
EasyChair Preprint
№ 6934

Designing Early Testing Course Curricula with
Activities Matching the V-Model Phases

Timo Hynninen, Antti Knutas and Jussi Kasurinen

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2021

Designing Early Testing Course Curricula with
Activities Matching the V-Model Phases

Timo Hynninen*, Antti Knutas** and Jussi Kasurinen**
*South-Eastern Finland University of Applied Sciences / Department of Information Technology, Mikkeli, Finland

**LUT University / LUT School of Engineering Science, Lappeenranta, Finland
timo.hynninen@xamk.fi, antti.knutas@lut.fi, jussi.kasurinen@lut.fi

Abstract—This work addresses the gap between software
engineering process terminology in formal education, and
the practical skills relevant to testing related work. The V-
model is a commonly referenced description of how the
software engineering processes are tied to the different
software testing levels. It is used in software engineering
education to illustrate which type of testing work should be
carried out during a certain development stage. However, the
V-model is mainly conceptual and tied to the steps in the
Waterfall model, leaving the students with little knowledge
about what is actually done. To solve this problem, we
propose an approach to map the V-Model development
phases and testing levels with corresponding, actual testing
techniques. We then evaluate the approach by designing the
weekly topics, learning goals and testing activities for a 7
week introductory course on the basics software testing and
quality assurance. Based on the course outcomes and recent
literature, we discuss the strengths and weaknesses of the
proposed curriculum.

I. INTRODUCTION

Software testing and quality assurance (QA) form an in-
tegral part of software engineering processes and therefore
should be an equally integral part of software engineering
education. Testing education improves software quality,
as testing-savvy students learn techniques that lead to
more reliable program code [1]. For example, the ACM
curricula for software engineering [2] integrates testing
and quality assurance into other domains of computing
education. However, the ACM curricula has been crit-
icized for not conveying a strong enough testing and
quality assurance mindset [3]. Our proposal to address
this issue is to design concrete learning objectives and
testing activities that follow the principles of constructive
alignment [4], [5]. This approach carries over from our
previous work in using constructive alignment, creating
high-level guidelines for testing education from the in-
dustry practices [6].

The motivation behind designing a dedicated under-
graduate testing course and its activities was that currently
testing education research has mainly focused on the
implementations of such courses and not in course content
design. Although previous research has also established
approaches to integrating testing and QA work into larger
projects [7], [8], many institutions organize an undergrad-
uate course in the methods and models of software testing
separately. In addition, the software industry leaves a lot
of responsibility in QA work to the shoulders of individual

employees, while acknowledging that personnel do not
always have the necessary skills in testing beforehand [9].
We therefore feel that the objectives of this study are of
interest to many in higher education.

In order to place the testing activities into a software
engineering context, we contrast them with the phases
in the V-Model [10], [11]. The V-Model (see Figure 1)
is a generic software development process model where
requirement analysis, specification, architectural design,
and detail design are linked with the levels of testing,
namely acceptance testing, system testing, integration
testing, and unit testing. These development process
phases and testing levels are often referenced in software
engineering education. However, in the education and
training context, the practical impact of these activities
may play an auxiliary role or even be neglected. Hence,
students might be familiar with the development process
phases on an abstract level but fail to understand which
practical activities should happen within them.

To summarize, our research questions in this paper are
as follows.

• RQ1. What learning activities can we map to the
high-level testing concepts?

• RQ2. Which actual testing techniques can be uti-
lized?

• RQ3. How do these activities and high-level con-
cepts relate to other software engineering processes,
namely the V-Model activities?

In order to answer the research questions, we used the
principles of constructive alignment [4], [5] to design and
implement an undergraduate course on the fundamentals
of software testing. We planned the topics and activities
for a 7-week (one period), first-year freshman course. The
course had no other prerequisites except the freshman
course on introductory programming. Various techniques
for testing were adapted from the ISO/IEC Software
testing standard, which covers a multitude of testing
techniques in ISO/IEC 29119 Part 4 [12]. These testing
techniques were used as a starting point for designing
assignments demonstrating the practical testing work on
each testing level.

