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Abstract—Effective microseismic event identification and 

classification form the bedrock of data analysis in microseismic 

monitoring systems, facilitating real-time source location, rock-

burst prediction, and mine safety. However, the complex mining 

environment necessitates preprocessing of sensor-collected 

microseismic signal data, plagued by noise. Traditional methods 

often yield inaccurate results when events exhibit similar traits. 

Machine learning's high precision separation proves promising, 

anticipating safety alerts by learning historical microseismic event 

patterns, and applying them to real-time data for predictive 

analysis. This approach mitigates inefficiencies and errors 

associated with manual recognition. Hence, machine learning has 

gained substantial traction in microseismic monitoring. This paper 

reviews recent machine learning applications in microseismic 

signal recognition and classification, addressing limitations of 

traditional methods, highlighting developmental disparities, 

presenting machine learning-based categorization, and 

summarizing advancements in signal recognition models. Lastly, 

the potential and challenges of machine learning in microseismic 

signal recognition are discussed.  

Keywords—microseismic signals; event waveforms; 

classification and recognition; machine learning; image recognition 

I. INTRODUCTION 

In recent years, the deep integration of information 
technologies such as the Internet of Things, big data, and 
artificial intelligence with modern mining techniques and 
operations has propelled the evolution of smart mines from 
conceptualization to realization [1]. Notably, microseismic 
monitoring methods based on acoustic emission and seismology 
have emerged as pivotal components of mine safety monitoring, 
finding extensive utility across domains encompassing stress 
impact in coal mines, rockburst, mining-induced seismicity [2], 
slope instability [3], and other critical facets [4]. Facilitating this 
is the microseismic monitoring system (MMS), which includes 
functions such as microseismic signal acquisition, multi-channel 
clock synchronization, noise attenuation, automated onset 
detection, source localization, analysis of rock microfracture 
stress, and interpretation. Leveraging seismic analysis methods, 
allows for precise determination of seismic attributes, including 
time, spatial location, magnitude, frequency domain 
characteristics, and source mechanisms. These calculated results 
enable the visualization and prediction of spatiotemporal 

changes in microseismic event evolution, consequently enabling 
continuous monitoring and early-warning systems for potential 
disasters [5]. The MMS usually consists of sensors, data 
collectors, signal processors, underground data centers, and 
surface monitoring facilities, as illustrated in Fig.1.  

 

Fig. 1. The composition of a smart mine microseismic monitoring system 

Due to the complex mining environment, the MMS captures 
a diverse range of signals from the seismic sources. A 
microseismic event is characterized by the generation of elastic 
waves that is generated when a rock breaks and is used primarily 
to predict earthquakes resulting from the structural instability of 
the rock [6]. These waves are considered valuable signals and 
are the primary focus of analysis in microseismic monitoring 
systems. Blasting is an event where rock fragmentation is 
induced by the shock wave from an explosive blast. Depending 
on the study’s objective, blasting is at times treated as noise and 
at other times as a valuable signal. Rock drilling events involve 
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the engineering process of drilling holes in the rock. The 
vibrations produced by different equipment during mining 
operations are detected by the MMS across a range of 
frequencies, becoming characteristic of disruptive noise. The 
data received by the signal detector varies based on the type of 
event triggered, and the waveforms generated from the 
corresponding data are depicted in Fig.2. 

 

Fig. 2. Examples of waveforms for different types of events. (a) Microseismic 

event; (b) Blasting; (c) Drilling; (d) Noise. 

Accurately identifying the types of seismic sources within 
the monitored area, reasonably distinguishing between different 
sources, and extracting valid events become the basis of research 
in the application of microseismic monitoring technology [7]. 
Despite the widespread application of MMS in rock stability 
analysis, extracting microseismic events directly and accurately 
from complex environments remains challenging, especially due 
to the interference of various noises and explosions. Traditional 
methods for identifying microseismic signals rely on manual 
expertise and engineering experience, leading to significant 
workloads, time consumption, and vulnerability to individual 
empirical errors. Researchers have extensively investigated 
methods to accurately identify microseismic signals in mining 
environments [8]. Recently, there has been a notable increase in 
the use of deep learning-based network models. These models 
automatically extract distinctive features from diverse 
waveforms, establishing an image classification framework for 
intelligent recognition of microseismic events. This 
technological approach, reinforced by machine learning and 
computer vision, surpasses traditional statistical methods, 
thereby improving the efficiency of microseismic event 
detection in mining operations. Consequently, mine disaster 
monitoring systems acquire valuable microseismic data, 
facilitating subsequent analyses such as source localization, 
magnitude prediction, and enabling timely early warnings for 
potential induced seismic activities. 

