Note for the Small Gaps

Frank Vega

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

Note for the Small Gaps

Frank Vega ${ }^{1(1)}$

1 GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA; vega.frank@gmail.com

Abstract

A prime gap is the difference between two successive prime numbers. The nth prime gap, denoted g_{n} is the difference between the $(\mathrm{n}+1)$ st and the nth prime numbers, i.e. $g_{n}=p_{n+1}-p_{n}$. A twin prime is a prime that has a prime gap of two. The twin prime conjecture states that there are infinitely many twin primes. There isn't a verified solution to twin prime conjecture yet. In this note, using the Chebyshev function, we prove that $$
\liminf _{n \rightarrow \infty} \frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)} \geq 1
$$ under the assumption that the twin prime conjecture is false. It is well-known the proof of Daniel Goldston, János Pintz and Cem Yildirim which implies that $\lim \inf _{n \rightarrow \infty} \frac{g_{n}}{\log p_{n}}=0$. In this way, we reach an intuitive contradiction. Consequently, by reductio ad absurdum, we can conclude that the twin prime conjecture is true.

Keywords: prime gaps; prime numbers; Chebyshev function; primorial numbers

MSC: 11A41; 11A25

1. Introduction

Prime numbers, the building blocks of integers, have fascinated mathematicians for centuries. Their irregular distribution, with gaps of seemingly random size between them, is a source of ongoing intrigue. A twin prime is a prime that has a prime gap of two. The twin prime conjecture states that there are infinitely many twin primes. The question of whether there exist infinitely many twin primes has been one of the great open questions in number theory for many years. In 1849, de Polignac made the more general conjecture that for every natural number k, there are infinitely many primes p such that $p+2 \cdot k$ is also prime [1]. The case $k=1$ of de Polignac's conjecture is the twin prime conjecture. There is a stronger form of the twin prime conjecture, the Hardy-Littlewood conjecture, postulates a distribution law for twin primes [2].

In May 2013, the popular Yitang Zhang's paper was accepted by the journal Annals of Mathematics where it was announced that for some integer N , that is less than 70 million, there are infinitely many pairs of primes that differ by N [3]. A few months later, James Maynard gave a different proof of Yitang Zhang's theorem and showed that there are infinitely many prime gaps with size of at most 600 [4]. A collaborative effort in the Polymath Project, led by Terence Tao, reduced to the lower bound 246 just using Zhang and Maynard results. Moreover assuming the Elliott-Halberstam conjecture and its generalized form, the Polymath Project wiki states that the bound is 12 and 6, respectively. As of August 2022, the current largest twin prime pair known is $2996863034895 \cdot 2^{1290000} \pm 1$ [5].

In this work, using a proof by contradiction, we prove that the twin prime conjecture is true. The resolution of the twin prime conjecture would undoubtedly inspire mathematicians to tackle even more challenging unsolved problems. It could open doors to entirely new areas of inquiry, pushing the boundaries of human knowledge in number theory. A proven twin prime conjecture would be far more than just satisfying an intellectual curiosity. It would represent a significant leap forward in our understanding of prime numbers, potentially leading to advancements across various branches of mathematics with far-reaching consequences. The impact could be profound, both for theoretical knowledge and potentially for practical applications in the future.

2. Materials and methods

In mathematics, the Chebyshev function $\theta(x)$ is given by

$$
\theta(x)=\sum_{p \leq x} \log p
$$

with the sum extending over all prime numbers p that are less than or equal to x, where \log is the natural logarithm. We know the following properties of this function:

Proposition 1. We have [6, pp. 1539]:

$$
\theta(x) \sim x \text { as }(x \rightarrow \infty)
$$

A natural number N_{n} is called a primorial number of order n precisely when,

$$
N_{n}=\prod_{k=1}^{n} p_{k}
$$

where p_{k} is the k th prime number (We also use the notation p_{n} to denote the nth prime number). This implies that $\theta\left(p_{n}\right)=\log N_{n}$. The definition of limit inferior is widely used in mathematics.

Definition 1. The limit inferior of a sequence of real numbers x_{n} is the largest real number b such that, for any positive real number ε, there exists a natural number N such that $x_{n}>b-\varepsilon$ for all $n>N$. In other words, any number below the limit inferior is an eventual lower bound for the sequence. Only a finite number of elements of the sequence are less than $b-\varepsilon$.

The following is a key Proposition:
Proposition 2. If $g_{n}=p_{n+1}-p_{n}$ denotes the nth prime gap, then we know that [7]:

$$
\liminf _{n \rightarrow \infty} \frac{g_{n}}{\log p_{n}}=0
$$

Putting all together yields a proof for the twin prime conjecture.

3. Results

This is a main insight.

