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Abstract 

 

Finite Volume Methods (FVM) are high quality methods for solving conservative/hyperbolic partial differential 

equations (PDEs). A popular class of high-resolution methods utilize a nonlinear combination of low order 

methods and high order methods via flux limiting functions. Another class of high-resolution methods is the 

class of weighted essentially non-oscillatory (WENO) schemes. Here, the focus is on flux limiting schemes. An 

experimental finite volume (FV) semi-discrete solver for systems of hyperbolic PDEs has been implemented in 

Julia, utilizing Julia’s DifferentialEquations.jl package for handling the time marching. A first order upwind 

formulation is used for the low order method, and a central second order formulation is used for the high order 

method. The PDE can be provided either in flux form, or in quasi-linear form. In the former case, automatic 

differentiation (AD) package ForwardDiff.jl is used to compute the Jacobians of the flux vector. Package 

LinearAlgebra.jl is used to compute the eigenspace of the Jacobians. The implementation allows for up to 3 

internal/external coordinates. More than a dozen flux limiting functions are given, with the possibility of the 

users to write their own flux limiters. The implementation allows for user provided spatial discretization points, 

and source terms in the PDE. In this paper, we will compare various flux limiting schemes for PDEs with 

analytic solutions, and will also compare flux limiting schemes for a simple granulation model (layering). 

Possible extensions of the experimental implementation include: (i) higher order methods, (ii) more extensive 

support for boundary conditions, (iii) improved support for source terms.  

 

 

1. Introduction 

A partial differential equation (PDE) is a 

mathematical equation having two or more 

independent variables, an unknown function 

(depending on those variables), and partial 

derivatives of the unknown function with respect to 

the independent variables [1]. Solving a PDE leads 

to a function that solves the equation or, in other 

words, converts it into an identity when it is 

replaced into the equation. Although some variants 

of PDEs have analytical solutions, in general 

numerical methods are used to solve PDEs.  

There are different types of numerical methods for 

solving PDEs such as finite elements, finite 

volumes, and finite difference. In this paper, the 

finite volumes method (FVM) is considered as the 

basic for converting PDE problem into a set of 

ordinary differential equations (ODEs).  Then, the 

ODEs are solved using ODE solver. There are 

several standard ODE solvers available in almost 

every programming language. Usually, this 

approach is called semi-discretization.  

FVMs are high quality methods for solving 

conservative/hyperbolic PDEs. To achieve high-

order accurate numerical approximation of PDEs, 

especially in presence of shocks or discontinuities, 

a group of FVM related schemes called high-

resolution schemes are vastly used. Among the 

methods, flux limiter and WENO1  schemes are 

shown effective in solving difficult-to-solve PDE 

problems [2, 3].  

Flux limiters (or slope limiters) schemes utilize a 

nonlinear combination of low order methods and 

high order methods via flux limiting functions. One 

simple but effective combination of methods is to 

use upwind as the low (first) order and centered 

difference as the high (second) order schemes 

(called MUSCL2 scheme) [2]. MUSCL scheme is 

the core approach in this paper and more than a 

dozen of flux limiter functions are utilized to solve 

the PDEs.  

This paper focus on the introduction of an open-

source solver for Julia programming language. This 

solver package is available for the interested reader 

via the following GitHub link: 

 
1 Weighted Essentially Non-Oscillatory 
2 Monotonic Upstream-centered Scheme 
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https://github.com/amirfarzin/FVM_PDEsolver.jl  

In addition, to evaluate the performance of the 

developed package, several PDE problems are 

solved using different flux limiter functions. 

Therefore, as the result, a fair comparison of the 

functions is also presented in this paper.  

The rest of this paper is structured as follows: the 

second section starts with an introduction to the 

class of PDEs the solver is design to deal with. 

Then, the MUSCL scheme equations and flux 

limiter functions are reviewed. The third section 

contains a brief documentation for the package. 

The PDE problems used for evaluation and their 

solution are presented in section four. In addition, 

the flux limiter functions are compared based on 

their performance in solving those PDEs. Finally, 

the paper ends with discussion in section five. 

2. PDE problem definitions  

As mentioned, PDEs are equations involving at 

least two independent variables, one or more 

dependent variables and their derivatives which are 

functions the independent variables. The first 

assumption here, is that time is always an 

independent variable in all PDEs. Therefore, we 

denote the variables as follows: 

• 𝑧1, 𝑧2, … , 𝑧𝑛𝑧 , 𝑡 are independent variables 

where 𝑛𝑧 ≥ 1. With this notation, the PDE 

involves 𝑛𝑧 + 1 independent variables. In 

vector form, 𝒛 = [𝑧1, 𝑧2, … , 𝑧𝑛𝑧]
𝑇
∈ ℝ𝑛𝑧 is 

called the vector of spatial (i.e., 

internal/external coordination) independent 

variables. Commonly, the time variable 𝑡 is in 

the range [0,∞) (i.e., 𝑡 ∈ ℝ+). And the spatial 

variables 𝑧1, 𝑧2, … , 𝑧𝑛𝑧 are defined in a 

domain denoted by 𝛀 ⊂ ℝ𝑛𝑧 (i.e., 𝒛 ∈ 𝛀).  