This paper offers a review of the current research status of 
machine learning in microseismic signals identification. Initially, 
we provide a succinct overview of the evolution of traditional 
recognition methods and machine learning approaches, along 
with a brief analysis of their respective strengths and limitations. 
Then, we categorize machine learning methods based on their 
characteristics and discuss the latest research progress in 
microseismic event identification.  Finally, the opportunities and 
challenges facing machine learning are explored. 

II. LITERATURE REVIEW 

Early microseismic signal recognition relied on manual 
expertise [9]. With advancements in hardware and software 
technology, contemporary methods for classifying microseismic 
signals can be grouped into three primary categories: spectral 
analysis, statistical analysis, and machine learning [10]. Spectral 
characteristics involve the analysis of dynamic signals in the 
frequency domain. The results of this analysis are observed as 
spectral curves, representing different physical quantities against 
frequency on the horizontal axis. Due to the demanding expertise 
required for spectrum analysis, its practical application in 
engineering presents challenges. Considering that microcracks 
in rocks release energy as seismic waves and blasting serves as 
a human-induced active source, the source parameters in these 
two signal types exhibit differences. Statistical methods have 
experienced significant growth in the early 21st century. 
Nonetheless, their parameter extraction and model selection 
continue to heavily rely on the researcher's subjective experience, 
which in turn affects the accuracy of the classification model. 
Furthermore, overlooking correlations between parameters can 
lead to inadequate recognition. Before constructing a 
classification model, it is essential to analyze each parameter, 
taking into account their correlations with other variables and 
their appropriateness for a particular model. This process 
unavoidably prolongs computational time [11]. 

A widely used approach in constructing classifier models 
involves extracting key parameters from the original waveform 
or seismic source to create an event classifier, facilitating the 
differentiation of various events within microseismic data. 
Waveform characteristics encompass the analysis of waveforms 
across time and amplitude domains. Parameters derived from 
waveform correlation usually include time and frequency 
variation parameters, spectral ratio, maximum frequency, P and 
S wave amplitude ratio [12], signal duration, first peak 
amplitude, and maximum peak arrival time. Characteristic 
parameters extracted from the seismic source frequently involve 
the seismic moment of the event, seismic energy, event onset 
time, stress drop, number of sensor triggers, and corner 
frequency.  

Throughout the late 20th and early 21st centuries, a wide 
array of statistical methods have been employed in constructing 
classification models for microseismic events. These methods 
encompass regression analysis [13], discriminant analysis [14], 
principal component analysis (PCA) [15], and support vector 
machines (SVM) [16] et al. Neural networks were utilized in the 
analysis of geophysical signals as early as 1996, with Dowla [17] 
pioneering their use to tackle challenges such as seismic 
discrimination and event classification. Taylor [18] employed a 
maximum likelihood Gaussian classifier and a backpropagation 
(BP) neural network to perform multivariate discriminant 
analysis on seismic and blast events. Yang et al. [19] introduced 
a bio-inspired image recognition model that utilized the BP 
algorithm and convolutional neural network (CNN), which 
established the groundwork for modern computer vision. 

Increasingly, the discrimination method effectively 
differentiated between earthquakes and blasts, yielding an 
identification accuracy of 95%. Orlic et al. [20] employed a 
specially designed genetic algorithm to autonomously search for 
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seismic features, yielding an 85% accuracy in this classification 
method. Vallejos et al. [21] employed logistic regression and 
neural networks to classify microseismic events and explosions, 
both attaining classification accuracies surpassing 95% at their 
respective optimal decision thresholds. Dong et al. [5] used 
random forests (RF), SVM, and Naïve Bayes classifiers to 
categorize microseismic events and explosions. The results 
revealed that the RF model attained not only higher accuracy in 
automatic classification but also ordered the discriminators 
based on the calculated weight values. Jiang et al. [22] utilized 
Fast Fourier Transform (FFT) spectral analysis to distinguish 
between rock fracture signals and mine blast signals. 

