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Abstract: The significant capabilities of emerging technologies need to be studied to better understand 
how they can be used to enhance the efficiency of the structural design process. Software already used in 
the industry are evolving, and some applications are utilizing the power of machine learning and artificial 
intelligence. Various companies are starting to invest in these technologies and are searching for solutions 
to reduce component mass, improve structural performance, and minimize manufacturing process time. 
Currently, the Steel Centre at the University of Alberta is researching these technologies' applications 
towards typical structural designs. Industry consultation is being conducted to map out current industry 
practices and logistics. A literature review of various optimization algorithms and past studies on the 
application of generative design (GD) is being performed. In addition, a single-storey case study is being 
conducted that involves developing an automation tool in Grasshopper that generates warehouse geometry 
according to user inputs. S-Frame, an advanced structural analysis software, is being integrated into the 
design tool. Wallacei, an evolutionary solver, is being used to input design objectives and constraints, 
resulting in optimizing the key parameters. This automation tool aims to assist in developing a deep 
understanding of the possibilities of GD towards structural optimization, and specifically towards single-
storey structures in Canada, which would lead to the creation of extremely efficient structures. Lastly, the 
case study preliminary results are highlighted in this paper along with future development and research. 

1 INTRODUCTION 

Single-storey buildings constructed using structural steel are commonly used in Canada for shopping 
centres, recreation facilities, and industrial buildings. During the design development phase of a project, 
engineers evaluate multiple design parameters to achieve the owner’s objectives within a limited time 
before the detailed design begins. The current single-storey design workflow in design offices is mostly 
manual and tedious. Moreover, miscommunication and human error may occur during design due to 
overlapping tasks. Regardless of these disadvantages, the design process has the capability not only to 
become automated, but also to seek innovative new solutions (Rempling et al. 2019, Almusharaf and 
Elnimeiri 2010). GD is a specific application of artificial intelligence (AI) that can quickly generate thousands 
of high-performing design scenarios (McKnight 2017). It has been applied to architectural designs in 
Canada (Nagy et al. 2018), but has not yet been realized in structural design. One important factor that 
structural engineers prioritize during the design stage in order to achieve an optimum design is the total 
weight of the structure. While optimizing the weight cannot be said to not produce the lowest cost or optimal 
structure, it is used in this case study as a proxy for labour cost, material cost, and environmental effects, 
etc., caused by the manufacturing and fabrication processes.  
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In this paper, an automation design tool is developed using Rhino3D (Robert McNeel & Associates 1998), 
a 3D modeling software, and Grasshopper (Rutten 2007), an algorithmic modelling plugin for Rhino3D. The 
design tool takes the user inputs and feeds it to a metaheuristic single-objective optimization algorithm. The 
application and performance of various algorithms used in Grasshopper are studied and considered for 
future implementation. In this case study, the algorithm's sole objective is to reduce the structures steel 
tonnage. However, other essential objectives and constraints in the design of steel structures are studied 
and considered. For the structural analysis portion of this design tool, a link between Grasshopper and S-
Frame (Casoli 1981) is being developed to incorporate an FEA solver into the tool. Enhancements to the 
geometry of the single-storey structure generated in Rhino3D are proposed. After discussing the preliminary 
results of this research, future steps to enhance the automation tool is outlined. 

The main objective of this research is to gain a deep understanding of GD's possibilities towards structural 
optimization, which will lead to an automation tool that can design safer and lighter single-storey structures 
in Canada. The method has the potential to reduce material usage, minimize construction waste, and 
improve productivity in the Canadian construction industry. Furthermore, this research has strong potential 
to provide Canadian practitioners in the steel construction industry with an automated process to design 
single-storey buildings. 

