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Abstract—Doctored images are prevalent everywhere since
the easy availability of photo-editing tools. The research in
image forensics focuses mainly on developing techniques that
can help discriminate between doctored and legitimate content
in an image. There are various kinds of forgeries possible in
an image. Here, we present a robust algorithm for copy-move
forgery detection(CMFD). We exploit the simple linear iterative
clustering (SLIC) algorithm to divide the source image into non-
overlapping, irregular-sized blocks and then use Scale Invariant
Feature Transform (SIFT) to determine the feature keypoints
with their descriptors. After that, keypoints between blocks are
matched using Fast Library for Approximate Nearest Neighbors
(FLANN). Forged regions are chalked out accurately employing
some morphological operations and analysis using correlation
coefficient. To prove the effectiveness of the proposed algorithm,
we have tested it on four standard datasets and found out the
proposed scheme is performing satisfactorily well. It is helpful
after scaling, rotation, and JPEG compression operations too.

Index Terms—Copy-move forgery, SLIC, SIFT, FLANN match-
ing, Adaptive over-segmentation(AOS)

I. INTRODUCTION

We live in a time when technology is advancing at a
breakneck pace, and with every new development comes a
new set of problems. In this case, the progress of technology
has given everyone the capability to edit and manipulate images
with ease, leading to many tampered images that are hard to
trace, causing a loss of integrity of the image. This has plunged
us into a digital dystopia where many crimes are happening
unchecked, causing societal disruption. Crucial images that can
serve as evidence for crime scenes are doctored, leading to bad
decisions. This alarms for the continuous research in the field
of image forensics to cope up with these research challenges.

Though many schemes are already present in the literature to
deal with image forgeries, we still hear so many such forgery
cases. Like a duplicate image where a gathering of warriors was
copied to cover George Bush [Malathi et al., 2019]. A doctored
image of a Malaysian politician Jeffrey Wong Su showing him
as a knight to the Queen of England in July 2010 [Express,
2010]. He faced eviction from his party after such doctored
images were made public. Another recent news was a fake
photo shared on Facebook in 2020 to falsely claiming that the
people in the photo are coronavirus victims in China. However,
in reality, it was a photograph of an art project in Germany
in 2014 [Garcia, 2020]. With high-end editing technologies, it
has become challenging to keep pace with the kind of possible
forgeries and their revelation [Express, 2017].

Over the last few years, their has been extensive research on
digital image forgery detection [Al-Qershi and Khoo, 2013].
The image forgery detection methods can be classified into
passive or active approach. Additional information apart from
the image, such as pre-extracted or pre-embedded attributes, are
required to detect a forgery in the active approach. It includes
watermarking or digital signatures. Some characteristics are
added to an image when the digital watermark is created.
[Jarusek et al., 2019]. In the passive approach, no such
information is needed. Hence, also referred to as the blind
forgery detection. A general categorization of the image
tampering detection schemes is shown in Fig. 1 [Antony and
Devassy, 2018].

Fig. 1: Classification of image tampering detection approaches
[Antony and Devassy, 2018]

There are numerous kinds of possible image forgeries but
mainly can be categorized into: Image retouching, copy-move
forgery, image splicing forgery. This paper focuses on copy-
move forgery as it a commonly found forgery. A portion of
an image is copied and pasted into other portions of the same
image to hide some crucial details or mislead the viewer in
this forgery.

The CMFD schemes can be grouped into keypoint-based
techniques and block-based techniques. In block-based methods,
the source image is segmented into blocks, and then the forged



regions are extracted by matching these blocks. Discrete Cosine
Transform (DCT) [Popescu and Farid, 2004], PCA [Luo et al.,
2006], and SVD [Mahdian and Saic, 2007] are the generally
used block-based methods. Descriptors of keypoints are used
in keypoint-based methods. Then, forged regions are extracted
according to keypoint matching on the image. SIFT [Huang
et al., 2008] and SURF [Bo et al., 2010] are commonly used
keypoint-based techniques.