The rest of this paper is organized as follows. Recent
studies on testing education are presented in Section
2. Section 3 introduces our course implementation and
its results. Discussion and implications are discussed in

Fig. 1. The software testing V-Model, adapted from [11]

Section 4. Finally, we conclude in Section 6.

II. RELATED WORK

Educators face challenges when it comes to testing
concepts. For example, students find it difficult to digest
testing concepts unless they are introduced carefully [13].
In addition, many instructors do not have the necessary
knowledge that should be taught to students [1]. Addi-
tionally, the motivational aspects especially in technically
challenging topics are well-known factors influencing the
outcomes of a learning scenarios to a significant degree
[14].

Testing course content has been studied in different
countries, for example by Šošić in Serbia [15], Bin in
China [16] and Kasurinen in Finland [17]. According to
Kasurinen, students want testing education to be practice
oriented, using real-world tools with a real software
project to promote the motivational aspects of learning
something practical, which provides skills applicable in
real-life software development work.

Experiences from running traditional university courses
in software testing, or software verification and validation,
have been previously reported by Mishra et al. [18] and
Lopez et al. [19]. Van Eijck et al. [20] designed a flipped
classroom version of the testing course in addition to
bundling the testing education around Microsoft’s devel-
oper software [21].

Gamification in education is a rising trend in the testing
field. Fraser [22], Valle [23], Fu [24], and Soska [25] all
present recent approaches for gamifying software testing
education. In general, gamification can be used to increase
student motivation and communication.

Other approaches for increasing student motivation on
the testing course include using large, real-world projects.
For example, Krutz et al. [7] used open-source projects
and Garousi industrial software projects [8]. Another
interesting approach employed by Chen et al. infused
research topics into the testing curriculum [26].

III. COURSE IMPLEMENTATION

In the academic year 2017-2018 the course Principles
of Software Testing was arranged in parallel with a
basic course on C programming. The course population
consisted of first year computer science students, and also
students majoring in other technology programmes. The
objective of the course was to cover the most common
software testing methods, give the students an overview
of how testing and software engineering are related, and
give the students the transferable skills to perform testing
related work autonomously or as part of an organization.

We created the course syllabus by taking the high-level
objectives and relating the required testing-related skills to
the ones that can be acquired by mastering the V-Model.
During the process we also mapped the development
phases and testing levels from the V-Model to the set
of weekly lecture topics on software testing practices.

During the mapping process we used the theory of
constructive alignment as the guiding principle when
setting learning goals and designing course activities.
Constructive alignment is an outcomes-based approach
to teaching in which the learning outcomes that students
are intended to achieve are defined before teaching takes
place [5]. Teaching and assessment methods are then
designed to best achieve those outcomes and to assess
the standard at which they have been achieved. The teach-
ing environment, practices and evaluation should support
learning goals and the student’s future environment [4].
We summarize the principles of constructive alignment
[4], [5] as follows:

• Learning goals should be clear, serve a purpose, and
set in advance.

• Students need to be placed in situations and en-
vironments that elicit the required learnings, with
declarative teaching minimized.

• Students are then required to provide evidence, either
by self-set or teacher-set tasks, as appropriate, that
their learning can match the stated objectives.

In the next phase, we took different testing activities
and test techniques, and placed them under the weekly
lecture schedule. The testing techniques were taken from
the ISO/IEC 29119 Software testing standard. The dif-
ferent testing activities were carefully selected to fit the
development phase and test levels according to the V-
Model activities. For example, Black-box testing and ex-
ploratory testing techniques were used as exercises on the
system testing level, whereas the unit testing level used
the White-box testing approach. Similarly, state transition
testing, scenario testing and random testing were used as
the approach to specification and requirement analysis,
while the classification tree method was used on the
integration testing level.

In total, the course consisted of seven weeks of instruc-
tion in the form of lectures and voluntary exercise (tutor-
ing) sessions. The weekly course topics are presented in
Table I.

The concepts and skills covered in the course material
were assessed in two parts: First, the students performed,

TABLE I
THE WEEKLY ACTIVITIES, COVERED TOPICS, AND TESTING TECHNIQUES

Week Develop-
ment
phase
(V-Model)

Test
level
(V-
Model)

Weekly
covered
topic(s)

Activities and
testing techniques
applied in them

Learning goals

1 Specifica-
tion and
require-
ment
analysis

System
testing

Introduc-
tion to
testing.
Objectives
of testing

Black-box system
testing. Exploratory
testing. Boundary
value analysis.
Defect reporting.