• 𝑞1, 𝑞2, … , 𝑞𝑛𝑞  are dependent variables 

where 𝑞𝑖 = 𝑞𝑖(𝑧1, 𝑧2, … , 𝑧𝑛𝑧 , 𝑡 ) = 𝑞𝑖(𝒛, 𝑡) 

and 𝑛𝑞 ≥ 1. In vector form, 𝒒 = 𝒒(𝒛, 𝑡) =

[𝑞1, 𝑞2, … , 𝑞𝑛𝑞]
𝑇

: ℝ𝑛𝑧+1 → ℝ𝑛𝑞  is the vector 

of unknown functions or dependent 
variables.  

With above definitions, the general form of a PDE 

problem is as follows:  

𝑭(𝒛, 𝑡, 𝒒, 𝐷𝒒, 𝐷2𝒒,… , 𝐷𝑚𝒒) = 𝟎 (1) 

where 𝐷𝛼𝒒 denotes the tensor of all partial 

derivatives of order 0 ≤ 𝛼 ≤ 𝑚, and 𝑚 ≥ 1 is the 

highest order of partial derivatives in the system. 

System of Eq. (1), in general perspective, consists 

of 𝑛𝑓 equations. And the number of unknown 

variables is 𝑛𝑞. The PDE problem is called 

determined if 𝑛𝑞 = 𝑛𝑓 , and without losing 

generality, only determined PDEs are considered in 

this paper. If the number of equations is one (i.e., 
𝑛𝑞 = 1), then the PDE is called scalar. Otherwise, 

the equations represent a system of PDEs. 

The package is developed to solve conservation 

law equation which appears in several physical 

phenomena such as electromagnetism, fluid 

dynamics, heat transfer, etc. However, only semi-
linear3 first order system of PDEs with up to three 

spatial dimensions is considered. For increasing the 

readability of the notations, let us replace 𝑧1, 𝑧2, 
and 𝑧3 with  𝑥, 𝑦, and 𝑧, respectively. Note that, 𝑥, 

𝑦, and 𝑧 are not necessarily 3-D Cartesian axes, but 

can represent internal coordination as well.   

The differential form of the conservation law is as 

follows: 

where ∇⃗⃗ = [
𝜕

𝜕𝑥
,
𝜕

𝜕y
,
𝜕

𝜕z
] is the divergence vector and 

�⃗⃗� = [𝒇, 𝒈, 𝒉] is the field vector. Equivalently, the 

Eq. (2) can be written as: 

𝜕𝑡𝒒 + 𝜕𝑥𝒇(𝒒) + 𝜕𝑦𝒈(𝒒) + 𝜕𝑧𝒉(𝒒) = 𝝈(𝒒) (3) 

In above equations, 𝝈(𝒒) is called the source term. 

If 𝝈(𝒒) = 𝟎, Eq. (3) represent a homogenous 

system of PDEs. In above equations, 𝒇, 𝒈, and 𝒉 

are arbitrary functions for field vectors in 𝑥, 𝑦, and 

𝑧 directions respectively. 

If the flux functions are differentiable with respect 

to conserved variable 𝒒, using the chain rule, the 

Eq. (3) can be written as follows: 

𝜕𝑡𝒒 + 𝑱𝒇𝜕𝑥𝒒 + 𝑱𝒈𝜕𝑦𝒒 + 𝑱𝒉𝜕𝑧𝒒 = 𝝈 (4) 

The matrices 𝑱𝒇 =
𝜕𝒇

𝜕𝒒
, 𝑱𝒈 =

𝜕𝒈

𝜕𝒒
, and 𝑱𝒉 =

𝜕𝒉

𝜕𝒒
 are the 

Jacobians of 𝒇, 𝒈, and 𝒉. If all the eigenvalues of 

the Jacobian matrices are real with linearly 

independent eigenvectors, the system of PDEs is 

called hyperbolic [4]. Note that this paper and the 

solver package only consider hyperbolic PDEs. The 

solver is design to handle the PDEs expressed 

either by Eq. (3) or Eq. (4).  

3. Methodology 

In this section, for the simplicity of equations, the 

methodology is discussed for 1-D homogenous 

conservation law equation (i.e., without the source 

term) as follows: 

𝜕𝑡𝒒 + 𝜕𝑥𝒇(𝒒) = 𝟎 (5) 

At the end this section, the method is extended for 

solving PDE problems of Eq. (3) and (4).  

3.1. Grid 

To solve Eq. (5), the general idea is to convert it 

into a set of ODE problems where we need the 

values of 𝜕𝑡𝒒 at each time step. As 𝒒 is a function 

of time and space, the values of 𝜕𝑡𝒒 at each time 

 
3 A quasi-linear PDE system of order 𝑚 is called semi-

linear if the coefficients of the highest order (i.e., 𝑚) 

partial derivatives are only functions of the independent 

variables. 

𝜕𝑡𝒒 + ∇⃗⃗ . �⃗⃗� (𝒒) = 𝝈(𝒒) (2) 

https://github.com/amirfarzin/FVM_PDEsolver.jl
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step should be found for every point in the space. 