By analyzing distinct characteristics of microseismic and 
blast waveforms, Dong et al. [6] extracted five typical 
parameters along with a temporal probability density function 
and a probability density function of the time difference of 
neighboring blasts' origin. These were then employed as 
discriminators, and the two waveforms were classified using 
Fisher, Naïve Bayesian classifiers, and logistic regression. 
Shang et al. [23] employed PCA-based artificial neural networks 
(ANN) to improve the classification of microseismic events and 
explosions. They compared these with logistic regression, Bayes, 
and Fisher classifiers, demonstrating that the PCA-ANN 
exhibits superior performance. While being an effective 
classification method, its success depends on the accurate 
analysis and extraction of seismic source parameters. 

Regarding the output categories of the classification model, 
existing models can be categorized into three groups: single 
classifiers, binary classifiers, and multiple classifiers. Initial 
research concentrated on single classifier models, aiming for 
accurate microseismic event detection without considering other 
non-microseismic signals. Due to blasting events being active 
sources and often mistaken for microseismic events, the number 
of binary classifiers dedicated to distinguishing between them 
increased [24]. As research advanced, noise events were 
gradually incorporated, leading to the emergence of multi-class 
classifier models targeting three or more classes. This 
encompasses not just microseismic and blasting events but also 
further divides noise events into categories such as drilling, ore 
drawing, electromagnetic interference, and human-made sound. 

The development trajectory of microseismic signal 
identification methods highlights three significant trends: (1) 
incorporation of machine learning methods, (2) emergence of 
deep learning models, and (3) amalgamation of hybrid models 
and algorithm optimization. Each developmental stage is 
distinguished by a range of distinctive attributes. For instance, 
the introduction of machine learning methods alleviates the load 
of traditional manual identification and classification of 
microseismic signals, enhancing signal processing efficiency 
[25]. With the emergence of deep learning models, it becomes 
possible to cultivate more accurate classification models by 
leveraging extensive collected data, which substantially 
enhances accuracy and reliability [26]. For optimizing models 
and algorithms, attaining heightened computational efficiency 
while maintaining high accuracy is achievable. Alternatively, 
the focus shifts towards enhancing the model's generalization 
and robustness [27]. 

III. CLASSIFICATION OF MACHINE LEARNING 

Machine learning algorithms enable machines to extract 
patterns from extensive historical data and subsequently make 
predictions or distinctions about new samples. Remarkable 
advancements and implementations have been observed in 
specific domains including image recognition, signal processing, 
and computer vision [28]. In the context of microseismic signal 
recognition and classification, machine learning is categorized 
into two main branches: supervised learning [29] and 
unsupervised learning [30]. This classification is based on 
whether training samples are labeled or not. To elaborate, 
supervised learning pertains to input data with labels, while 
unsupervised learning pertains to data without labels. 

A. Supervised Learning 

In the realm of microseismic signal recognition and 
classification, several supervised learning algorithms are 
commonly employed, including logistic regression, plain 
Bayesian, SVM, decision trees, random forests, ANN, CNN, and 
others [31]. Upon analyzing and summarizing the predominant 
research endeavors in the existing literature, it becomes evident 
that a majority of these efforts focus on supervised learning, with 
CNN emerging as the most prevalent machine learning 
technique [32]. Notably, investigations extend to predicting time 
series evolutionary trends of microseismic parameters during 
rockburst development [33], depth detection of seismic sources 
[34], as well as studies in seismic event noise classification [35]. 
These efforts are closely trailed by advancements in CNN and 
the incorporation of hybrid methodologies [36].  

Pu et al. [37] assessed the performance of ten widely used 
machine learning models for the recognition of microseismic 
and blast events. They employed five metrics to gauge these 
models' effectiveness. Their comprehensive evaluation indicated 
that the logistic regression model displayed the highest 
performance (97.5%). Kang et al. [38] introduced a deep belief 
network model for discerning microseismic events and blast 
events. By selecting nine typical source parameters as features, 
the model demonstrated superiority through a classification 
accuracy of 94.4%, outperforming SVM (86.15%) and Fisher 
(80.01%) classifiers. In a similar vein, Peng et al. [39] proposed 
an automated classification approach for finite sample 
microseismic records based on capsule networks (CapsNet). 
This model, when tested using the same dataset and compared 
to CNN and traditional machine learning methods, achieved an 
impressive accuracy of 99.2%, showcasing its proficiency, 
particularly in cases with limited training samples. 