2 OPTIMIZATION IN STRUCTURAL DESIGN 

2.1 Optimization Algorithms 

An evolutionary solver used in this project's optimization tool is responsible for finding the optimal solution 

for the design problem by implementing a metaheuristic single-objective algorithm. Various evolutionary 

solvers are discussed in the literature. Most of these algorithms share the same concepts, as they are 

developed based on the group behaviour of different creatures in nature and how they evolve. The main 

advantage of these algorithms is that they are derivative-free. Whereas other mathematical approaches 

require a well-defined and differentiable objective function and attempt to find the optimal solution by 

computing the derivative of the objective function, metaheuristic algorithms search the domain just by 

assessing the objective function's value. Since optimization of engineering systems requires evaluating 

sophisticated objective functions that are not usually differentiable, metaheuristic algorithms have gained 

popularity among researchers. The key stages of the optimization process are illustrated in Figure 1 and 

summarized below. In this figure, N is the number of solutions considered for the first generation, and m is 

the total number of generations considered for limiting the loop of updating the generations. It is worth 

noting that the design variable considered here is only the spacing between the columns, and the objective 

function is the total weight of the structure. The penalty function increases the total weight of structure when 

the results obtained from structural analysis software do not pass the design codes' requirements. 

1) Stage 1: the algorithm creates a set of random solutions by varying design variables associated 

with the problem. This set is also referred to as the first generation. Each solution returns a specific 

value for the objective function defined for the optimization problem and by inspecting these values, 

different solutions can be ranked against each other. 

2) Stage 2: in every optimization problem, solutions are subject to different constraints with a feasible 

space defined. The algorithm applies these constraints to the solutions by a penalty function. If a 

solution meets all constraints, the value of its objective function remains the same. However, if the 

solution's design variables violate these constraints, it would get penalized by a multiplier in its 

objective function so that it would not be able to compete with feasible solutions of the generation 

when it comes to rank them based on their objective function. 

3) Stage 3: once the set is sorted based on the objective function of the solutions, the algorithm applies 

certain mathematical functions to the generation and adjusts their design variables, leading to a 

new set of solutions (i.e., the next generation). The mathematical functions vary for different 

algorithms. For instance, particle swarm optimization (PSO) algorithm updates the solutions with 

the velocity function (Kennedy and Eberhart 1995) and genetic algorithm generates new solutions 

with mutation and crossover functions (Goldberg 1989). The algorithm's main goal is to modify the 
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solutions by generating and guiding the solutions toward the global optimum of the problem. While 

these functions focus on obtaining the best solutions of each generation and improving them in 

subsequent generations, randomness is also formulated within them, which helps the algorithm 

search the entire feasible domain of the problem and prevent getting trapped in zones where local 

optima are located. 

4) Stage 4: it has been proven mathematically that the functions responsible for generating new 

solutions help the optimization algorithm converge at the end if it undergoes a sufficient number of 

iterations. There are two ways to specify when an algorithm should terminate the loop of creating 

new generations and bypass performing the second and third stages. The preferred approach is to 

consider a total number of generations for the algorithm before it has stared generating solutions. 

The second approach involves checking the convergence at each iteration by comparing the best 

solutions of the last two generations with each other. If the difference between the value of the 

objective function of these two solutions is less than the specified tolerance, it is assumed that the 

algorithm is no longer capable of finding a better solution, so it is allowed to stop generating new 

ones. The latter approach might not be appropriate because sometimes the algorithm might get 

stuck around a local optimum. Terminating the loop does not let the randomness considered in 

mathematical functions help the algorithm discover new regions in the domain that may contain 

more optimal solutions. 

 

Figure 1: Optimization process stages 

2.2 Grasshopper Algorithms  

The efficiency of optimization algorithms strongly depends on the number of variables, constraints, and 

objective functions. Past studies showed that Optimus, a tool based on the jEDE algorithm, outperforms 

several other single-objective optimization tools of Grasshopper in the optimization of a frame structure 

(Cubukcuoglue et al. 2019). The following is a list of the tools that Optimus was compared against, and the 

algorithms that they use: Galapagos (Rutten 2013), based on the genetic algorithm; SilverEye (Cichocka 

et al. 2017), using the PSO algorithm; and Opossum (Wortmann 2017), using an RBFOpt algorithm (Costa 

and Nannicini 2018). In this study, the performance of Wallacei (Makki and Showkatbakhsh 2018), a tool 
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based on the NSGA-II algorithm, which is primarily developed for solving multi-objective optimization 

problems, with the four Grasshopper optimization tools introduced above to determine which tool yields the 

best result for optimizing single-storey buildings. By introducing the new nondominated sorting concept, the 

nondominated sorting genetic algorithm II (NSGA-II) allows us to solve optimization problems with more 

than one objective function with the help of fundamental components of the genetic algorithm, which can 

only be used for solving single-objective problems (Deb et al. 2002). 