Here, the space domain is simply bounded to 

min/max values (i.e., 𝑥 ∈ [𝑥min , 𝑥max]). 
Numerically, working with a continuous space 

domain is impossible. Therefore, it is necessary to 

discretize the space first. The developed package 

uses a non-uniform rectangular grid up to three 

dimensions for space discretization. It is also 

possible to extend it for more dimensions or 

improve it with triangular cells. A small part of the 

𝑥 axis is shown in Fig 1.  

i+1i–1  

Control Volume

i+½ i–½ 

i

i+½ Fi–½ F

 
Figure 1: Grid-point cluster for one-dimensional problem 

The advantage of non-uniform grid is the variable 

cell sizes. This feature allows larger cells in non-

challenging and smaller cells in critical areas.  

Regarding the grid, the following notation is used 

in the rest of this paper:  

• Integer subscripts such as 𝑖 − 1, 𝑖, and 𝑖 + 1 
are used for quantities at cell centers. For 
example, 𝑥𝑖  and 𝒒𝑖  are the coordination and  
𝒒 vector at the center point of 𝑖th cell.  

• Subscripts such as 𝑖 −
1

2
 and 𝑖 +

1

2
 are used 

for referring to the quantities at the cell 
boundaries. For example, as shown in Fig. 
1, 𝑭

𝑖−
1

2

 is the flux vector from (𝑖 − 1)th cell 

into 𝑖th cell at the boundary between them. 
• As mentioned, the grid is assumed to be non-

uniform which means the lengths of cells can 

be different. Therefore, the length of the 𝑖th 

cell is denoted by 𝛥𝑥𝑖 = 𝑥𝑖+1
2

− 𝑥
𝑖−
1

2

. In 

addition, 𝛥𝑥
𝑖−
1

2

= 𝑥𝑖 − 𝑥𝑖−1 is the distance 

between center points of (𝑖 − 1)th and 𝑖th 

cells.  

3.2. Finite volume method (FVM) 

The FVM is a popular and efficient numerical 

approach for solving PDE problem. In the FVM, 

the problem domain (i.e., only space in semi-

discretization strategy) is broken into grid cells. 

Then, the total integral of 𝒒 over each grid cell is 

approximated [5]. If the problem presents a 

conservation equation (e.g., Eq. (5)), the value of 

the integral is equal to the net flow into the control 

volume: 

𝜕𝑡∫ 𝒒𝑑𝑥
𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

= 𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

 (6) 

where 𝑭
𝑖−
1

2

 is some approximation to the flux along 

the left boundary of the 𝑖th cell: 

𝑭
𝑖−
1
2
≈ 𝒇(𝒒)|𝑥=𝑥

𝑖−
1
2

 (7) 

In addition, the cells (called control volumes) are 

small enough to assume that 𝒒 is constant in each 

cell. Let us say the average value of 𝒒 in 𝑖th cell is 

equal to its value at the center of that control 

volume (i.e., 𝒒𝑖). Replacing 𝒒 with 𝒒𝑖 in Eq. (6) 

gives:  

𝜕𝑡𝒒𝑖∫ 𝑑𝑥
𝑥
𝑖+
1
2

𝑥
𝑖−
1
2

= 𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

  

𝑦𝑖𝑒𝑙𝑑𝑠
→          𝜕𝑡𝒒𝑖 =

𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

𝛥𝑥𝑖
 (8) 

Hence, we only need to find an accurate 

approximation of fluxes at the boundaries to solve 

the PDE problem using the FVM. The difference 

between various schemes is how they estimate 𝑭
𝑖−
1

2

 

at each time step.  

3.3. High-resolution flux limiter schemes  

One drawback of linear methods like upwind is 

predicted by Godunov’s theorem which states that 

no linear convection scheme of second-order 

accuracy or higher can be monotonic [6]. This limit 

would be significant while working with shock 

waves with sharp gradients. To tackle the problem, 

non-linear discretization methods are used.  

One category of such non-linear approaches is flux 

limiters (FL) which uses a limiter function for the 

flux in the boundaries.  A unified formulation for 

flux limiters is presented in [7] which is used here 

with some manipulations. 

As mentioned in previous section, to solve Eq. (5), 

we need to find an approximation for fluxes at the 

boundaries (i.e., 𝐹
𝑖−
1

2

 and 𝐹
𝑖+
1

2

). A flux limiter 

scheme gives the following formulae for 

calculating the boundary fluxes [8]: 

{
 
 

 
 𝑭

𝑖+
1
2

𝐹𝐿 = 𝑭
𝑖+
1
2

𝑙𝑜𝑤 −𝛹(𝒓𝑖) (𝑭
𝑖+
1
2

𝑙𝑜𝑤 − 𝑭
𝑖+
1
2

ℎ𝑖𝑔ℎ
)    

𝑭
𝑖−
1
2

𝐹𝐿 = 𝑭
𝑖−
1
2

𝑙𝑜𝑤 −𝛹(𝒓𝑖−1) (𝑭
𝑖−
1
2

𝑙𝑜𝑤 − 𝑭
𝑖−
1
2

ℎ𝑖𝑔ℎ
)

  (9) 

Here, 𝛹(𝒓) is called the flux limiter function, 𝑭𝑙𝑜𝑤  

is the low-resolution flux (i.e., the flux calculated 

based on a low order scheme) and 𝑭ℎ𝑖𝑔ℎ  is the 

high-resolution flux (i.e., the flux calculated based 

on a high order scheme). The value of 𝒓 at point 𝑖 
is given by: 

𝒓𝑖 = (
𝜕𝒒

𝜕𝑥
)
𝑖−
1
2

(
𝜕𝒒

𝜕𝑥
)
𝑖+
1
2

⁄  (10) 

If the grid is uniform, Eq. (10) reduces to: 
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𝒓𝑖 =
𝒒𝑖 − 𝒒𝑖−1
𝒒𝑖+1 − 𝒒𝑖

 (11) 

The package use Eq. (10) which provides the 

capability of non-uniform grids.  