B. Unsupervised Learning 

Unsupervised learning is a pivotal technique in data analysis, 
focusing on revealing underlying patterns and structures within 
unlabeled datasets [40]. This method forms the basis for various 
analytical tasks like clustering, dimensionality reduction, and 
visualization. Common algorithms include K-means, the 
Density-based clustering method, and PCA for dimensionality 
reduction. Additionally, deep learning techniques like deep 
belief networks (DBN) and self-coding algorithms (SCA) delve 
deeper into complex data representations. In contrast, 
unsupervised learning has been less well-studied, with K-means 
clustering being the dominant algorithm. Research topics range 
from the automatic classification of microseismic and explosive 
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events [41], to studies of microseismic noise signals, and 
waveform-based studies. 

Chen et al. [42] proposed an unsupervised machine learning 
algorithm for the automatic classification of microseismic data 
waveforms using classical K-means clustering. The feasibility of 
the algorithm is verified with synthetic and real microseismic 
data examples. The results show that the algorithm is effective 
in detecting the major waveforms in the data. Huang et al. [43] 
used a hierarchical clustering algorithm to achieve automatic 
identification of seismic signals. By examining four attributes, 
namely the short-term average and long-term average ratio, 
variance, and envelope, all seismic sampling points in the time 
domain were clustered into two categories. The feasibility of the 
method was demonstrated by applying it to an actual hydraulic 
fracturing microseismic dataset. Johnson et al. [44] used 
unsupervised machine learning to label five classes of non-
smooth seismic noise commonly found in continuous 
waveforms. Chen et al. [45] used machine learning to help 
identify seismic waveforms in microseismic or seismic data. As 
supervised machine learning algorithms rely on a large amount 
of well-designed training data, this work uses unsupervised 
machine learning algorithms to cluster temporal samples into 
two groups, namely waveform points and non-waveform points. 
Experimental results show that the proposed method is more 
robust than STA/LTA method in extracting microseismic events 
even under moderate-intensity background noise. Saad et al. [46] 
propose an unsupervised method for automatically extracting 
waveform signals from continuous microseismic data. The 
algorithm was evaluated with several synthetic and field 
examples. The results show that the algorithm can successfully 
extract waveform signals in noisy environments with signal-to-
noise ratios as low as 10 dB, and that the algorithm outperforms 
simple k-means and STA/LTA methods. 

C. Machine Learning Development Stages 

The development of machine learning in the field of 
microseismic signal recognition can be categorized into three 
stages: shallow learning, deep learning, and transfer learning. 
Fig.3 illustrates the distinctions among these three stages. 
Shallow learning, or traditional machine learning, employs 
simple algorithms to analyze and predict from data. Examples 
include linear regression, decision trees, SVM, and logistic 
regression. While effective for tasks with clear features, they 
may struggle with complex tasks requiring detection of intricate 
patterns. Deep learning, a subset of machine learning, utilizes 
neural networks with multiple layers to automatically learn 
complex patterns from raw data. Methods like CNN and RNNs 
have revolutionized fields like image recognition and natural 
language processing. Transfer learning leverages pre-trained 
models to improve performance on related tasks, making deep 
learning more accessible and reducing the need for large task-
specific datasets. 

Table 1 presents a comparison of machine learning 
techniques - Shallow Learning, Deep Learning, and Transfer 
Learning - in terms of accuracy, efficiency, and applicability. It 
also lists some common algorithms associated with each 
technique. In summary, shallow learning involves simple 
algorithms with limited computational layers, deep learning uses 
multi-layered neural networks to learn intricate patterns, and 

transfer learning enables models to leverage knowledge from 
one task to improve performance on another task. 

 

Fig. 3. Three stages of machine learning development 

TABLE 1  COMPARATIVE ANALYSIS OF MACHINE LEARNING 

TECHNIQUES 

Technique 

(Common 

algorithms) 

Accuracy Efficiency Applicability 

Shallow 
learning (LR, 

SVM, DT, 

RF, NV) 

Lower 

accuracy 
 [0.8, 0.9] 

High efficiency 

with fast training 

and inference 
speed, low memory 

consumption 

Widely applicable 
to tasks with clear 

features and 

relationships 

Deep learning 
(CNN, RNN, 

DBN, LSTM, 

GAN) 

Higher 

accuracy 
[0.9, 0.99] 

Relatively lower 

efficiency with 
slower training and 

inference speed, 

higher memory 
consumption 

Performs 
exceptionally well 

in complex tasks 

and those requiring 
the capture of 

intricate patterns or 

abstractions 

Transfer 

learning 

(Pretrained 
models, e.g., 

AlexNet, 

GoogLeNet) 

Variable 

accuracy 

[0.7, 0.99 ] 

High efficiency by 
leveraging pre-

trained models to 

reduce the need for 
task-specific data 

Suitable for tasks 
with limited data 

availability, and 

can benefit from 
pre-trained models 

IV. DISCUSSION AND ANALYSIS 

The fusion of advanced machine learning methods with the 
complexities of microseismic data has led to substantial progress, 
transforming how we approach microseismic event detection 
and comprehension. 

