) and MonoViM (Ours).

Fig. 5. Qualitative results on Make3D. Top row is input images. Then, predictions
by SoTA methods (DIFFNet, TransDSSL, MonoViT) and MonoViM (Ours).

sion Transformer based), and MonoViT [35] (MPViT based), the Mamba based
model achieves higher accuracy. This indicates Mamba is more suitable for depth
estimation, which is a type of long-sequence prediction task.

Fig. 4. shows a qualitative comparison of predictions from MonoViM and
other models. MonoViM achieves more complete, linear, continuous depth pre-
dictions for coplanar planes (e.g., truck containers), as seen in rows 1 and 6 of
Fig. 4. It also avoids black hole situations when predicting vehicle depth, as in
row 2. The KITTI dataset has many scenes with significant light variation from
environmental lighting, affecting autonomous driving perception algorithms. In
these high dynamic range scenes, our model provides more accurate, detailed
depth predictions, as shown by the shaded vehicle in row 4 and the illuminated
pedestrian in row 5.
Cityscapes Results. To evaluate the generalization capability of MonoViM,
we fine-tune the KITTI pretrained model on the CityScapes dataset. The results
are presented in Table 2. Because CityScapes contains many moving objects,
significantly impacting model training, most of the models in Table 2 employ
more effective motion masks to handle these objects. However, even with basic
masking, MonoViM demonstrates superior performance.
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Table 2. Performance comparison on Cityscapes[2] dataset. All the other base-
lines are trained from scratch on Cityscapes. K for KITTI, C for Cityscapes, K→C
for pretrained on KITTI and fine-tuned on Cityscapes. MMask means using motion
mask to deal with moving objects (extremely important for training on Cityscapes), −
for no motion mask.

Method Train Resolution lower is better higher is better
AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

Monodepth2 [7] -, C 416×128 0.129 1.569 6.876 0.187 0.849 0.957 0.983
Videos in the Wild [8] MMask, C 416×128 0.127 1.330 6.960 0.195 0.830 0.947 0.981

Li et al. [20] MMask, C 416×128 0.119 1.29 6.98 0.19 0.846 0.952 0.982
Lee et al. [17] MMask, C 832×256 0.116 1.213 6.695 0.186 0.852 0.951 0.982
InstaDM [18] MMask, C 832×256 0.111 1.158 6.437 0.182 0.868 0.961 0.983

MonoViM(ours) -,K→C 416×128 0.117 1.154 6.609 0.176 0.869 0.967 0.99

Make3D Results. To further evaluate the generalization capability of MonoViM,
we perform zero-shot evaluation on the Make3D dataset [24] using weights pre-
trained on KITTI. Following the same evaluation setup as in [5], we test on
center-cropped images with a 2×1 ratio. The results, as shown in Table 3 and
Fig. 5, indicate that MonoViM outperforms the baseline models, producing
sharper depth maps with more accurate scene details, particularly when handling
structured buildings and tree trunks. This demonstrates the superior zero-shot
generalization ability of our model.

Table 3. Performance comparison on Make3D[24] dataset.

Method Data lower is better
AbsRel SqRel RMSE RMSElog

Monodepth2 [7] M 0.322 3.589 7.417 0.163
CADepth [31] M 0.312 3.086 7.066 0.159
HR-Depth [22] M 0.305 2.944 6.857 0.157
DIFFNet [36] M 0.298 2.901 6.753 0.153

TransDSSL [14] M 0.289 3.061 7.071 0.151
MonoViT [35] M 0.286 2.758 6.623 0.147
Lite-Mono [33] M 0.305 3.060 6.981 0.158

MonoViM(ours) M 0.275 2.806 6.655 0.142

4.4 Inference Speed and Resource Utilization Analysis

In this section, we further verify MonoViM’s practicality by comparing its infer-
ence speed and GPU utilization against baseline depth estimation models with
common architectures. Experimental results (Fig. 6) show MonoViM excels in
both speed and GPU usage, outperforming existing Transformer-based mod-
els [14,15,35]. Related experiments are conducted on a single RTX 4090 GPU.

