
EasyChair Preprint
№ 10517

Comparison of Ontology Reasoning Systems for
Semantic Web Expert System

Olegs Verhodubs

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 8, 2023

Comparison of Ontology Reasoning Systems for

Semantic Web Expert System

Olegs Verhodubs

Abstract – The purpose of this paper is to analyze and to

compare different ontology reasoning systems. Reasoning

system or inference engine is one of main components of any

expert system. This comparison of reasoning systems is

necessary for SWES (Semantic Web Expert System)

construction [1]. SWES is an expert system, which will be able

to process ontologies from the Web, to supplement or to

develop its knowledge base [1]. Available publications describe

the problem of ontology reasoning systems comparison for

specific purposes that is why it is necessary to make such a

comparison for SWES.

Keywords – Semantic Web, Expert Systems

I. INTRODUCTION

There were developed a lot of expert systems. All of

them were developed for different purposes and had its

particular qualities. However all expert systems have a

typical structure. Such an expert system structure consists

of the following elements [1]:

 Working memory;

 Knowledge base;

 Inference engine;

 Knowledge acquisition component;

 Explanation component;

 Dialogue component.

Fig. 1. The typical structure of a static expert system.

Each element of an expert system has its own task. Working

memory is necessary for data storing which is used for a

current task solving. Knowledge base is necessary for

knowledge storage which describes a domain. Inference

engine is a program that models expert’s style of reasoning

using knowledge from the knowledge base. Knowledge

acquisition component automates the process of an expert

system filling with data which is executed by an expert.

Explanation component explains how the system executed

the task solution and what knowledge was used that could

facilitate testing and increase trust in the results. And

dialogue component is focused on interaction with users to

give the possibility of knowledge input and to show the

results of task solution.

 Inference engine is one of the major components of any

expert system, which utilizes knowledge base rules for

generation of new facts. There are a lot of inference engines

for the Semantic Web, and they are usually called as

semantic reasoners. Among the most famous semantic

reasoners are Bossam, Jena, Pellet, KAON2, Fact and

others [2]. All of them have different features: some of

semantic reasoners are free, while others are non-free; some

of semantic reasoners utilize one reasoning algorithm, while

others use another reasoning algorithm; some of semantic

reasoners are able to process OWL (Web Ontology

Language) constructs [3], while other semantic reasoners

are able to process RDF (Resource Description Framework)

[4] triples only. All of inference engines are useful, but one

of them is better for one task and another inference engine

is better for other tasks. The main purpose of this paper is to

compare available inference engines for choosing the most

appropriate one to implement in SWES. SWES is an expert

system, which will be capable to use OWL ontologies from

the Web, to extract rules from them and to supplement its

knowledge base in automatic mode. SWES developing is

the final goal of the research.

 The paper is organized as follows. Section II gives an

overview of related works. Section III lists several semantic

reasoners and gives an overview of them. Section V

analyzes SWES requirements for semantic reasoners. And

finally conclusion is presented.

II. RELATED WORKS

There are a lot of papers, which describe ontology

reasoning systems. Some papers present well-defined

ontology reasoning systems while the other present several

ontology systems and compare their capabilities. There are

papers, where are described some being developed applied

systems, which exploit certain reasoning systems. All these

papers can serve as a useful material for assistance in

choosing ontology reasoning system for SWES. Let us

overview several papers.

In [5] paper is described DR-Prolog system. This system

is based on Prolog and is designed to answer queries. The

system can reason with rules and ontological knowledge.

DR-Prolog is compatible with RuleML (Rule Markup

Language) [6].

Inference

engine

Knowledge
base

Explanation
component Dialogue

component

Knowledge

acquisition
component

Working
memory

In [7] are presented several rule engines as Jess (Java

Expert System Shell), XSB (Logic Programming and

Deductive Database System, which extends Prolog), Cvm

(general-purpose data processor for the Semantic Web),

Mandarax (the first complete input-processing-output

environment for RuleML) and three rules-enabled ontology

engineering platforms as KAON (an open-source ontology

management infrastructure including a comprehensive tool

suite to ease the creation and management of ontologies and

to assist the development of ontology-based applications),

FLORA-2 (a sophisticated object oriented knowledge base

language and application development environment) and

the Instance Store (a Java application for performing

efficient and scalable DL (Description Logic) reasoning

over individuals). Here are also briefly described several

OWL reasoners. The main goal of the paper is to propose

OWL2Jess that is a hybrid reasoning framework for

converting OWL ontologies to Jess knowledge base.

