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Abstract. In engineering applications, designs of mechanical systems found in marine 

engineering, insect flight, and fish swimming, often meet the movements of the system's elements. 

These moving objects will contribute to the changes in hydrodynamics and thermodynamic 

coefficients. The complex motions are difficult to model because of complex geometry and high 

Reynolds number. In this study, we developed a fluid flow solver based on the Lattice Boltzmann 

method to resolve those difficulties. Validation of the solver is performed through two flow 

problems, including impulsively started flow past a single circular cylinder at Re=3000 and 

pitching airfoil with large amplitudes and frequencies. The obtained results are in good agreement 

with the experimental and computational results listed in the references. 
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1. Introduction 

In the computational fluid dynamics, the study of moving immersed objects is an extremely 

interesting topic. This study can be found in various investigation fields, including maritime 

engineering[1,2,3], the human heart[4,5], insect flying[6,8], and fish swimming[9,10,11]. Different 

methodologies for the development of the flow solver are proposed; one of these is the lattice 

Boltzmann method (LBM). Due to its simplicity and adaptability, the LBM gains a lot of interest. 

LBM is constructed using the lattice Boltzmann equation (LBE)[12]. As a mesoscopic 

numerical approach, LBM provides an alternative approach for the fluid description. The LBM 

formulations are explicit algebraic equations, enabling accurate representation of nonlinear fluid 

systems. The solver can be simply paralleled on the high-performance computer because of LBE’s 

independence. The interpolated bounce-back method is utilized to resolve the rigid wall’s 

appearance[13]. However, this technique requires the remeshing of the grid at every step, leading to 

high computation costs. Therefore, the use of the immersed boundary method (IBM) is proposed. 

Although, this approach has been neglected for a long time before.  

Following its adaption, IBM provides multiple versions for usage in LBM. These types had one 

thing in common the boundary movement is described through a forcing term added to the momentum 

equation. The correct interpretation of the presence of complex boundaries is a difficult task. It is 

possible to influence significantly the accuracy of the solver. The direct forcing method[14], [15] is a 

regularly utilized technique. For the evaluation of the forcing term, the direct forcing approach 

determines the forcing term by solving the momentum equation at the location where immersed 

boundaries exist. By adjusting the velocity at immersed boundary points, the appropriate velocity is 

found through interpolation and distribution functions. It is possible to directly extract the external 

force term from the momentum equations. When combined with a projection scheme, the boundary 

conditions can be satisfied approximatively in actual computations. Since there are no unknown 

variables that must be specified in the LBE formulation, the direct forcing is rather straightforward. 

In this study, a solver is built by coupling the lattice Boltzmann method and the direct forcing 

method to model the moving objects in incompressible viscous flows. Although the solver has widely 



Van Duc Nguyen et al. 

 

2 

been developed for bluff bodies, it does not apply for pitching airfoil[16].  Following is an outline of 

the remaining sections of this work. In Section 2, the traditional lattice Boltzmann and direct-forcing 

immersed boundary methods are presented briefly. In Section 3, two typical problems, including flow 

past a stationary circular cylinder and flow around a pitching airfoil, are simulated and compared with 

reference data to validate the robustness of the proposed solver. Section 4 concludes with a concluding 

summary. 

2. Numerical method 

2.1. The lattice Boltzmann method 

The LBM is a mesoscopic dynamics-based technique. The fluid flow is made from a collection 

of pseudo-particles. On a discrete lattice grid, these particles perform constant streaming and collision. 

In this study, the particle's velocity is discretized to nine velocity vectors 𝒄𝑖 at two-dimensional lattice 

locations. This velocity set known name the D2Q9 model, which is shown in Fig. 1. The vectors of 

velocity are:  

𝒄𝑖 = {

(0, 0)
(0, ±1)𝑐, (±1,0)𝑐

(±1,±1)𝑐
     
𝑖 = 0,            
𝑖 = 1, 2, 3, 4,
𝑖 = 5, 6, 7, 8,

    (1) 

where 𝑐 = Δ𝑥/Δ𝑡 represents the lattice speed, Δ𝑥 is the lattice length, and Δ𝑡 is the constant time step. 