Several methods can be used as the low/high-

resolution schemes. Our implementation uses the 

first order upwind (UW) and central difference 

(CD) as low-resolution and high-resolution 

schemes, respectively: 

{
 

 𝑭
𝑖−
1
2

𝑙𝑜𝑤 = 𝑭𝑈𝑊 (𝒒
𝑖−
1
2
)  

𝑭
𝑖−
1
2

ℎ𝑖𝑔ℎ
= 𝑭𝐶𝐷 (𝒒

𝑖−
1
2
) 
  (12) 

One promising issue about the UW-CD 

combination is  that it allows a generalization 

method called κ-scheme to model linear schemes as 

flux limiters [9]. 

The UW scheme considers the flow direction when 

determining the flux value at a boundary [10]: the 

flow at a boundary is calculated based on the value 

of conserved variable in the upstream cell (i.e., the 

cell that corresponds the flow: 

{

𝑭𝑈𝑊+ (𝒒
𝑖−
1
2
) = 𝒇(𝒒𝑖−1)  

𝑭𝑈𝑊+ (𝒒
𝑖+
1
2
) = 𝒇(𝒒𝑖)      

  (13) 

{

𝑭𝑈𝑊− (𝒒
𝑖−
1
2
) = 𝒇(𝒒𝑖)    

𝑭𝑈𝑊− (𝒒
𝑖+
1
2
) = 𝒇(𝒒𝑖+1)

  (14) 

The superscripts + and – are used for distinguishing 

between positive and negative flux direction.  

In contrast, the CD does not consider the flux 

direction and simply uses the average value of 

adjacent cells to calculate the flux at a boundary:  

{
 

 𝑭𝐶𝐷 (𝒒
𝑖−
1
2
) = 𝒇(

𝒒𝑖−1 + 𝒒𝑖
2

)  

𝑭𝐶𝐷 (𝒒
𝑖+
1
2
) = 𝒇(

𝒒𝑖 + 𝒒𝑖+1
2

)      
  (15) 

For hyperbolic problems the information 

propagates with finite speed as determined by the 

eigenvalues of the flux Jacobian [5]. Therefore, the 

positive eigenvalues of 𝑨 corresponds to positive 

fluxes (i.e., left to right) and wise versa [11]. This 

suggests to separate the positive and negative 

fluxes using the concept of eigenvalues. 

Decomposition of the Jacobian matrix (i.e., 𝑨) in 

terms of eigenvalue matrix (𝜦 =

diag (𝜆1, 𝜆2, … , 𝜆𝑛𝑞)) and right eigenvector matrix 

(𝑽) yields: 

𝑨𝑽 = 𝑽𝜦 (16) 

As the PDE problem is assumed hyperbolic, the 

eigenvector matrix 𝑽 is nonsingular, so that: 

𝑨 = 𝑽𝜦𝑽−𝟏 (17) 

Let us define the positive and negative eigenvalues 

as follows: 

𝜆𝑘
+ ≜ max(𝜆𝑘 , 0) =

1

2
(𝜆𝑘 + |𝜆𝑘|) (18) 

𝜆𝑘
− ≜ min(𝜆𝑘 , 0) =

1

2
(𝜆𝑘 − |𝜆𝑘|) (19) 

for 1 ≤ 𝑘 ≤ 𝑛𝑞. Now, using above values, positive 

and negative eigenvectors are constructed as 

follows: 

𝜦+ ≜

[
 
 
 
𝜆1
+ 0 … 0

0 𝜆2
+ … 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛𝑞

+
]
 
 
 

 (20) 

𝜦− ≜

[
 
 
 
𝜆1
− 0 … 0
0 𝜆2

− … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝜆𝑛𝑞

−
]
 
 
 
 (21) 

Finally, the positive and negative Jacobians are 

defined as: 

𝑨+ ≜ 𝑽𝜦+ 𝑽−1     ,     𝑨− ≜ 𝑽𝜦−𝑽−1 (22) 

It can easily be shown that: 

𝑨 = 𝑨+ + 𝑨− (23) 

Now, to put all above equation together, we need to 

change the right-hand side of Eq. (8) as follows: 

𝑭
𝑖−
1
2
− 𝑭

𝑖+
1
2

𝛥𝑥𝑖
= −(

𝜕𝒇(𝒒)

𝜕𝑥
)
𝑖

= −(𝑨𝜕𝑥𝒒)𝑖  

𝑦𝑖𝑒𝑙𝑑𝑠
→          𝜕𝑡𝒒𝑖 = −(𝑨𝜕𝑥𝒒)𝑖  (24) 

Replacing Jacobian from Eq. (23) in Eq. (24) 

yields:  