Understand the objectives of testing work. Student
is able to create (Black-box) test cases. Student
understands the scope, and limitations of the black
box methods.

2 Detail
design

Unit
testing

Testing
levels.
Unit
testing

White-box testing.
Test case reporting.
Equivalence
partitioning.

Understand the concept of unit / module test.
Understand the difference between Black-box and
White-box testing.

3 Architec-
tural
design

Integra-
tion
testing

Integration
testing

Combinatorial
methods and the
classification tree
method. Test stubs.

Understand the infeasibility of ”testing everything.”
Student is able to select a technique for deriving
test cases. Student understands the scope, and
limitations of the software testing in the real world
software projects.

4 Specifica-
tion and
require-
ment
analysis

System
testing.
Accep-
tance
testing

System
testing

State transition
testing. Scenario
testing. Random
testing.

Understand the objectives of system-level testing.
Student is able to select an appropriate testing
technique for system testing. Student understands
the scope, and limitations of the system-level
testing methods.

5 Detail
design

Unit
testing

Test
automation
and tools

Implementing unit
tests in code, using a
unit testing
framework

Student is able to use a programming framework /
library to implement module tests. Student
understands the scope, and limitations of the unit
testing tools.

6 Architec-
tural
design

System
testing

Testing
processes,
documen-
tation and
planning

Creating test plans.
Code review and
static testing
methods. Test
coverage analysis.

Student understands the purpose of static testing
methods and code review practices.

7 Specifica-
tion,
architec-
tural
design,
detail
design

System,
integra-
tion,
unit
testing

Visiting
lecture
from a
software
company

Course project: Plan,
design, implement
and document testing
for a small software
item.

Student is able to demonstrate their knowledge by
applying the course’s activities autonomously in the
testing project. Student is able to explain how test
process activities would relate to the whole
software project.

reported and planned a small-scale testing project using
a small console application and its specification. The
assignment was completed in groups of three and it
accounted for 35% of the total course grade. A written
exam worth 25% of the grade formed the second part
of course assessment. Voluntary weekly exercises, also
completed in groups, formed the rest of the course grade,
but the emphasis in grading was on the project and the
exam.

The testing project was graded by the head teaching
assistant based on the completion of each of the individual
five parts. Parts 1 and 2 consisted of system testing
activities. First, the tests were completed manually using
exploratory testing as the main method. Then in part 2
the assignment was to automate some of the test cases
developed in part 1 by recording the inputs and program
outputs during the test.

In part 3 of the project we tasked the students with
writing unit tests for individual modules of the software.
Part 4 was an exercise in testing work from a managerial

point of view, and students were to develop a testing plan
for the project software as if it was a real product by a real
software company. Part 5 consisted of reporting the whole
project and documenting in the write-up which test cases
they had developed, which were automated, and what unit
tests were added to the project repository. Additionally,
the report included testing logs and bug reports from the
manual system testing phase.

In the final project students were given free choice
of tools. Additionally, the problem description did not
specify which testing methods or approaches should be
used in the different parts as one objective of the project
was that students select a suitable method and justify it
in the test plan. The various testing techniques had been
covered previously in the weekly exercises, where tools
for unit testing and test coverage were also introduced.

The final exam consisted of two essay questions about
the concepts presented in the lecture material. The exam
was graded by the lecturer.

Descriptive course statistics are presented in Table II.