Paper [8] presents different semantic reasoners as

FACT++ (DL reasoned), RacerPro (implementation of

tableau calculus), Pellet (reasoner based on well-known

tableau algorithms for T- and ABox reasoning), KAON2

and others. Before the existing semantic reasoners

evaluations are listed the following evaluation criteria:

 Language conformity;

 Correctness;

 Efficiency;

 Interface capabilities;

 Inference services.

Language conformity means conformity to the existing

official OWL specification that is checking which OWL

constructs a system is able to handle. Correctness is

soundness and completeness of the systems. Efficiency

means runtime and resource consumption of a few realistic

ontologies as well as artificially compiled samples with

different complexity. Interface capabilities are interactive

communication vs. batch-processing, support for loading

URLs, programming interface, client-server architecture

etc. Inference services offered system services and system

handling.

 Listed semantic reasoners are analyzed according to

mentioned evaluation criteria in details. These semantic

reasoners are also tested using thought-out system of varied

tests.

 Paper [5] describes DLEJena, which is a practical

reasoner. DLEJena combines the forward-chaining rule

engine of Jena and the Pellet DL reasoner. This

combination is based on rule templates, instantiating at run-

time a set of ABox OWL 2 RL/RDF Jena rules dedicated to

a particular TBox that is handled by Pellet. The goal of

DLEJena is to handle efficiently, through instantiated rules,

the OWL 2 RL ontologies under direct semantics, where

classes and properties cannot be at the same time

individuals. It is stated that DLEJena achieves more

scalable ABox reasoning than the direct implementation of

the OWL 2 RL/RDF rule set in the Jena’s production rule

engine, which is the main target of the system.

Paper [9] gives an overview of Jena, which is a Java

framework for building Semantic Web applications and

other semantic reasoners as Sesame (an open source RDF

framework with support for RDF Schema inferencing and

querying), Mulgara (an open source, scalable, transaction-

safe, purpose-built database for the storage and retrieval

metadata), Redland (a set of C libraries that provide support

for RDF). This paper is useful in the sense that it describes

architectures, storage and querying systems of mentioned

reasoners.

 Paper [10] is completely devoted to Pellet. It defines

Pellet as the first sound and complete OWL-DL reasoner

with extensive support for reasoning with individuals,

including nominal support and conjunctive query, user-

defined datatypes and debugging support for ontologies. It

is indicated that Pellet is DL reasoner, based on tableaux

algorithms. The tableaux algorithm checks the consistency

of a knowledge base and all the other reasoning services are

reduced to consistency checking.

 Presentation [11] gives comparison of ontology

reasoning systems using custom rules. Here there are

examined Jena, Pellet, KAON2, Oracle 11g, OWLIM.

There are used nine datasets with different size. Setup time

(this stage includes loading and preprocessing time before

any query can be made) and query processing time (this

stage starts with parsing and executing the query and ends

when all the results have been saved in the result set) are

metrics, exploited for testing ontology reasoning systems.

Plenty of diagrams in the presentation allow understanding

the results of Jena, Pellet, KAON2, Oracle 11g and

OWLIM testing.

 Paper [12] presents all-in-one survey of the Semantic

Web in terms of ontologies. Starting with the term

“ontology”, there are made demands for any ontology to

realize it explicit and useful for reuse. Then evolution of the

Semantic Web ontology languages is shown from RDF to

OWL. Further ontology editors are presented namely

Protégé and SWOOP. Hereupon ontology repositories are

listed. This paper also describes OWLJessKB, Java

Theorem Prover (JTP), Jena, F-OWL, FACT++, Racer,

Pellet, TRIPLE, SweetRules, which are nominated as

ontology language processors. After that three kinds of

inference are reflected (forward chaining, backward

chaining and hybrid chaining). Then ontology-based

information integration is discussed. And the last part of the

paper is dedicated to the Semantic Web ontology usage.

 There are a lot of other papers, which describe mentioned

and not mentioned ontology reasoning systems. But it

makes no sense to mention all of them, because mostly they

repeat each other. So, it is necessary to collect detailed

information about major ontology reasoning systems to

choose the best one for combining in SWES.