 

Figure 1. Sketch of the D2Q9 discrete velocity model. 

The most important variable in the LBM is the particle distribution function 𝑓𝑖(𝒙, 𝑡)(PDF), 

which indicates the chance of meeting a particle with a velocity 𝒄𝑖 at spatial point 𝑥 and time 𝑡. The 

state of the fluid is updated by computing the particle distribution function using the discrete 

Boltzmann equation shown below 

𝑓𝑖(𝒙 + 𝒄𝑖Δ𝑡, 𝑡 + Δ𝑡) = 𝑓𝑖(𝒙, 𝑡) −
Δ𝑡

𝜏
[𝑓𝑖(𝒙, 𝑡) − 𝑓𝑖

𝑒𝑞(𝒙, 𝑡)]   (2) 

Here, the Bhatnagar-Gross-Krook collision model[17] with a single relaxation time is used and 𝜏 
denotes the relaxation time. The term 𝑓𝑖

𝑒𝑞
(𝒙, 𝑡) represents the equilibrium distribution function, which 

has the following formula: 

𝑓𝑖
𝑒𝑞
= 𝜌𝑤𝑖 [1 + 3𝒄 ∙ 𝒖 +

9

2
(𝒄 ∙ 𝒖)2 −

3

2
𝒖 ∙ 𝒖]    (3) 

where 𝑤0 = 4/9,𝑤1−4 = 1/9 and 𝑤5−8 = 1/36 for D2Q9 lattice. 𝜌(𝒙, 𝑡) and 𝒖(𝒙, 𝑡) denote the 

density and velocity of the macroscopic fluid, which may be computed using the following equations: 

𝜌 = ∑ 𝑓𝑖𝑖

𝜌𝒖 = ∑ 𝒄𝑖𝑓𝑖𝑖
      (4) 

The kinematic viscosity is linked to the relaxation time by the following formula: 
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𝜈 = 𝑐𝑠
2(𝜏 − Δ𝑡/2)     (5) 

where 𝑐𝑠 is the lattice sound speed. The pressure field may be calculated using the state equation for 

an ideal gas, 𝑝 = 𝜌𝑐𝑠
2. 

2.2. The direct-forcing immersed boundary method 

In the direct-forcing immersed boundary method, the boundary is represented by a collection of 

Lagrangian forcing points on the boundary. In contrast, the flow field is represented by Eulerian 

computational nodes including both the inside and outside of the boundary. Therefore, interpolation 

from surrounding nodes to boundary points is implemented for boundary force assessment and force 

distribution to neighboring nodes. 

 

Figure 2. Algorithm for calculating the explicit direct-forcing IB -LBM 

The direct-force LBM calculation process is shown in Figure 2. After the streaming steps, 

unforced velocities in Eulerian nodes (𝒖𝐸
𝑛𝑜𝐹) are estimated using the streamed particle distribution 

function in Step (a). Then, in Step (b), the unforced velocity at the boundary point (𝒖𝐿
𝑛𝑜𝐹) is 

determined by interpolating from nearby unforced velocities. In Step (c), the boundary force at the 

boundary point (𝑭𝐿) is calculated using the interpolated velocity (𝒖𝐿
𝑛𝑜𝐹) and the desired velocity (𝒖𝐿) 

specified by the no-slip condition in Step (c). Implementation of its propagation to surrounding nodes 

occurs in Step (d). Step (e) then updates the velocities of surrounding Eulerian nodes (forced). Here, 

Δ𝑠𝐿 is the arc length of the boundary segment, 𝐷 is the discrete delta function, and ℎ = Δ𝑥 is the mesh 

spacing. The discrete delta functions 𝐷 are given by: 