TABLE II
DESCRIPTIVE STATISTICS FROM THE INTRODUCTORY TESTING

COURSE

Students working in the course 124
Group projects returned 43
Average project grade (median) 3.4 (4)
Average exam grade (median) 3.8 (4.5)
Respondents in the post-course survey (%) 19 (15%)
”The course implementation helped me to
achieve the learning outcomes of the course” (1 -
very poorly, 3 - neutral, 5 - very well)

3.33

”The teaching methods used on the course
supported my learning” (1 - very poorly, 3 -
neutral, 5 - very well)

3.39

TABLE III
THE MOST COMMON TYPES OF PROJECT FEEDBACK GIVEN TO

STUDENTS BY THE TA

Unit tests did not check that the functions
manipulated data correctly, only that their return
value reported ’success’

49% (21)

Manual system testing was comprehensive 37% (16)
Objectives of the testing project were unclear or
undefined

35% (15)

Unit tests were implemented without the use of
a testing framework. The results of the tests
were often presented in a way which required
the tester to verify the results manually.

16% (7)

The tests seemed to only concentrate on crashing
the program using only bad/sketchy inputs.

14% (6)

Unit tests were comprehensive, and tested the
actual data manipulation

5% (2)

Amount of generally positive feedback
comments given

37% (16)

Amount of generally negative feedback
comments given

63% (27)

In the end a total of 124 students worked actively on
the course assignments. The average project grade was
3.4 and the average exam grade 3.8 (on a scale of 1-5
in passing grades). In addition to the course deliverables,
a post-course survey was also conducted. Unfortunately,
even though the survey got a 15% response rate in relation
to the course population, the number of actual respondents
remained low, and only 10 students gave written feedback.

Observations from the student testing projects are sum-
marized in Table III. The themes listed were collected
from the written feedback on the project given by the
teaching assistant to the students. Overall, 37% of the
comments in the feedback were positive, and 63% neg-
ative pointing out flaws in the implementation or clear
misconceptions in the report.

IV. DISCUSSION AND IMPLICATIONS

In assessing the proposed curricula, it is necessary to
highlight the importance of an early testing course. Some
approaches to testing education emphasize using big, real
world projects as the basis to prepare graduates for work
in the industry (for example [7], [8]). However, as students
first go work in the industry as early as 1.5 years into their
studies [27], this approach can be difficult to employ early
on.

The ACM Curricula Recommendation for undergrad-
uate software engineering programmes infuses software
verification and validation into larger projects and courses
[2]. We take a step back and ensure the students have
familiarized themselves with testing, verification and val-
idation on the dedicated testing course. Our approach to
teaching the testing discipline complements the approach
of the ACM Curricula Recommendation: Once the stu-
dents have acquired the appropriate testing mindset the
testing skills can be used in other software engineering
and computer science projects.

Next, we summarize the findings from our course by
addressing the individual research questions. To answer
RQ1, what learning activities can we map to the high-
level testing concepts, it is possible to complete activities
on all testing levels. The activities can vary from black-
box to white-box testing, system testing to unit testing,
or something in between.

For the second research question, which actual testing
techniques can be utilized, we created weekly assignments
for students employing a variety of different techniques
taken from relevant literacy, such as Swebok [28] or the
ISO/IEC Software testing standard [12]. We incorporated
a number of different techniques for deriving test cases
on different levels, and additionally covering static testing
methods and code reviews. In summary we used ex-
ploratory testing, equivalence partitioning, boundary value
analysis, combinatorial methods, state transition testing,
scenario testing, random testing and static testing in
conjunction with unit testing, integration testing, system
testing, writing test stubs and drivers, and analyzing test
coverage.

Finally, for the third and final research question, how
do these activities and high-level concepts relate to other
software engineering processes, we can say that our seven
week course content is aligned with the V-model. This in
our opinion makes it easier for students to grasp how
the software engineering processes presented in theory
relate to work with real projects, and bridges the gap
between formal software engineering terminology and the
real world.

However, there are still some issues which need ad-
dressing in our course arrangements. The project as a
demonstration of learning worked generally well. Espe-
cially in the first part of the project, exploratory system
testing, the project reports presented testing comprehen-
sively. Students were able to use the different techniques
and approaches combined with intuition and creativity to
sufficiently cover possible errors. Even if the reports did
not directly name a particular method which was used
in order to arrive to the test cases, it appears that the
students were either formally or informally adequately
familiar with these techniques.

The other parts of the project proved to be more
challenging for the students. For example in the second
part nearly all groups successfully employed an automated
system testing pipeline, but it was unclear what the
students had set as the objectives for automated testing.