III. SEMANTIC REASONERS

In previous section there were described plenty of

ontology reasoning systems. But regardless of their

characteristics all of these ontology reasoning systems can

be divided into two main categories:

 Multi-purpose ontology reasoning systems, and

 Highly specialized ontology reasoning systems.

Multi-purpose ontology reasoning systems are the systems,

which are designed for general use in different applications

and having a set of universal properties. On the contrary,

highly specialized ontology reasoning systems are the

systems, which are designed for implementation at specific

projects, only. It is clear that highly specialized ontology

reasoning systems have a limited set of properties, selected

for the needs of one or two projects. Obviously, it is

necessary to choose among multi-purpose ontology

reasoning systems for implementing in SWES, because

SWES needs in powerful reasoner, whose properties may

be needed not only in being developed edition of the

project, but also in possible future editions of this project.

Highly specialized ontology reasoning systems generally

have features for current edition of the system, only. That is

why in this section only multi-purpose ontology reasoning

systems are discussed.

 There are plenty of multi-purpose ontology reasoning

systems, but here will be considered only seven of them,

because they are most often cited in other research papers:

 Bossam;

 FaCT++;

 Hermit;

 Jena;

 Kaon2;

 Pellet;

 RacerPro;

Bossam is a forward-chaining inference engine for the

Semantic Web. It is basically a RETE-based rule engine

with native supports for reasoning over OWL ontologies,

SWRL ontologies, and RuleML rules. Bossam does not

support SPARQL and has the following expressivity

features:

 URI references as symbols;

 2-nd order logic syntax;

 disjunctions in the antecedent and conjunctions in

the consequent;

 URI-based java method attachment;

 Support for both negation-as-failure and classical

negation.

Bossam test version is available for download, and it works

with Java programming language.

 FaCT++ (Fast Classification of Terminologies) is an

OWL DL reasoner with ABox and nominal reasoning

support. It is also a tableaux-based reasoner with backward

chaining. This reasoner started as C++ re-implementation of

FaCT reasoner at the University of Manchester and could

be used with C++ programming language. FaCT++ covers

OWL as well as OWL2 excluding support for key

constraints and some data types. FaCT++ provides standard

TBox reasoning tasks like subsumption and consistency

checking as well as taxonomy construction. It also performs

instance classification. Unfortunately, FaCT++ does not

support any kind of query languages. It is used as one of the

default reasoners in the Protégé OWL editor. FaCT++ is

available for download both as a binary file and as source

code. To build FaCT++ you will need C++ compiler.

 HermiT is the first publicly-available OWL reasoner

based on a novel “hypertableau” calculus, which provides

much more efficient reasoning than any previously-known

algorithm. HermiT is the first reasoner able to classify a

number of ontologies which had previously proven too

complex for any available system to handle. HermiT can

determine whether or not the ontology is consistent, identify

subsumption relationships between classes, and much more.

The reasoner supports DL Safe rules without SWRL built-

in atoms. Additionally, HermiT supports reasoning with

description graphs and description graph rules. HermiT is

available as an open-source Java library and includes both a

Java API and a simple command-line interface.

Jena is a Java framework for constructing Semantic Web

applications. The Jena framework comes with a complete

set of reasoners:

 An RDFS reasoner;

 An OWL reasoner;

 A transitive reasoner;

 A generic rule-based reasoner.

There are three variants of the RDFS reasoner. The Simple

reasoner only implements the transitive closure of the

subClassOf and subPropertyOf relations, the entailments

regarding the range and domain of properties and the

implication of subPropertyOf and subClassOf. The Default

reasoner additionally includes the axiomatic rules and the

Full reasoner implements almost all the RDFS axioms and

closure rules.
 The OWL reasoner of the Jena framework supports only

OWL-Lite language. For OWL DL reasoning can be used

an external DL reasoner such as Pellet, Racer or FaCT. The

Jena OWL reasoner applies rules to propagate OWL

implications over instance data (i.e. the ABox of a DL

knowledge box). Class reasoning, i.e. reasoning over the
TBox of a DL knowledge base, is implemented similarly

through the generation of an instance. Inferences are

computed at the instance level, and class reasoning is

deduced from these inferences. There are three

implementations with different support for OWL

entailments that differently impact on the cost and

efficiency of reasoning. These implementations are full,

mini and micro.