Inference Speed Analysis. MonoViM demonstrates superior computational
efficiency compared to existing models, as shown in Fig. 6 (Right). It outper-
forms previous Transformer-based models at low-resolution inputs and signifi-
cantly surpasses them at high-resolution inputs. Specifically, at resolutions of
1280× 384, 1536× 480, and 2048× 640, MonoViM’s inference speed is approxi-
mately 14.35%, 84.82%, and 141% faster than VTDepth [15], and about 118.54%,
199.45%, and 215.87% faster than MonoViT [35]. These results indicate that
MonoViM maintains efficient computational performance with high-resolution
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Fig. 6. GPU Memory Usage and Inference Speed Comparison. Left: shows the
GPU memory usage comparison for five baseline models, Monodepth2(Res50, 34.57M),
VTDepth(PVT-small, 28.85M), MonoViT(MPViT, 27.87M), TransDSSL(Swin-Tiny,
41.68M) and MonoViM(Mamba, 38.68M), across four resolutions: 640×192, 1024×320,
1536×480 and 2048×640. Each bar chart represents the GPU memory usage consump-
tion (in MB) for each model at the given resolution. Right: shows the inference speed
comparison for the same five models across the same resolutions. The line graph dis-
plays the frames per second (FPS) on a logarithmic scale, indicating how the inference
speed of each model varies with different resolutions.

inputs, underscoring its practicality and effectiveness in real-world applications,
particularly for high-resolution input scenarios.

GPU Memory Usage Analysis. The results, as shown in Fig. 6 (Left),
demonstrate that MonoViM consistently uses less GPU memory usage than
Transformer models across all resolutions, while being comparable to ResNet
models, indicating high resource efficiency. At resolutions of 640×192, 1024×320,
1536 × 480, and 2048 × 640, MonoViM’s GPU memory usage is approximately
41.74%, 43.36%, 44.02%, and 44.29% lower than that of TransDSSL [14], and
about 35.01%, 38.05%, 39.12%, and 39.52% lower than VTDepth [15], respec-
tively. Notably, as the input image resolution increases, MonoViM’s advantage in
GPU utilization becomes more pronounced, highlighting its superior practicality
over Transformer-based models for high-resolution inputs.

4.5 Ablation Study

In our KITTI dataset experiments, we analyze the impact of SSM and ImageNet
pretraining on MonoViM model accuracy, as shown in Table 4. We replace the
SSM structure with convolutional and direct connection structures, finding SSM
essential for higher accuracy. Comparing models with and without ImageNet pre-
trained weights, the results show that stronger pretrained weights significantly
improve performance, highlighting their importance.

5 Conclusion
This paper proposed MonoViM, a novel model that significantly enhances the ef-
ficiency and accuracy of self-supervised monocular depth estimation algorithms
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Table 4. Ablation study for the core component of MonoViM. w/o for with-
out. SSM→Conv means using Conv to replace SSM.

Method Data Resolution lower is better higher is better
AbsRel SqRel RMSE RMSElog δ1 δ2 δ3

MonoViM M 1024×320 0.095 0.658 4.26 0.171 0.909 0.968 0.984
w/o SSM M 1024×320 0.116 0.803 4.680 0.194 0.869 0.959 0.981

SSM→Conv M 1024×320 0.113 0.837 4.600 0.185 0.882 0.963 0.983
w/o Pretrained M 1024×320 0.103 0.847 4.595 0.186 0.887 0.963 0.983

through the integration of the Mamba module. By incorporating the Mamba
module with 2D selective scanning mechanism, MonoViM ensures efficient vi-
sual representation and linear computational complexity, extending the model’s
capability to process high-resolution images. Experimental results demonstrate
that MonoViM achieves outstanding depth estimation accuracy across multiple
datasets and outperforms Transformer architectures in terms of applicability.
Additionally, MonoViM exhibits higher computational efficiency and GPU uti-
lization when handling high-resolution inputs. In summary, MonoViM provides
a more efficient, accurate, and practical solution for monocular self-supervised
depth estimation.
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