𝐷(𝒙𝐸 − 𝒙𝐿) =
1

ℎ2
𝑑ℎ (

𝒙𝑖𝐸−𝒙𝑖𝐿

ℎ
) (

𝒙𝑗𝐸−𝒙𝑗𝐿

ℎ
)    (6) 

with  

𝑑ℎ(𝑟) =

{
 

 
1

8
(3 − 2|𝑟| + √1 + 4|𝑟| − 4𝑟2) ,             0 ≤ |𝑟| < 1

1

8
(5 − 2|𝑟| − √−7 + 12|𝑟| − 4𝑟2) ,       1 ≤ |𝑟| < 2

0,                                                                                |𝑟| ≥ 2

   (7) 

Using IBM, the surface force of a body may be simply determined[18] 

𝑭 = −∑𝑭(𝒙𝐿)Δ𝑠𝐿 = −∑𝑭(𝒙𝐸)ℎ
2    (8) 
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3. Validations 

To validate the solver, a series of flow simulations through a single circular cylinder at 𝑅𝑒 =
100, 300, and 3000 together with a high-amplitude pitching airfoil at 𝑅𝑒 = 3000 is performed. Figure 

3 illustrates flow configuration with computational domain and boundary conditions at the inlet, 

outlet, upper, and lower boundaries of both problems. The domain of computation is 100𝐷 × 150𝐷 so 

that the blockage is 1%, which is less than the required blockage ratio threshold of 6% [19]. For the 

configuration of boundary conditions displayed, Dirichlet-type and Neumann-type boundary 

conditions are applied to the inflow and outflow boundaries, respectively, while free-slip boundary 

conditions are applied to the upper and lower boundaries. 

 

Figure 3. Sketch of the computational domain for two problems: (a) flow past a circular cylinder and 

(b) flow past a pitching airfoil. 

3.1. Flow past a stationary circular cylinder 

Table 1. Literature comparison of force coefficient for a circular cylinder at 𝑅𝑒 = 100 and 300. 

 𝐶�̅� 𝐶𝐿
′  𝑆𝑡 

𝑅𝑒 100 300 100 300 100 300 

Ghias et al.[20] 1.36 1.40 0.32 0.67 0.16 0.21 

De Palma et al.[21] 1.32 - 0.23 - 0.16 - 

Rajani et al.[22] 1.33 1.28 0.17 0.60 0.15 0.21 

Boukharfane et al.[23] 1.36 1.26 0.25 0.62 0.16 0.21 

Vanna et al.[24] 1.32 1.34 0.22 0.63 0.16 0.21 

Present 1.33 1.31 0.24 0.62 0.16 0.21 

Now we examine the solver for flow past a circular cylinder. This is one of the famous 

benchmark problems for the evaluation of the accuracy of numerical method complex geometries. 

Thus, there are a large number of comparable results from various numerical methods. In this problem, 

the flow pattern changes on the Reynolds number, 𝑅𝑒 = 𝑈0𝐷/𝜈, where 𝑈0 is the freestream velocity 

and 𝐷 is the diameter of the cylinder. 

Table 1 shows the results adopted by the solver compared with available references. Regarding 

the studies at Re = 100 and Re = 300, the intrinsic unsteadiness of the flow must be statistically 

resolved. In particular, we focused on three quantities including the time-averaged drag coefficient, the 

root mean square of the lift coefficient, and the Strouhal number of the wake, which is calculated as 

𝑆𝑡 = 𝑓𝐷/𝑈0. Here, 𝑓 is the frequency of the vortex shedding. The present results obtained by the 

solver always conform provided by other investigations. Figure 4 shows the temporal evolution of the 
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lift coefficients, drag coefficients, and the nondimensional instantaneous vorticity field 𝜔∗ =
(𝜕𝑢/𝜕𝑦 − 𝜕𝑣/𝜕𝑥)𝐷/𝑈0 at 𝑅𝑒 = 100. According to the figure, 𝐶𝐿 and 𝐶𝐷 has comparatively pure 

temporal histories. Similarly, the vorticity fields exhibit neither oscillations nor noise. In Table 2, a 

mesh convergence study is performed at 𝑅𝑒 = 100 with various grid spacing 𝐷 = 20Δ𝑥, 40Δ𝑥, 60Δ𝑥, 

and 80Δ𝑥. Here, the force coefficients are indicated as functions of  

𝐷/∆𝑥. These results indicate that the 𝐶𝑑, 𝐶𝐿
′ , and 𝑆𝑡 converge to 1.335, 0.241, and 0.163, respectively. 