𝜕𝑡𝒒𝑖 = −𝑨𝑖
+𝜕𝑥𝒒𝑖

+ − 𝑨𝑖
−𝜕𝑥𝒒𝑖

− (25) 

where 𝜕𝑥𝒒
+ and 𝜕𝑥𝒒

− are defined as: 

 

𝜕𝑥𝒒𝑖
+ =

𝒒
𝑖+
1
2

+ − 𝒒
𝑖−
1
2

+

𝛥𝑥𝑖
 (26) 

𝜕𝑥𝒒𝑖
− =

𝒒
𝑖+
1
2

− − 𝒒
𝑖−
1
2

−

𝛥𝑥𝑖
 (27) 

Using UW-CD combination the values of 𝒒
𝑖∓
1

2

−/+
 are 

as follows: 

𝒒
𝑖+
1
2

− = 𝒒𝑖 +𝛹(𝒓𝑖) (
𝒒𝑖+1 − 𝒒𝑖

2
) (28) 

𝒒
𝑖−
1
2

− = 𝒒𝑖−1 +𝛹(𝒓𝑖−1) (
𝒒𝑖 − 𝒒𝑖−1

2
) (29) 
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𝒒
𝑖+
1
2

+ = 𝒒𝑖+1 −𝛹(𝒓𝑖) (
𝒒𝑖+1 − 𝒒𝑖

2
) (30) 

𝒒
𝑖−
1
2

+ = 𝒒𝑖 −𝛹(𝒓𝑖−1) (
𝒒𝑖 − 𝒒𝑖−1

2
) (31) 

3.4. Generalization 

In previous subsection, the methodology derived 

for solving Eq. (5). However, solving PDE problem 

of Eq. (3) is straightforward. As we need the values 

of 𝜕𝑡𝒒 at each time step, we can apply the same 

procedure explained for 𝜕𝑥𝒇(𝒒), on 𝜕𝑦𝒈(𝒒) and 

𝜕𝑧𝒉(𝒒). In addition, in semi-linear problems, the 

source term depends only on the values of 𝒒 and 𝑥. 

Therefore, at each time step, the value of the source 

term can easily be calculated. This means, the 

methodology is applicable for solving Eq. (5) 

without any further manipulation. The complete 

semi-discretization formula (i.e., generalization of 

Eq. (25)) is as follows: 

𝜕𝑡𝒒𝑖𝑗𝑘 = 𝝈(𝒒𝑖𝑗𝑘) − 𝑨𝑖𝑗𝑘
+ 𝜕𝑥𝒒𝑖𝑗𝑘

+ − 𝑨𝑖𝑗𝑘
− 𝜕𝑥𝒒𝑖𝑗𝑘

−

− 𝑩𝑖𝑗𝑘
+ 𝜕𝑦𝒒𝑖𝑗𝑘

+ − 𝑩𝑖𝑗𝑘
− 𝜕𝑦𝒒𝑖𝑗𝑘

−

− 𝑪𝑖𝑗𝑘
+ 𝜕𝑧𝒒𝑖𝑗𝑘

+ − 𝑪𝑖𝑗𝑘
− 𝜕𝑧𝒒𝑖𝑗𝑘

−  
(32) 

where 𝑩 and 𝑪 are Jacobians of flux functions 𝑩 

and 𝑪, respectively. In addition, in case of 

problems given as Eq. (4), the Jacobians are 

already given which reduce a discretization step for 

computing them numerically.  

3.5. Flux limiter functions 

Several limiter functions can be found in books and 

scientific papers. The interested reader may refer to 

[7], which reviews a wide range of limiter 

functions in a unified approach. A list of the limiter 

functions implemented in the package given in 

Table 1. For each limiter function, its syntax in the 

package and the formula for Ψ(𝑟) is provided. The 

first six schemes are linear; while the rest of them 

are non-linear schemes. 

Note that, the developed package has the capability 

to accept any user-defined limiter function.  

4. Developed package 

The package “FVM_PDEsolver.jl” is developed for 

Julia programming language to solve first-order 

semi-linear hyperbolic PDE systems using high-

resolution flux limiters. It is capable of handling 

PDEs given as Eq. (3) and Eq. (4). The package 

uses the semi-discretization method and calculates 

the right-hand side of Eq. (32). Then, it uses ODE 

solvers from “DifferentialEquations.jl” to find the 

final solution of the PDE system. If the equation is 

in the form of Eq. (4), then the Jacobians of flux 

functions are calculated numerically using 

“ForwardDiff.jl” pachage. To calculate the 

eigenvalues and eigenvectors, “LinearAlgebra.jl” 

package is used.  