 The Transitive reasoner of the Jena framework

provides support for storing and traversing class and

property lattices. This implements just the transitive and

symmetric properties of rdfs:subPropertyOf and

rdfs:subClassOf. It is not all that exciting on its own but is

one of the building blocks used for the more complex

reasoners. This engine is useful to perform a high-

performance transitive closure over class and property

hierarchies, and much more efficient than using the rule-

based engines (Builtin RDFS or OWL reasoners).

Jena has a general purpose rule-based reasoner, which is

used to implement both the RDFS and OWL reasoners but

is also available for general use. This reasoner provides

forward chaining, backward chaining and a hybrid

execution model. In general, there are two internal rule

engines one forward chaining RETE engine and one tabled

datalog engine - they can be run separately or the forward

engine can be used to prime the backward engine which in

turn will be used to answer queries.

Jena also has its own storage subsystem that, if

necessary, has to be installed separately. Jena storage

subsystem has two species: TDB and SDB. TDB is a

lightweight, scalable non-transactional storage and

SPARQL query layer. TDB can be used as a high

performance RDF store on a single machine. A TDB store

can be accessed and managed with the provided command

line scripts and via the Jena API. SDB is a SPARQL

database subsystem for Jena. It provides for large scale

storage and query of RDF data sets using conventional SQL

databases. An SDB store can be accessed and managed with

the provided command line scripts and via the Jena API.

Jena was an open-source project and was developed at

HP Labs.

KAON2 is an infrastructure for managing OWL-DL,

SWRL, and F-Logic ontologies. It was produced by the

joint effort of the following institutions:

 Information Process Engineering (IPE) at the

Research Center for Information Technologies

(FZI);

 Institute of Applied Informatics and Formal

Description Methods (AIFB) at the University of

Karlsruhe;

 Information Management Group (IMG) at the

University of Manchester.

KAON2 has the following features:

 An API for programmatic management of OWL-DL,

SWRL, and F-Logic ontologies;

 A stand-alone server providing access to ontologies

in a distributed manner using RMI;

 An inference engine for answering conjunctive

queries (expressed using SPARQL syntax);

 A DIG interface, allowing access from tools such as

Protégé;

 A module for extracting ontology instances from

relational databases.

KAON2 is known to perform very well on large ABoxes,

t.i. it aims at reasoning with large amounts of individuals

[8]. It is short on elaborated TBox services [8].

KAON2 is available as a precompiled binary Java

distribution and is free of charge for research and academic

purposes. A commercial version has to be licensed from

Ontoprise GmbH [8].

Pellet is an OWL-DL reasoner based on the tableaux

algorithms developed for expressive Description Logics [8].

Pellet covers all of OWL-DL including inverse and

transitive properties, cardi-nality restrictions, datatype

reasoning for an extensive set of built-ins as well as user

defined simple XML schema datatypes, enumerated classes

(a.k.a, nominals) and instance assertions [10]. It is the first

sound and complete OWL-DL reasoner with extensive

support for reasoning with individuals including nominal

support and conjunctive query, user-defined datatypes, and

debugging support for ontologies. It implements several

extensions to OWL-DL including combination formalism

for OWL-DL ontologies, a non-monotonic operator, and

preliminary support for OWL/Rule hybrid reasoning [10].

Pellet has the following inference services [8]:

 detection of unsatisfiable classes;

 checking for entailed statements;

 building the class taxonomy;

 ABox realization by showing classified individuals

in the class hierarchy;

An exceptional property of Pellet is its ontology analysis

and repair feature trying to convert OWL-Full ontologies

into OWL-DL [8]. It also bears some non-standard

debugging features as well as ontology partitioning

functionality based on the e-connection calculus. Pellet also

supports the conjunctive query languages SPARQL and

RDQL [8].

 Pellet is written in Java [10] by Evren Sirin and Bijan

Parsia from the University of Maryland and is open source

[8]. It provides various interfaces including a commandline

interface, DIG server implementation, and reasoner API for

Jena and the OWL API [8].

 RacerPro is based on a tableau calculus and supports

multiple T- and ABoxes [8]. RacerPro incorporates all

optimization techniques of FaCT as well as some others for

dealing with number restrictions and ABoxes [8]. RacerPro

can reason about OWL-Lite knowledge bases, as well as

OWL-DL with approximations for nominals, together with

some algebraic reasoning beyond the scope of OWL [8].