These values are in agreement with previous numerical and experimental studies, as detailed in Table 

2. 

 

Figure 4. The time history of lift and drag coefficient for a circular cylinder at 𝑅𝑒 = 100; the 

instantaneous vorticity at 𝑡∗ = 358. 

Table 2. Mesh convergence results in a single circular cylinder at 𝑅𝑒 = 100. Evolution of the force 

coefficients as functions of the mesh resolution 𝐷/∆𝑥. 

𝐷/∆𝑥 𝐶�̅� 𝐶𝐿
′  𝑆𝑡 

20 1.428 0.211 0.172 

40 1.361 0.237 0.164 

60 1.331 0.244 0.163 

80 1.335 0.241 0.163 

Figure 5 shows the comparison of the instantaneous vorticity of impulsive flow past a single 

circular cylinder at 𝑅𝑒 = 3000. In this case, the nondimensional time is defined by 𝑡∗ = 𝑡𝑈0/𝑅 with 

𝑅 = 𝐷/2. Here, the evolution of the vorticity is presented at different nondimensional times (𝑡∗=1.0, 

3.0, and 5.0). Initially, the primary vorticity is formed at the rear side of the cylinder. The strong 

secondary vorticity that is created on the surface of the cylinder attempts to penetrate the primary 

vortex between 𝑡∗ = 1.0 and 𝑡∗ = 3.0. This secondary vorticity generates tertiary vortices on the 

cylinder’s surface. This study captures the flow dynamics accurately. The present results of the surface 

vorticity are in excellent agreement with Lee [25]. A mesh convergence investigation is performed at 

𝑅𝑒 = 3000 with different grid spacings 𝐷 = 100Δ𝑥, 200Δ𝑥, 300Δ𝑥, and 400Δ𝑥 is presented in 

Table 3. Acronym 𝑊 is the width between two primary vortex centers and 𝐿 is the length from the 

primary vortex center to the circle center along the x-axis. These results indicate that the 𝐿 and 𝑊 

converge to 0.803 and 0.585, respectively. Deviations is extremely small and <4%. This shows the 

applicability of the solver for high Reynolds numbers, such as 𝑅𝑒 = 3000. 
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Figure 5. Comparison of impulsive flow past a stationary circular cylinder at 𝑅𝑒 = 3000 at 𝑡∗ = 1, 
𝑡∗ = 3 and 𝑡∗ = 5: the results of reference[25](left) and the present results (right). 

Table 3. Mesh convergence results in a single circular cylinder at 𝑅𝑒 = 3000. 𝐿,𝑊 denote the length 

and width of the coupled vortex. 

𝐷/∆𝑥 𝐿 𝑊 

100 0.816 1.6% 0.563 3.7% 

200 0.808 0.6% 0.577 1.3% 

300 0.803 0% 0.584 0.1% 

400 0.803 0% 0.585 0% 

 

3.2. Pitching airfoil test 

In this section, we investigate the large-amplitude pitching airfoil at 𝑅𝑒 = 4000. The airfoil is 

chosen as a NACA 0018 airfoil. The employed asymmetric pitching motion is a modified version of 

Theodorsen’s theory, which assumes small and sinusoidal oscillations. The lift force is accurately 

predicted through Theodorsen’s theory. The acceleration time is 𝑡𝑎
∗ = 0.15𝑇∗, where 𝑇∗ = 𝑓𝑝