 
Table 1: List of limiter functions 

Syntax Name Flux limiter formula 

uw1 
First-order 
upwind 

Ψ(𝑟) = 0 

uw2 
Second order 
upwind 

Ψ(𝑟) = 1 

uw3 Cubic upwind Ψ(𝑟) =
2

3
𝑟 +

1

3
 

uw4 
Quadratic 
upwind Ψ(𝑟) =

3

4
𝑟 +

1

4
 

scd 
Second-order 
central 
difference 

Ψ(𝑟) = 𝑟 

fr Fromm Ψ(𝑟) =
1

2
𝑟 +

1

2
 

kn Koren Ψ(𝑟) = max [0,𝑚𝑖𝑛 (2𝑟, min (
1 + 2𝑟

3
, 2))] 

sb Superbee Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, 1) , 𝑚𝑖𝑛(𝑟, 2)] 

mm Minmod Ψ(𝑟) = max[0,𝑚𝑖𝑛(𝑟, 1)] 

mu MUSCL Ψ(𝑟) = max [0,𝑚𝑖𝑛 (2𝑟,
𝑟 + 1

2
, 2)] 

ha Harmonic Ψ(𝑟) =
𝑟 + |𝑟|

𝑟 + 1
 

va1 van Albada 1 Ψ(𝑟) =
𝑟(𝑟 + 1)

𝑟2 + 1
 

va2 van Albada 2 Ψ(𝑟) =
2𝑟

𝑟2 + 1
 

vl van Leer Ψ(𝑟) =
𝑟 + |𝑟|

1 + |𝑟|
 

op OSPRE Ψ(𝑟) =
3𝑟(𝑟 + 1)

2(𝑟2 + 𝑟 + 1)
 

hc HCUS Ψ(𝑟) =
1.5(𝑟 + |𝑟|)

𝑟 + 2
 

hq HQUICK Ψ(𝑟) =
2(𝑟 + |𝑟|)

𝑟 + 3
 

cm CHARM Ψ(𝑟) = max [0,
𝑟(3𝑟 + 1)

(𝑟 + 1)2
] 

mc 
Monotonized 
central 

Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, 0.5(𝑟 + 1), 2)] 

sm Smart Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, (0.75𝑟 + 0.25), 4)] 

um UMIST 
Ψ(𝑟) = max[0,𝑚𝑖𝑛(2𝑟, (0.75𝑟 + 0.25), (0.25𝑟

+ 0.75), 2)] 

4.1. Algorithm 

The algorithm is exactly what was discussed as the 

flux limiter scheme in the previous section. Here, a 

detailed description of the algorithm is presented: 

Step 0: Initialize the gird values for 𝑡 = 0: the 

current values of 𝒒 vector is set to the initial values 

provided by the user.  

Step 1: Calculate 
𝜕𝒒

𝜕𝑡
 for each cell in current time 

step based on the current values of 𝒒 are as follows 

(expressed for 1-D case4): 

1 Calculate (
𝜕𝒒

𝜕𝑥
)
𝑖+
1

2

=
𝒒𝑖+1−𝒒𝑖

𝑥𝑖+1−𝑥𝑖
  at all cells boundaries 

2 Calculate 𝒓𝑖 = (
𝜕𝒒

𝜕𝑥
)
𝑖−
1

2

(
𝜕𝒒

𝜕𝑥
)
𝑖+
1

2

⁄  for each cell.  

3 Calculate 𝒒
𝑖∓
1

2

+/−
 using Eq. 28 to 31 at all cell boundaries. 

4 Calculate 𝜕𝑥𝒒𝑖
+ =

𝒒
𝑖+
1
2

+ −𝒒
𝑖−
1
2

+

𝛥𝑥
  and 𝜕𝑥𝒒𝑖

− =
𝒒
𝑖+
1
2

− −𝒒
𝑖−
1
2

−

𝛥𝑥
 for each cell.  

5 Calculate the Jacobian matrixes for each cell: 
5-1 If the equation is in form Error! Reference source not found. 

then by the given function (i.e., 𝑨𝑖 = 𝑱𝒇(𝒒𝑖)). 

5-2 If the equation is in form Error! Reference source not found. 

then by using numerical method (i.e., 𝑨𝑖 =
𝜕𝒇(𝒒)

𝜕𝒒
|
𝒒=𝒒𝑖

). 

6 Calculate the eigenvalues and eigenvectors matrices 
numerically for each cell (i.e., 𝜦𝑖 and  𝑽𝑖). 

 
4 For 3-D case, the index 𝑖 should be changed to 𝑖𝑗𝑘 and the 

steps 1-8 should be done for 𝑦 and 𝑧 axes as well. Step 10 also 
calculates Eq. (32). 
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7 Calculate positive/negative eigenvalue matrices for each cell 

(i.e., 𝜦𝑖
+ =

1

2
(𝜦𝑖 + |𝜦𝑖|) and  𝜦𝑖

− =
1

2
(𝜦𝑖 − |𝜦𝑖|) where 

absolute sign denotes the elementwise absolute value). 
8 Calculate positive and negative Jacobian matrices for each cell 

(e.g., 𝑨𝑖
+ = 𝑽𝑖𝜦𝑖

+𝑽𝑖
−1 and  𝑨𝑖

− = 𝑽𝑖𝜦𝑖
−𝑽𝑖

−1 ). 
9 Calculate 𝑺𝑖 = 𝑺(𝒒𝑖) for each cell. 

10 Calculate 𝜕𝒒𝑖
𝜕𝑡
= −(𝑨𝑖

+𝜕𝑥𝒒𝑖
+ +𝑨𝑖

−𝜕𝑥𝒒𝑖
−) + 𝑺𝑖 

Step 2: Use the ODE solver to solve 
𝜕𝒒

𝜕𝑡
= ⋯ find 𝒒 

for the next time step. 

Step 3: Set the current values of 𝒒 to the values 

found in step 1. 