In most cases the students had simply recorded test cases
which they knew would fail, resulting in nearly all tests
failing.

We can see that the problems revolve around discov-
ered with aligning the objectives and implementations of
testing. In part 4 of the assignment, drafting a testing
plan and test reports, the actual testing objectives were
either shallow or completely neglected. In conclusion, it
seems that to the students testing meant finding errors
and making the program crash - and not ensuring that
the program works. In this sense, it can be argued that
the students understood the concept of testing work itself
as defined by Myers [29], but not the concept of quality
assurance or quality control practices as defined by Kaner
et al. [30]. However, testing levels were often referenced
in the reports, meaning that students were able to place
the testing work within the V-model.

V. CONCLUSIONS

The objective of this study was to map high-level
learning objectives into concrete testing activities, and
to ground the testing activities firmly into the software
engineering processes by using the V-Model as a starting
point. In order to accomplish this objective we designed
an introductory software testing course, and using the
principles of constructive alignment, mapped learning
goals to actual weekly activities and testing techniques.

We assessed the course curriculum by examining the
outcomes of our seven week testing course. Student’s
practical assignments were used as demonstrations of
learning. We observed from the projects that students were
able to adopt the testing mindset and carry out compre-
hensive and systematic testing on the system testing level.
On the other hand, this systematic approach to testing
work was mainly carried out on the system level, while
many projects had problems with unit tests, integration
tests and reporting of the project.

The limitations of the study and the validity of the
results warrant some discussion. The assignment reports
written as group work are of course not the perfect
instrument to measure the learning of individual students.
However, as the assignment was split into multiple sub-
sections with each section focusing on individual activi-
ties (exploratory testing, system testing, unit testing, test
planning and documentation), it was easy to see which
concepts the students excelled in or struggled with.

Additionally, the lecture material and the reference
book used in the course, will most certainly have had a
significant impact on the student’s perception of testing as
a whole. If the reference material is biased towards some
topics or does not cover some concept well enough, it
can be expected that the student reports follow the same
shortcomings. In our case, the course material covers
all the concepts expected in the assignments. On the
other hand, due to the practical limitations some content
discussing more advanced topics had to discussed only
on a high level.

As future work, one promising approach would be
incorporating a knowledge acquisition measurement algo-

rithm such as ACT-R or BKT to assess the student perfor-
mance and learning during the course in order to establish
which course components require more refinement. Other
prospective area of interest would be the integration
of the advanced topics, and including a larger project
work, which integrates both the software engineering and
software testing methods into one capstone assignment.

REFERENCES

[1] O. A. L. Lemos, F. F. Silveira, F. C. Ferrari, and A. Garcia,
“The impact of software testing education on code reliability: An
empirical assessment,” Journal of Systems and Software, vol. 137,
pp. 497–511, 2018.

[2] The Joint Task Force on Computing Curricula, “Curriculum guide-
lines for undergraduate degree programs in software engineering,”
New York, NY, USA, Tech. Rep., 2015.

[3] P. H. D. Valle, E. F. Barbosa, and J. C. Maldonado, “Cs curricula
of the most relevant universities in brazil and abroad: Perspective
of software testing education,” in Computers in Education (SIIE),
2015 International Symposium on. IEEE, 2015, pp. 62–68.

[4] J. Biggs, “Enhancing teaching through constructive alignment,”
Higher education, vol. 32, no. 3, pp. 347–364, 1996.

[5] ——, “Constructive alignment in university teaching,” HERDSA
Review of higher education, vol. 1, no. 1, pp. 5–22, 2014.

[6] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Guidelines
for software testing education objectives from industry practices
with a constructive alignment approach,” in Proceedings of the
23rd Annual ACM Conference on Innovation and Technology in
Computer Science Education. ACM, 2018, pp. 278–283.

[7] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr, “Using a real
world project in a software testing course,” in Proceedings of the
45th ACM technical symposium on Computer science education.
ACM, 2014, pp. 49–54.

[8] V. Garousi, “Incorporating real-world industrial testing projects in
software testing courses: Opportunities, challenges, and lessons
learned,” in Software Engineering Education and Training
(CSEE&T), 2011 24th IEEE-CS Conference on. IEEE, 2011,
pp. 396–400.