Theorem 1. If we assume that the twin prime conjecture is false, then

$$
\liminf _{n \rightarrow \infty} \frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)} \geq 1
$$

Proof. If p_{n} and p_{n+1} are twin primes, then

$$
p_{n} \cdot\left(N_{n}+2 \cdot N_{n-1}\right)=N_{n+1} .
$$

Certainly, we have

$$
\begin{aligned}
p_{n} \cdot\left(N_{n}+2 \cdot N_{n-1}\right) & =p_{n} \cdot N_{n-1} \cdot\left(p_{n}+2\right) \\
& =N_{n} \cdot\left(p_{n}+2\right) \\
& =N_{n+1}
\end{aligned}
$$

whenever $p_{n+1}=p_{n}+2$. Suppose that the twin prime conjecture is false. Hence, there exists a large enough prime $p_{n_{0}}>2996863034895 \cdot 2^{1290000}+1$ such that

$$
p_{n} \cdot\left(N_{n}+2 \cdot N_{n-1}\right)<N_{n+1}
$$

holds for all $n \geq n_{0}$. That is the same as

$$
\log \left(p_{n} \cdot\left(N_{n}+2 \cdot N_{n-1}\right)\right)<\log N_{n+1}
$$

after of applying the logarithm to the both sides. That is equivalent to

$$
\log \left(p_{n}\right)+\log \left(N_{n}+2 \cdot N_{n-1}\right)<\theta\left(p_{n+1}\right)
$$

which means that

$$
1<\frac{\theta\left(p_{n+1}\right)-\theta\left(p_{n-1}\right)}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}
$$

holds for all $n \geq n_{0}$, because of

$$
\begin{aligned}
\log \left(N_{n}+2 \cdot N_{n-1}\right) & =\log \left(N_{n-1} \cdot\left(p_{n}+2\right)\right) \\
& =\log \left(N_{n-1}\right)+\log \left(p_{n}+2\right) \\
& =\theta\left(p_{n-1}\right)+\log \left(p_{n}+2\right)
\end{aligned}
$$

By Proposition 1, we see that

$$
\theta\left(p_{n+1}\right) \sim p_{n+1} \text { as }(n \rightarrow \infty)
$$

and

$$
\theta\left(p_{n-1}\right) \sim p_{n-1} \text { as }(n \rightarrow \infty) .
$$

In addition, we notice that

$$
\begin{aligned}
p_{n+1}-p_{n-1} & =\left(p_{n+1}-p_{n}\right)+\left(p_{n}-p_{n-1}\right) \\
& =g_{n}+g_{n-1} .
\end{aligned}
$$

Note that, the inequality

$$
1<\frac{\theta\left(p_{n+1}\right)-\theta\left(p_{n-1}\right)}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}
$$

implies that

$$
1<\frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}+\varepsilon_{n}
$$

where

$$
\varepsilon_{n}=\frac{\left(\theta\left(p_{n+1}\right)-p_{n+1}\right)-\left(\theta\left(p_{n-1}\right)-p_{n-1}\right)}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}
$$

tends rapidly to zero when $n \rightarrow \infty$ and

$$
\frac{\theta\left(p_{n+1}\right)-\theta\left(p_{n-1}\right)}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}=\frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}+\varepsilon_{n} .
$$

By definition of limit inferior, we finally deduce that

$$
\liminf _{n \rightarrow \infty} \frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)} \geq 1
$$

when we assume that the twin prime conjecture is false.
This is the main theorem.

Theorem 2. The twin prime conjecture is true
Proof. This is a direct consequence of putting together Proposition 2 with Theorem 1 and using a proof by contradiction. Certainly, the sequence of positive real numbers $x_{n}=\frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}$ is upper bounded by $y_{n}=\max \left(\frac{g_{n}}{\log \left(p_{n}\right)}, \frac{g_{n-1}}{\log \left(p_{n-1}\right)}\right)$ since

$$
\frac{g_{n}+g_{n-1}}{\log \left(p_{n}\right)+\log \left(p_{n}+2\right)}<\left(\frac{g_{n}}{2 \cdot \log \left(p_{n}\right)}+\frac{g_{n-1}}{2 \cdot \log \left(p_{n-1}\right)}\right) \leq \max \left(\frac{g_{n}}{\log \left(p_{n}\right)}, \frac{g_{n-1}}{\log \left(p_{n-1}\right)}\right)
$$

where $\max (\ldots, \ldots)$ is the maximum function. Since this implies that

$$
1 \leq \liminf _{n \rightarrow \infty} x_{n} \leq \liminf _{n \rightarrow \infty} y_{n}=0
$$

by Proposition 2 and Theorem 1, we reach a contradiction. Consequently, by reductio ad absurdum, we can confirm that the twin prime conjecture is true.

References

1. de Polignac, A. Recherches nouvelles sur les nombres premiers; Vol. 29, 1849; pp. 397-401.
2. Bateman, P.T.; Diamond, H.G. Analytic number theory: an introductory course; Vol. 1, World Scientific, 2004.
3. Zhang, Y. Bounded gaps between primes. Annals of Mathematics 2014, pp. 1121-1174. https:/ / doi.org/10.4007/annals.2014.179.3 . 7.
4. Maynard, J. Small gaps between primes. Annals of mathematics 2015, pp. 383-413. https:/ / doi.org/10.4007/annals.2015.181.1.7.
5. Caldwell, C.K. The Prime Database: $2996863034895 \cdot 2^{1290000}-1$. https: / / primes.utm.edu/primes / page.php?id=122213, 2016. Accessed 7 May 2024.
6. Platt, D.J.; Trudgian, T.S. On the first sign change of $\theta(x)-x$. Mathematics of Computation 2016, 85, 1539-1547. https: / /doi.org/10.1090/mcom/3021.
7. Goldston, D.A.; Pintz, J.; Yalçin Yıldırım, C. Primes in tuples II. Acta Mathematica 2010, 204, 1-47. https:/ /doi.org/10.1007/s115 11-010-0044-9.

Short Biography of Authors

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article about the Riemann hypothesis. The article "Robin's criterion on divisibility" makes several significant contributions to the field of number theory. It provides a proof of the Robin inequality for a large class of integers, and it suggests new directions for research in the area of analytic number theory.

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