Step 4: Re-do step 1 to step 3 until reaching 𝑡𝑒𝑛𝑑. 

5. Evaluation of package performance 

In this section, some example PDE problems are 

defined and solved using the package.  

5.1. Moving wave with constant velocity 

A simple step like wave which propagate with 

constant speed in a 1-D space (𝑥 ∈ [0,1]) is defined 

by the following PDE: 

𝜕𝑞

𝜕𝑡
+ 𝑎

𝜕𝑞

𝜕𝑥
= 0 (33) 

with initial condition: 

𝑞(𝑡 = 0, 𝑥) = {
1.0       𝑥 ≤ 0.5   
0.0        𝑥 > 0.5  

   

where 𝑎 = 0.5 is the propagation speed in 𝑥 

direction. As 𝑎 > 0, the exact solution at each time 

step is defined by shifting the wave position by 𝑎𝑡 
in 𝑥 direction. Assume we want to find the solution 

at 𝑡 = 0.2. To solve the problem a uniform grid 

with 0.01 intervals is used. Then, the problem is 

solved by the package and the results using uw1, 

uw2, scd, kn, and sb schemes are shown in Figure 

2.  

 
Figure 2: Solution of moving wave with constant velocity 
problem using different schemes 

As expected, the worst scheme is the scd; while the 

best is sb in this example. The same problem is also 

solved using all nonlinear schemes available in the 

package. For better illustration, the values in range 

[0.5, 0.7] are plotted in Figure 3.  

 
Figure 3: Solution of moving wave with constant velocity 
problem using all available nonlinear flux limiters 

Although the plot in Figure 3 is a little nasty, it 

shows all nonlinear flux limiter functions have 

similar performances on this particular problem. 

However, the sb method shows a slightly better 

performance than others.  

5.2. Euler problem: rarefaction-shock case 

The Euler equations are a collection of nonlinear 

hyperbolic conservation rules that regulate the 

dynamics of compressible fluids while ignoring the 

effects of body forces and viscous stress [12]. The 

1-D Euler equation is expressed by Eq. (5); where 

𝒒 and 𝒇(𝒒) are given as follows: 

𝒒 = [

𝑞1
𝑞2
𝑞3
] = [

𝜌
𝜌𝑢
𝜌𝑒
]    ,   𝒇(𝒒) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢ℎ

] (34) 

where: ℎ = 𝑒 +
𝑝

𝜌
   ,     𝑝 = 𝜌(𝛾 − 1) (𝑒 −

1

2
𝑢2)  

In above equations, 𝜌 is the density, 𝑝 is the 

pressure, 𝑢 is the velocity in 𝑥 direction, 𝑒 is the 

internal energy, ℎ is the static enthalpy, and 𝛾 is the 

ratio of specific heats which is a constant scalar. 

Although 𝒇(𝒒) is not expressed explicitly in terms 

of  𝒒, it is possible to reformulate it doing some 

maths: 

𝒇(𝒒) =

[
 
 
 
 
 

𝑞2
𝑞2
2

𝑞1
+ 𝑞1(𝛾 − 1)(

𝑞3
𝑞1
−
1

2
(
𝑞2
𝑞1
)
2

 )

𝑞2 (
𝑞3
𝑞1
+ (𝛾 − 1)(

𝑞3
𝑞1
−
1

2
(
𝑞2
𝑞1
)
2

 ))
]
 
 
 
 
 

 (35) 

Assume the domain 𝑥 ∈ [0,1] and following initial 

conditions: 

𝜌(𝑥, 𝑡 = 0) = {
𝜌𝐿          0.0 ≤  𝑥 <  𝑥0
𝜌𝑅         𝑥0  <  𝑥 ≤  1.0

 

𝑢(𝑥, 𝑡 = 0) = {
𝑢𝐿          0.0 ≤  𝑥 <  𝑥0
𝑢𝑅          𝑥0 <  𝑥 ≤  1.0

 

𝑝(𝑥, 𝑡 = 0) = {
𝑝𝐿          0.0 ≤  𝑥 <  𝑥0
𝑝𝑅         𝑥0  <  𝑥 ≤  1.0

     

 

Using the following parameters, the PDE problem 

represents a rarefaction-shock case: 

𝑥0 = 0.5,   𝛤 = 1.4,    

𝜌𝐿 = 1.0,   𝜌𝑅 = 0.125,     

𝑢𝐿  =  0.0,   𝑢𝑅  =  0.0,     

𝑝𝐿 = 1.0,    𝑝𝑅 = 0.1 

It is desired to find the solution at 𝑡 = 0.2. The 

exact analytical solution is given in [13]. To solve 

the problem a uniform grid with 0.01 intervals is 

used. Figure 4 and Figure 5 shows the solution 

using uw1 and kn schemes, respectively.  

5.3. Shallow water equation: supercritical case 

The 1-D shallow water equation is as follows [14]: 
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ℎ𝑡 + (ℎ𝑢)𝑥 = 0 

(ℎ𝑢)𝑡 + (ℎ𝑢
2 +

1

2
𝑔ℎ2)

𝑥
= −𝑔ℎ𝐵𝑥  

(36) 

Here, 𝑔 is the gravitational constant, h is the water 

depth, 𝑢 is the mean velocity in 𝑥 direction, and 

𝐵(𝑥) is the waterway bottom topography. Although 

the source term in Eq. (36) has a differential term, 

as the topography is not changing, the values of 𝐵𝑥 

are constant and can be pre-calculated.  