2.3 Wallacei 

Wallacei is an evolutionary multi-objective optimization and analytic engine. This evolutionary solver can 

consider several objective functions simultaneously to determine the optimum solution. In this case study, 

there is only one objective function, reducing steel tonnage. However, the ability to run several objective 

functions is a highly valuable property considering the automation tool requires more objectives, as 

mentioned in Section 3.1. In addition, the solver allows the user to store and save arbitrary data for each 

iteration of the design. Compared to other Grasshopper components such as Galapagos, Wallacei has 

specific features that give the user better control over the optimization, graphs, and plots to follow the 

optimization (Granberg and Wahlstein 2020). The basic interface for the Wallacei component in 

Grasshopper is shown in Figure 2.   

 

Figure 2: Wallacei interface in Grasshopper 

3 PROPOSED AUTOMATION TOOL FOR STRUCTURAL DESIGN 

3.1 Description of Automation Tool 

GD methodology developed for the purpose of single-storey building design can generate a large number 

of layout options according to the designer's specific requirements. The project's GD workflow has three 

main components: generate, evaluate, and evolve (shown in Figure 3). The designer can specify the length, 

width, and height of the building inside the Grasshopper script, shown in Figure 4a. This generates the first 

design option in real-time within Rhino 3D, as shown in Figure 4b. The evolutionary solver Wallacei is then 

used to produce a large number of options by varying the equal column spacing used in each direction to 

obtain the most cost-effective option, taking into account the weight of structural steel only, a standard 

method implemented by fabricators in approximating the cost. This process leads to various plausible 
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design options with respective design data, aiding the designer to make a judgment call on which options 

to proceed with. 

 

Figure 3: Project’s GD workflow 

 

Figure 4: Single-storey structure automation tool 

3.2 Structural Analysis Component  

The current analysis method in the automation tool mentioned in Section 3.1 uses Excel. After Excel 

performs a simplified calculation to select the structure’s members, a summary of the structure's weight is 

created. From this summary, the weight of the beams, struts, and bracing is totalled and represents the 

total weight of steel for the structure. This total steel weight is the driving factor for comparing various 

layouts that the script produces. However, using Excel is a very simplified method of structural analysis and 

needs to be replaced with a more advanced means of analysis. 
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3.3 Implementation of Finite Element Method for Structural Analysis  

To analyze the structure using the structural analysis program S-Frame, a link between the scripts in 

Grasshopper and S-Frame is needed to transfer the model’s data from Rhino3D to S-Frame. Since there 

is no current API that exists to connect Grasshopper and S-Frame, a middleware text file is required to 

create this link between software. This text file will export the necessary information from Grasshopper and 

import it into S-Frame to create the structure model. To create such a text file, a template text file is made 

that holds all the semi-constant information that can later be filled out with the remaining data to match the 

desired model. Filling out the remaining data can be performed with a C# script that grabs all the needed 

geometry data from Grasshopper and inserts it into the text file. Once this is done, the text file can be 

opened with S-Frame, creating the S-Frame model and allowing the FEA solver to analyze the structure. 

This creation of this link is almost complete, as the only data left to transfer is the bracing geometry. The 

transfer of the model’s data between software is shown in Figure 5. 