A. Evolution of Machine Learning Paradigms 

The realm of microseismic signal recognition has evolved 
through distinct phases of machine learning paradigms – shallow 
learning, deep learning, and transfer learning. Shallow learning, 
characterized by traditional algorithms, laid the initial 
foundation by extracting essential features from microseismic 
data. Deep learning, a transformative epoch, introduced neural 
networks capable of discerning intricate patterns, enabling 
improved accuracy and performance. Transfer learning, the 
latest frontier, leveraged pre-trained models to address data 
scarcity and domain adaptation challenges.  

Deep learning models, particularly CNNs, have emerged as 
game-changers in microseismic signal classification. The ability 
of CNNs to automatically learn hierarchical features from raw 
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data has proven vital. The study by Chen et al. [42] exemplifies 
how unsupervised learning can outperform traditional methods 
in extracting microseismic events, even under substantial noise. 
This highlights the significance of harnessing the latent potential 
within data.  

The adoption of machine learning in microseismic signal 
recognition carries profound implications for both the industry 
and the research community. Efficient and accurate event 
detection, source localization, and event classification can lead 
to timely hazard alerts and informed decision-making in mining 
operations. The continuous evolution of algorithms and models 
empowers researchers to delve deeper into the intricacies of 
microseismic signals, unraveling invaluable insights into 
geological processes. 

B. Challenges and Future 

The identification and classification research of 
microseismic events currently faces the following challenges: 

1) Data scarcity: The observation and recording of 

microseismic events require expensive equipment, resulting in 

a scarcity of labeled data available for research. This limitation 

hinders the training and validation of algorithm models, posing 

challenges to their accuracy and generalization capability. 

2) Data imbalance: Positive instances (target events) in 

microseismic events are often much fewer in number than 

negative instances (non-target events or background noise). 

This data imbalance can lead to algorithm bias when handling 

imbalanced data, affecting its performance and robustness. 

3) Noise interference: The accurate classification of 

microseismic signals is complicated by the presence of various 

sources of noise, including environmental and instrument noise. 

4) Cross-domain adaptation: In practical applications, 

geographical and geological variations can introduce 

differences in the characteristics and background of 

microseismic events, posing challenges for transferring existing 

models to new regions or conditions. 
To overcome these challenges, researchers are exploring and 

developing new methods and techniques. These include utilizing 
unsupervised learning for clustering, introducing deep learning 
models to extract intricate features, and leveraging transfer 
learning, among others. These efforts aim to enhance the 
accuracy of microseismic event identification and classification, 
thereby advancing research in related fields. 

V. CONCLUSION 

Incorporating machine learning into microseismic signal 
recognition and classification holds immense potential. The 
evolution from shallow to deep learning, along with the 
application of innovative techniques like unsupervised learning 
and transfer learning, has propelled development in this field. 
Machine learning plays a crucial role in microseismic signal 
analysis by providing mechanisms for accurate event 
identification and classification. Looking towards the future, 
advancements in data acquisition techniques offer opportunities 
for machine learning to address challenges such as data scarcity 
and domain adaptation, thus enhancing the accuracy and 
reliability of event recognition. The practical implications of 
applying machine learning in geological engineering and earth 

sciences are significant, as it can improve the precision and 
dependability of geological insights. The collaboration between 
machine learning and microseismic analysis promises a 
transformative impact on our understanding of subterranean 
events. 

As we move forward, the convergence of machine learning 
and microseismic signal recognition presents fascinating 
possibilities. The amalgamation of diverse data sources, real-
time processing capabilities, and advancements in transfer 
learning hold the potential to expand horizons. Advancing 
automation, refining accuracy, and bolstering resilience against 
noise are among the ambitions propelling ongoing research 
endeavors. 
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