 

 
Figure 4: Solution of Euler problems: rarefaction-shock 
case using uw1 scheme 

 
Figure 5: Solution of Euler problems: rarefaction-shock 
case using kn scheme 

To match Eq. (36) with Eq. (3), the following 

equations should be considered: 

𝒒 = [
𝑞1
𝑞2
] = [

ℎ
ℎ𝑢
] 

𝒇(𝒒) = [
ℎ𝑢

ℎ𝑢2 +
1

2
𝑔ℎ2

] = [

𝑞2
𝑞2
2

𝑞1
+
1

2
𝑔𝑞1

2] 

   𝝈(𝒒) = [
0

−𝑔ℎ𝐵𝑥
] = [

0
−𝑔𝑞1𝐵𝑥

] 

(37) 

In the definition of 𝝈(𝒒), 𝑔 is a constant scalar and 

𝐵𝑥 is a known function of 𝑥. So, the Eq. (36) is 

semi-linear and the package is capable of solving it. 

Note that, in some contexts the Eq. (36) is referred 

to as the dam-break wave equation.  

Assume the problem domain 𝑥 ∈ [−10,10] and the 

following initial conditions: 

ℎ(𝑥, 𝑡 = 0) = {
ℎ𝐿         − 10 ≤  𝑥 <  0
ℎ𝑅            0 <  𝑥 ≤  10

 

𝑢(𝑥, 𝑡 = 0) = {
𝑢𝐿          − 10 ≤  𝑥 <  0
𝑢𝑅             0 <  𝑥 ≤  10

 

𝐵(𝑥) = {
𝐵𝐿          − 10 ≤  𝑥 <  0
𝐵𝑅         0 <  𝑥 ≤  −10

     

The following parameter setting makes the super 

critical case: 

𝑔 = 9.8,   ℎ𝐿 = 4.0,   ℎ𝑅 = 1.0,     

𝑢𝐿  =  −10.0,   𝑢𝑅  =  −6.0,    𝐵𝐿 = 0.0,    𝐵𝑅 = 1.0 

It is desired to find the solution at 𝑡 = 0.2. 

Although the exact solution is not available, a 

solution to this problem can be found in [14]. To 

solve the problem a uniform grid with 0.05 

intervals is used. Figure 6 shows the solution using 

kn schemes. 

 
Figure 6: Solution of Shallow water equation: 
supercritical case using kn scheme 

Comparing the result with those presented in [14] 

approve the performance of the package. 

5.4. Granulation process: growth by layering 

The initiative of this work was the granulation 

process modeling and finding the numerical 

solution for the growth by layering equation. The 

equation according to [15] is as follows: 

𝜕

𝜕𝑡
𝑛𝑏(𝑉𝑝, 𝑡) + 𝐺(𝑡)

𝜕

𝜕𝑉𝑝
𝑛𝑏(𝑉𝑝, 𝑡) = 0 (38) 

where, 𝑉𝑝 is the internal coordination of particles 

volumes, 𝐺(𝑡) is the growth rate, and 𝑛𝑏 is the 

particle size distribution function. Eq. (38) 

represents a square wave moving with speed 𝐺(𝑡). 
Therefore, the for 𝐺(𝑡) = 𝑐𝑡𝑒. the exact solution is 

available.  
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As the Jacobian is given outside of the derivative 

term, this equation is in the form of Eq. (4). 

Assume the problem domain 𝑉𝑝 ∈ [0,400] and the 

following initial conditions: 

𝑛𝑏(𝑉𝑝, 𝑡 = 0) = {
10 × 104        15 ≤  𝑥 <  50
0                              otherwise

 

Given 𝐺(𝑡) = 1, the solution at 𝑡 = 150 is desired. 

To solve the problem a uniform grid with Δ𝑉𝑝 = 5 

is used. Figure 7 shows the solution using uw1, scd, 

and kn schemes. 

 
Figure 7: Solution of granulation process: growth by 
layering problem using different schemes 

Comparing the results with the same schemes used 

in [15], approve the performance of the package. 

One difference between our results and those given 

in [15] is that they limited the values of 𝑛𝑏 to be 

always non-negative. This is not done in our 

solution which caused the scd scheme find negative 

values for 𝑛𝑏. This issue will be resolved in further 

improvements of the package.  

6. Summary and Discussions 

The PDE problems are challenging to solve. High- 

resolution schemes provide high-order accurate 

numerical approximation of PDEs, especially in 

presence of shocks or discontinuities. In this paper, 

flux limiter schemes, which are among the high-

resolution methods, was reviewed in detail. The 

derived equations made the basis for development 

of a package named “FVM_PDEsolver.jl” in Julia 

programming language. The algorithm of solving 

mechanism is explained and its performance is 

shown in several examples. The package is an 

open-source program available in GitHub. The 

authors aim to improve the package in many 

aspects in future. Some ideas for improvement are: 

triangular grids, limiting the quantities’ values, 

adding more schemes, etc. One interesting 

observation in this paper was the high accuracy of 

Superbee flux limiter which was the best among all 

available limiters in the package.  
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