Nominals in class definitions are approximated in a way

which provides sound but incomplete reasoning. This

reasoner also allows switching the UNA (unique name

assumption) on or off [8]. RacerPro is able to reason with

datatypes of type String, Integer, and Real. Similar to

FaCT++ it currently does not support the newly introduced

role expressions of OWL 1.1 [8]. Prototypical interface

implementations for Java, CommonLisp and C++ are

available [8].

RacerPro is developed by Volker Haarslev from

Concordia University in Canada and by Ralf Moller from

Hamburg University of Science and Technology Software,

Technology, and Systems in Germany [8]. In general,

RacerPro offers broad and flexible interfaces and inference

services. However, there are some minor implementation

flaws which result in problems or unexpected outcomes

when dealing with multiple TBoxes or retracting given

TBox statements [8]. In addition, this reasoner is non-free

and is available for preview only.

IV. SEMANTIC REASONER FOR SWES

It is necessary to compare semantic reasoners listed in the

previous section to reasonably choose the most appropriate

one for the implementation of SWES. According to this

purpose there are worked out several criteria for making

this comparison. It should be noted that the criteria are

aimed to semantic reasoners evaluation in terms of practical

implementation in SWES instead of semantic reasoners

technical features. Primarily this is due to the purpose of the

research to realize Semantic Web Expert System or

Semantic Web Expert System prototype. So, these criteria

are the following:

 Licensing;

 Organization;

 Documentation;

 Programming language;

 Consistency checking;

 Reasoning features;

 Rule support;

 Storage subsystem.

Let us explain mentioned semantic reasoners evaluation

criteria. The first criterion is licensing, and it shows if

semantic reasoner is free or non-free software. Obviously

free software is much more preferable, especially in the

area of Semantic Web technologies, because this area is

rather new and on the one hand free software may gain a

stronger position in the community of the Semantic Web

developers and thus become standard, but on the other hand

strong position in the community of developers or software

users increases motivation to develop this software in the

future, what we are very interested in. The second criterion

namely organization means organization, which elaborates

semantic reasoner. The more respectable organization is the

better for SWES. It is so, because authority of the

organization apparently increases the chances of semantic

reasoner support in the future. It seems very important

because Semantic Web technologies will continue to

evolve, and this will require the support of the semantic

reasoner. The next criterion is documentation or how well

semantic reasoner is documented. Qualitative

documentation may replace many hours of persistent work

on studying the properties of semantic reasoner. And in

general this parameter is rather informative because it not

only describes semantic reasoner features, but also product

quality at all stages of its development. The fourth semantic

reasoner criterion is programming language that is

programming language semantic reasoner works with.

Despite the abundance of programming languages, C++ and

Java are basic programming languages among semantic

reasoners. Of course they have their own advantages and

disadvantages, however Java is preferred compared to C++.

So, Java programming language is chosen because it is

quite easy to use, Java is aimed at net software

development, there are a lot of useful libraries created for

Java and also developers, who know C++ may easy shift to

Java, but not vice versa. If the above described criteria

referred to the external characteristics of semantic

reasoners, then the following criteria will refer to their

functional features. The first such a criterion is consistency

checking. As it is known each semantic reasoner works

with OWL ontology. But ontology as well as any other data

may have different quality. Some ontologies may have the

correct syntax, others not. In addition some of the

ontologies may have inconsistencies, and others may not

have them. Consistency checking is an operation which can

determine whether the ontology to be defective or not. So,

this operation is very important, because it always precedes

reasoning, and it can answer the question of whether the

ontology to be processed semantic reasoner or not. The next

criterion to distinguish different semantic reasoners is

actually their reasoning features. These reasoning features

may vary from one semantic reasoner to another semantic

reasoner. The fact that the Semantic Web technologies are

new technologies and it means that here changes occur very

quickly. It is natural that some developers of semantic

reasoners have time to quickly put these changes into their

products, but not others. For example, OWL ontology

format did not develop uniformly in time. First, XML

format or specification appeared. Then there was RDF

specification. After that RDFS specification came. And then

OWL specification was worked out. In fact, the same OWL

specification is not homogenous. This OWL specification

includes three variants of OWL with different levels of

expressiveness. Here are OWL variants [3]:

 OWL Lite;

 OWL DL;

 OWL Full.