 

Figure 5: Transfer of model’s data between Rhino3D and S-Frame 

To create the C# script that fills out the needed text file, a custom Grasshopper component was created 

and shown in Figure 6. This custom component takes the user inputs such as the number of bays in each 

direction, the wall height, and bay spacing, which are used to generate all the remaining data required for 

the text file. This data consists of design codes, geometry, loads, section and material properties, etc. This 

is intended to create a fully-parametric tool that can update the text file for S-Frame as soon as one of the 

model’s parameters changes inside Grasshopper. 
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Figure 6: Custom Grasshopper component created from C# script 

4 PRELIMINARY RESULTS AND FUTURE RESEARCH  

4.1 Cost Estimate 

In practice, designers estimate the steel structure cost in the design development stage based on steel 

tonnage. The steel tonnage can be considered a key metric to evaluate and compare design options. 

However, the total weight of steel can only provide an approximate estimate of the project's total cost. Other 

important variables are also required to improve the estimate’s accuracy, since the total construction cost 

of structural steel framing is not necessarily a function of its weight (Ashworth and Skitmore 1983). The 

three primary components of the total cost are a function of the material, fabrication, and erection costs, as 

shown in Figure 7 (Barg et al. 2018). The material category is defined as structural shapes, plates, steel 

joists, steel deck, bolting products, welding products, painting products, and any other products purchased 

and incorporated into the project. The fabrication category includes the detailing and fabrication labour 

required to prepare and assemble the shop assemblies of structural shapes, plates, bolts, welds, and other 

materials. The erection category includes the erection labour needed to unload, lift, place, and connect the 

structural steel frame components. Lastly, other costs are defined as all cost items not specifically included 

in the three previous categories (Carter and Schlafly 2008). As shown in Figure 7, the material costs only 

constitute one-quarter of the total cost, and the majority of costs are associated with the fabrication and 

erection of structural steel framing. From the results shown in the mentioned studies, it is evident that the 

proposed automation tool needs to incorporate other cost estimating factors to provide a more realistic 

estimate of the project’s total cost. 
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Figure 7: Distribution of the total cost of structural steel framing (Carter and Schlafly 2008) 

4.2 Building Geometry 

The current lateral load resisting system of the single-storey building consists of cross-bracing placed at 

the corners. However, other bracing configurations such as chevron bracing, V-bracing or single diagonal 

bracing can also be used in such low-rise buildings. The possibility of different bracing configurations 

(Figure 8), number of braced frames and bracing locations will be studied in the future. Note that the 

application of X-bracing, inverted V-bracing, and diagonal bracing options for a simple portal frame structure 

were evaluated in the past using a python script built in Grasshopper (Vasilev 2020). Furthermore, other 

steel frame geometric parameters such as height to eaves, the pitch of frame, and haunch length are so 

far missing in the design. Other research has included such parameters in optimizing steel frame buildings 

(Phan et al. 2013, Hernández et al. 2012). Adding different bracing configurations and other frame 

geometric parameters will widen the design space's scope and create a more realistic structure. 

 

Figure 8: Typical bracing configurations for portal frames (“Portal Frames” 2021) 
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4.3 Future Direction 

While the current study shows promising results obtained using the proposed automation tool, it is still 

rudimentary and requires further refinement and development before it could be implemented in practice. 

Further improvements to the proposed automation tool are as follows: 

• Incorporate finite element analysis into the project's workflow by completing the link between 

Grasshopper and S-Frame. 

• Incorporate additional factors in the overall cost estimation process to obtain an accurate value. 

• Consult with fabricators and erectors to better understand their preferences in the construction of 

single-storey steel buildings and implement this industry knowledge into the optimization process. 

• Expand the scope of the generated frame geometry to produce a more realistic structure and 

improve optimization. 

• Implement multi-objective optimization algorithms by adding more design variables and objectives. 

• Explore and compare different optimization algorithms used in structural applications and 

determine if better results can be obtained. 

• Combine a connection design optimization tool with the current automation tool. 

5 CONCLUSIONS 

An automated optimization tool is proposed here for the structural design of single-storey steel structures 

by reducing steel tonnage in the design stage. The preliminary results show the evolutionary algorithm 

adopted can result in optimized design options in the design development stage to help the designer select 

an efficient, better design option. Future studies will incorporate other key design objectives including 

member availability, connection type, and different frame geometries into the proposed automated design 

tool to achieve a more accurate estimate of construction costs.  
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