[9] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Software
testing: Survey of the industry practices,” in 2018 41st Interna-
tional Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO). IEEE, 2018, pp.
1449–1454.

[10] P. Rook, “Controlling software projects,” Software Engineering
Journal, vol. 1, no. 1, pp. 7–16, 1986.

[11] S. Mathur and S. Malik, “Advancements in the v-model,” Interna-
tional Journal of Computer Applications, vol. 1, no. 12, 2010.

[12] “Software and systems engineering – software testing – part 4:
Test techniques,” International Organization for Standardization,
Geneva, CH, Standard, 2015.

[13] D. Mishra, S. Ostrovska, and T. Hacaloglu, “Exploring and ex-
panding students’ success in software testing,” Information Tech-
nology & People, vol. 30, no. 4, pp. 927–945, 2017.

[14] M. Gagné and E. L. Deci, “Self-determination theory and work
motivation,” Journal of Organizational behavior, vol. 26, no. 4,
pp. 331–362, 2005.

[15] S. Šošić, O. Ristić, K. Mitrović, and D. Milošević, “Software
testing course in it undergraduate education in serbia,” Information
Technology, vol. 4, no. 6, p. 8, 2018.

[16] Z. Bin and Z. Shiming, “Curriculum reform and practice of
software testing,” in International Conference on Education Tech-
nology and Information System (ICETIS 2013), 2013, pp. 841–844.

[17] J. Kasurinen, “Experiences from a web-based course in software
testing and quality assurance,” International Journal of Computer
Applications, vol. 166, no. 2, 2017.

[18] D. Mishra, T. Hacaloglu, and A. Mishra, “Teaching software
verification and validation course: A case study,” International
Journal of Engineering Education, vol. 30, pp. 1476–1485, 2014.

[19] G. Lopez, F. Cocozza, A. Martinez, and M. Jenkins, “Design and
implementation of a software testing training course,” in 122nd
ASEE Annual Conference & Exposition, 2015.

[20] J. van Eijck, V. Zaytsev et al., “Flipped graduate classroom
in a haskell-based software testing course,” in Pre-proceedings
of the Third International Workshop on Trends in Functional
Programming in Education (TFPIE 2014), 2014.

[21] G. Lopez and A. Martinez, “Use of microsoft testing tools to teach
software testing: An experience re-port,” in Proceedings of the
American Society for Engineering Education Annual Conference
and Exposition, 2014.

[22] G. Fraser, A. Gambi, and J. M. Rojas, “A preliminary report on
gamifying a software testing course with the code defenders testing
game,” in Proceedings of the 3rd European Conference of Software
Engineering Education. ACM, 2018, pp. 50–54.

[23] P. H. D. Valle, A. M. Toda, E. F. Barbosa, and J. C. Maldonado,
“Educational games: A contribution to software testing education,”
in Frontiers in Education Conference (FIE). IEEE, 2017, pp. 1–8.

[24] Y. Fu and P. Clarke, “Gamification based cyber enabled learning
environment of software testing,” submitted to the 123rd American
Society for Engineering Education (ASEE)-Software Engineering
Constituent, 2016.

[25] A. Soska, J. Mottok, and C. Wolff, “An experimental card game for
software testing: Development, design and evaluation of a physical
card game to deepen the knowledge of students in academic
software testing education,” in Global Engineering Education
Conference (EDUCON), 2016 IEEE. IEEE, 2016, pp. 576–584.

[26] Z. Chen, A. Memon, and B. Luo, “Combining research and
education of software testing: a preliminary study,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing.
ACM, 2014, pp. 1179–1180.

[27] The Joint Task Force on Computing Curricula, “Curriculum guide-
lines for baccalaureate degree programs in information technol-
ogy,” New York, NY, USA, Tech. Rep., 2017.

[28] P. Bourque, R. E. Fairley et al., Guide to the software engineering
body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer
Society Press, 2014.

[29] G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler, The art
of software testing, 2nd ed. John Wiley & Sons, 2004.

[30] C. Kaner, J. Bach, and B. Pettichord, Lessons learned in software
testing: a context-driven approach. Wiley, 2002.