At that OWL DL is more expressive than OWL Lite and

OWL Full is more expressive than OWL DL. So that is

common situation when different semantic reasoners

support different specifications. That is one semantic

reasoners can work i.e. reason with RDFS ontologies only,

other semantic reasoners can work with OWL Lite and

partially with OWL DL. But clearly the more specifications

are supported with semantic reasoner, the better. Perhaps

this problem will disappear in the future when the Semantic

Web technologies when they reach the higher levels of

development. One more criterion is rule support and this is

one of the most important criteria to character semantic

reasoners. There are several rule formats and the most

known of them are:

 RuleML (Rule Markup Language);

 SWRL (Semantic Web Rule Language);

 R2ML (REWERSE Rule Markup Language).

Moreover there are plenty of own rule formats which exist

only within the frameworks of semantic reasoners. In

general it is necessary to mention that rule support in

semantic reasoner is vital for SWES because its main idea

is to process ontologies from the Web, to extract rules and

to supplement SWES knowledge base with extracted rules

in automatic mode. That is why semantic reasoner cannot

be chosen for the implementation of SWES if it does not

support rules. The last semantic reasoner criterion is storage

subsystem that shows if semantic reasoner has its own

storage subsystem. Storage subsystem of semantic reasoner

seems very useful because it allows preserving semantic

data in convenient way specifically for semantic reasoner

work.

Now that all of the criteria are listed and explained in

details, let us characterize semantic reasoners according to

these criteria in the pivot table to select one semantic

reasoner for implementation in SWES:

TABLE I

Comparison of Semantic Reasoners

Semantic reasoner Bossam FaCT++ Hermit Jena KAON2 Pellet RacerPro

Licensing Non-free Free Free Free Free Free Non-free

Organization Minsu Jang University of

Manchester

Oxford

University

HP Labs Universities of

Manchester

and Karlsruhe

Clark & Parsia,

LLC

Racer Systems

GmbH & Co.

KG

Documentation poorly-

documented

well-

documented

well-

documented

well-

documented

poorly-

documented

well-

documented

well-

documented

Programming language Java C++ Java Java Java Java Java, Lisp

Consistency checking Yes Yes Yes Yes Yes Yes Yes

Reasoning features OWL OWL OWL RDFS, OWL,

rule-based

OWL, F-logic,

rule-based

OWL OWL

Rule support Yes No Yes Yes Yes Yes Yes

Storage subsystem No No No Yes No No No

As can be seen from table I Jena is the best semantic

reasoner according to the mentioned criteria because it is

free, well-documented, uses Java programming language,

has consistency checking function, has rule support and has

its own storage subsystem. But the main advantage is that

Jena has several reasoners what is very useful because it

permits to use its own reasoner for specific data. One more

unnamed Jena advantage is ability to change its working

modes of rule-based reasoner. There are three such modes:

forward chaining engine, backward chaining engine and

hybrid rule engine. And these modes allow adjusting the

order of rule processing. Extremely important ability for

SWES is the possibility of combining OWL and custom

rules inference. This is a key point in the project of SWES,

because it enables to use different sources of knowledge

extraction to construct really useful expert system for users.

Of course Jena has several disadvantages, but first, they are

not essential and second, they can be corrected in the future.

One of Jena disadvantage is that it does not support SWRL

specification, which combines OWL DL and OWL Lite

sublanguages of OWL and also RuleML. It is necessary to

mention that now Jena rule format fully satisfies the

requirements of SWES, but it is possible that SWRL will be

widely used in the Web in the future and then Jena facilities

should be developed. On the other hand Pellet can be used

in conjunction with Jena, and it supports SWRL

specification. One more Jena problem is that Jena OWL

reasoner is incomplete for OWL DL, however this problem

can be easily solved, too. For this purpose developers of

Jena advice using an external DL reasoner such as Pellet,

Racer or FaCT.

It is clear that the theoretical analysis and comparison of

semantic reasoners capabilities is necessary but not

sufficient. Ideally you should test each semantic reasoner in

practice. However it is not always possible because of many

objective reasons. In one case, the reason is non-free

software. In other cases, these reasons are lack of

documentation or time limit to be able to test each semantic

reasoner in details. Therefore there were tested several

semantic reasoners only. Among them are Jena and Pellet.