−1 is the 

pitching period.  The kinematic change is composed of piecewise functions in which the acceleration 

components are fourth-order polynomials: 

𝛼 =

{
 
 
 
 
 

 
 
 
 
 
�̇�1𝑡

∗,                                                                     (0 ≤ 𝑡∗ < 𝑡1
∗),

�̇�1

2𝑡𝑎
∗3 (𝑡

∗ − 𝑡2
∗)4 +

�̇�1

𝑡𝑎
2 (𝑡

∗ − 𝑡2
∗)3 + 𝛼0,           (𝑡1

∗ ≤ 𝑡∗ < 𝑡2
∗),

−
�̇�2

2𝑡𝑎
3 (𝑡

∗ − 𝑡2
∗)4 +

�̇�2

𝑡𝑎
∗2 (𝑡

∗ − 𝑡2
∗)3 + 𝛼0,       (𝑡2

∗ ≤ 𝑡∗ < 𝑡3
∗),

�̇�2(𝑡
∗ − 𝑡4

∗)4 −
�̇�2𝑡𝑎

∗

2
− 𝛼0,                              (𝑡3

∗ ≤ 𝑡∗ < 𝑡4
∗),

�̇�2

2𝑡𝑎
∗3 (𝑡

∗ − 𝑡5
∗)4 +

�̇�2

𝑡𝑎
∗2 (𝑡

∗ − 𝑡5
∗)3 − 𝛼0,          (𝑡4

∗ ≤ 𝑡∗ < 𝑡5
∗),

−
�̇�1

2𝑡𝑎
∗3 (𝑡

∗ − 𝑡5
∗)4 +

�̇�1

𝑡𝑎
∗2 (𝑡

∗ − 𝑡5
∗)3 − 𝛼0,      (𝑡5

∗ ≤ 𝑡∗ < 𝑡6
∗),

�̇�1(𝑡
∗ − 𝑇∗),                                                         (𝑡6

∗ ≤ 𝑡∗ < 𝑇∗),

           (9) 
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where �̇�1 and �̇�2 are pitch rates in regions (0 ≤ 𝑡∗ < 𝑡1
∗) and (𝑡3

∗ ≤ 𝑡∗ < 𝑡4
∗), respectively. Both 

parameters are given by 

�̇�1 =
2𝛼0

𝜉𝑇−𝑡𝑎
,

�̇�2 = −
2𝛼0

(1−𝜉)𝑇−𝑡𝑎
.
     (10) 

The asymmetry parameter 𝜉 controls the angle of attack 𝛼 to peaks of 𝛼0 at 𝑡2
∗ = 0.5𝜉. In this study, 

the reduced frequency 𝑘 = 𝜋𝑓𝑝𝑐/𝑈0 = 0.22, pitching amplitude 𝛼0 = 64°, and asymmetry parameter 

𝜉 = 0.4. 

Figure 6a shows the time evolution of the lift coefficient in a period. According to the figure, 

the value of 𝐶𝐿 close approximately to the experimental result[26]. The peaks of force occur at the 

start of the acceleration phase. As the angle of attack diminishes until it approaches 45°, a plateau 

zone forms. This approximation demonstrated good agreement for the examined pitch rate. Figure 6b 

to 6f shows the evolution of instantaneous vorticity on the airfoil surface.   

 

Figure 6. Comparison of the lift coefficient with experimental results and Theodorsen’s theory (a); 

Time evolution of wake on the surface of the airfoil (b-f).  

4. Conclusion 

In this study, a direct-forcing IB-LBM solver was built and assessed through flow problems 

with flow past a circular cylinder and a pitching airfoil. The results indicate the ability of simulating 

truly  arbitrarily complex geometries (static or in motion) in a incompressible viscous flow. The 

framework uses well-established computational geometry methods to perform all required geometry-

related calculations. The solver's approach can be highly effective for modeling realistic insect wings 

with corrugations and sharp features. The above exams demonstrated the accuracy and efficiency of 

the proposed solver. 
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