And in terms of practical use, Jena has established itself

very well, because it has clear system of settings and

functions.

V. CONCLUSION

So, as a result of the work has been selected the best

semantic reasoner to be implemented in SWES namely

Jena. Some actions have been taken to achieve this goal.

First, there was analyzed future SWES work from the point

of view of the user to detect the requirements for SWES

semantic reasoner. Second, there were detected all available

sources of data dedicated to the semantic reasoners. Third,

the most intelligent sources of data were explored, and

possible candidates for SWES semantic reasoner were

identified. Then, in accordance with the requirements,

identified during the first step, set of criteria was worked

out to select the most appropriate semantic reasoner for

SWES. And finally, all detected candidates for SWES

semantic reasoner were analyzed for compliance with listed

criteria and the most appropriate semantic reasoner was

found. After the choice was made in favor of Jena, there

were parsed additional advantages and disadvantages of

Jena. Considering several Jena disadvantages, some

remedies to neutralize these defects were proposed.

In general this paper continues sequence studies in the

SWES project. In previous studies the conception of

Semantic Web expert system was founded and developed.

The idea of rules extraction from OWL ontologies was

presented and described in details, too. Then, this idea was

realized practically, that is, the algorithm of OWL ontology

transformation to rules [13] was implemented using Java

programming language. And this paper demonstrates

substantiation for the selection of semantic reasoner for

SWES. It is easily seen that there are produced plenty of

investigations; however it is necessary to take note that a lot

of other studies have to be done for SWES implementation.

One such study is to create ontology search algorithm in the

Web according to the user’s query. Here the main subtask is

in the search of ontologies in the Web, but the other subtask

is identification of the subject area from the user’s query

and also mapping ontologies for similarities. One more

future study to be done is to consider and to describe the

whole process of the search of solution from time of

receiving of user’s task to the time of output results. Here

are a lot of pitfalls and this task has to be seriously

investigated. Of course, there exist other minor tasks, but

they will be discussed in the next papers.

REFERENCES

[1] O. Verhodubs, J. Grundspeņķis, Towards the Semantic Web Expert

System. Riga: RTU Press, 2011. [Online].

https://ortus.rtu.lv/science/en/publications/12370/fulltext. [Accessed:

September 17, 2012]

[2] “Category: Reasoner – Semantic Web Standarts”, 2009. [Online].

Available: http://www.w3.org/2001/sw/wiki/Category:Reasoner.

[Accessed: September 17, 2012].

[3] “OWL Web Ontology Language Guide”, 2004. [Online]. Available:

http://www.w3.org/TR/owl-guide/. [Accessed: September 17, 2012]

[4] “RDF – Semantic Web Standarts”, 2009. [Online]. Available:
http://www.w3.org/RDF/. [Accessed: September 17, 2012]

[5] G. Meditskos, N. Bassiliades, DLEJena: A Practical Forward-Chaining

OWL2 RL Reasoner Combining Jena and Pellet. Elsevier Science

Publishers B. V. Amsterdam, The Netherlands, 2010. [Online].

http://lpis.csd.auth.gr/publications/meditskos-jws09.pdf. [Accessed:

September 17, 2012]

[6] ”The Rule Markup Initiative”. [Online]. Available: http://ruleml.org/.

[Accessed: September 17, 2012]

[7] J. Mei, E. P. Bontas, Reasoning Paradigms for OWL Ontologies. Freie

University of Berlin, Berlin, Germany, 2004. [Online]. http://edocs.fu-

berlin.de/docs/servlets/MCRFileNodeServlet/

FUDOCS_derivate_000000000422/2004_12.pdf;jsessionid=12AB068

160C9504CACEB94149E22EE96?hosts=. [Accessed: September 17,

2012]

[8] T. Liebig, Reasoning with OWL. Ulm University, Ulm, Germany,

2006. [Online]. http://www.informatik.uni-

ulm.de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf. [Accessed:

September 17, 2012]

[9] J. Dokulil, J. Yaghob and F. Zavoral, Semantic Infrastructures. Intech.

[Online]. http://cdn.intechopen.com/pdfs/9390/InTech-

Semantic_infrastructures.pdf. [Accessed: September 17, 2012]

[10] E. Sirin, B. Parsia and others, Pellet: A Practical OWL-DL Reasoner.

Elsevier Science Publishers B. V. Amsterdam, The Netherlands, 2007.

[Online]. http://pellet.owldl.com/papers/sirin05pellet.pdf. [Accessed:

September 17, 2012]

[11] H. Shi, K. Maly, S. Zeil, M. Zubair, Comparison of Ontology

Reasoning Systems Using Custom Rules, 2011. [Online].

http://wims.vestforsk.no. [Accessed: September 17, 2012]

[12] L. Ding, P. Kolari, Z. Ding, S. Avancha and others, Using Ontologies

in the Semantic Web: A Survey. Integrated Series in Information

Systems, 2005. [Online].

http://ebiquity.umbc.edu/_file_directory_/papers/209.pdf. [Accessed:

September 17, 2012]

[13] O. Verhodubs, J. Grundspeņķis, Evolution of Ontology Potential for

Generation of Rules. Proceedings of the 2nd International Conference

on Web Intelligence, Mining and Semantics, Craiova, Romania, 2012.

Олег Верходуб. Сравнение онтологических машин вывода для реализации в Экспертной Системе Семантической Сети

Данная статья является очередным исследованием, которое связано с разработкой Экспертной Системой Семантической Сети (SWES). Если в

предыдущих статьях был описан прототип внутренней структуры Экспертной Системы Семантической Сети, а также механизм генерации правил из

конструкций OWL онтологий, то лейтмотив этой статьи – это рассмотреть существующие онтологические машины вывода и выбрать наиболее

подходящую, чтобы включить и использовать ее в конструкции Экспертной Системы Семантической Сети. Для достижения этой цели были

выполнены следующие действия. Для начала были исследованы в Интернете доступные статьи, которые посвящены этой тематике. В результате

исследования соответствующих статей были выявлены несколько онтологических систем вывода как Bossam, FaCT++, Hermit, Jena, KAON2, Pellet,

RacerPro, OWLAPI, Sesame и другие. Затем, после исследования этих статей и выявления нескольких онтологических машин вывода, были

разработаны критерии для онтологической машины вывода, предназначенной для реализации в Экспертной Системе Семантической Сети. Вот эти

критерии: вид лицензии, разработчик, качество документации, используемый язык программирования, наличие валидации онтологии, характеристика

функций вывода, поддержка правил и наличие подсистемы хранения. Далее были выбраны семь наиболее известных многофункциональны х

онтологических машин вывода (Bossam, FaCT++, Hermit, Jena, KAON2, Pellet, RacerPro), которые были проанализированы в соответствии с

выдвинутыми критериями. В результате этого анализа было решено, что Jena является наиболее подходящей онтологической машиной вывода для

реализации в Экспертной Системе Семантической Сети. Конечно, не было возможно выбрать онтологическую машину вывода без ее практического

опробования. В связи с этим практически были опробованы Jena и Pellet. С практической точки зрения Jena зарекомендовала себя с наилучшей

стороны.

https://ortus.rtu.lv/science/en/publications/12370/fulltext
http://www.w3.org/2001/sw/wiki/Category:Reasoner
http://www.w3.org/TR/owl-guide/
http://www.w3.org/RDF/
http://lpis.csd.auth.gr/publications/meditskos-jws09.pdf
http://ruleml.org/
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/%20FUDOCS_derivate_000000000422/2004_12.pdf;jsessionid=12AB068160C9504CACEB94149E22EE96?hosts
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/%20FUDOCS_derivate_000000000422/2004_12.pdf;jsessionid=12AB068160C9504CACEB94149E22EE96?hosts
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/%20FUDOCS_derivate_000000000422/2004_12.pdf;jsessionid=12AB068160C9504CACEB94149E22EE96?hosts
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/%20FUDOCS_derivate_000000000422/2004_12.pdf;jsessionid=12AB068160C9504CACEB94149E22EE96?hosts
http://www.informatik.uni-ulm.de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf
http://www.informatik.uni-ulm.de/ki/Liebig/papers/TR-U-Ulm-2006-04.pdf
http://cdn.intechopen.com/pdfs/9390/InTech-Semantic_infrastructures.pdf
http://cdn.intechopen.com/pdfs/9390/InTech-Semantic_infrastructures.pdf
http://pellet.owldl.com/papers/sirin05pellet.pdf
http://wims.vestforsk.no/
http://ebiquity.umbc.edu/_file_directory_/papers/209.pdf