Cao et al. proposed a method for discovering CMFD by
making fixed-sized blocks of the image. After that, computing
Discrete Cosine Transform (DCT) of all blocks [Cao et al.,
2012]. Keypoint descriptors are extracted for each block and
sorted in lexicographic order, and matched to detect forged
regions. Another scheme using the Polar Cosine Transform
(PCT) and the approximate nearest neighbour was used in [Li,
2013]. Post-verification was performed to remove the false
matches. However, segmenting the image into overlapping
blocks increases the computational complexity.

Amerini et al. proposed a technique that used the J-
Linkage algorithm to perform robust clustering in the geometric
transformation space to recognise copy-move forgery [Amerini
et al., 2013]. This method was better in precision rate and
reliability. In [Pun et al., 2015], image forgery detection using
the adaptive over-segmentation and keypoint matching was
introduced. This scheme discarded blocks that contained only
1 or 0 key points leading to high false positives.

In this paper, we overcome this factor by exploiting the
FLANN for matching blocks even with one key point. We
applied the SLIC method to segment the image into irregular-
sized non-overlapping blocks. After that, we applied SIFT for
extraction of the feature keypoints along with their descriptors.
The proposed scheme was examined on four standard datasets
and worked efficiently, giving an F1 score of 97.7 % for MICC-
F-2000, 94.57 % for MICC -600, 97.33 % for CPH 97.48 %
for the CMFDB-GRIP dataset.

The remaining paper is divided into the following sections:
Section II describes the related work. Section III has the
description of the proposed technique. Section IV contains
various experimental scenarios along with the details of the
dataset. Section V includes conclusion and future directions.

II. RELATED WORK

Many schemes are available in the literature to detect image
forgery. Here, we briefly discuss some of the available schemes
and their limitations.

Fridrich et al. proposed CMFD for JPEG images [Fridrich
et al., 2003]. It was based on segmenting the host image
into overlapping blocks and computing DCT. Similar DCT
coefficients were identified and marked as forged regions
of the image. Another related approach was proposed by
N.D.Wandji et al. where they arranged the DCT based features
in lexicographic order [Wandji et al., 2013]. This approach
could detect the duplicated regions when there was more than
one copy-move forged areas in the image. It was robust for
shift, scale, blur, noise addition, slight rotations, and JPEG
compression. The computational complexity was high for this

method as it segmented the image into fixed-size of blocks.
An image forgery detection based on statistical correlations that
appear in the case of forgery was proposed in [Popescu and
Farid, 2005]. When a forger tries to create a forged image, he
stretches, resizes or rotates the copied part to fit it properly into
the target image. This attempt to resample the forged image on
a new sampling lattice introduces specific correlations. These
correlations were detected to validate the integrity of the image
and used for the identification of forged parts. This scheme
worked only on JPEG, GIF and TIFF images with minimal
compression.
H. Huang et al. detected forged regions based on SIFT
[Huang et al., 2008]. SIFT descriptors of an image are robust
against changes in orientation, rotation, scaling etc. The SIFT
method was used to recognized the key points and used these
descriptors for matching. It gave good results even for a noisy
or compressed image. Another scheme proposed by Zhang et
al. detected multiple duplicated regions [Zhang et al., 2008]. It
worked well for noisy and compressed images but unsuitable
for rotational attacks.
SIFT is quite popular in many image processing techniques like
facial recognition and object detection. Vijayan et al. combined
FLANN feature matching with SIFT descriptors [Vijayan and
Kp, 2019]. SIFT is robust to image distortion and the FLANN
matcher matches the feature points. Bo et al. exploited the
SURF descriptors for image forgery detection [Bo et al., 2010].
SURF descriptors of an image are invariant to changes in
rotation, orientation, scaling etc. However, SURF does not
give better performance than SIFT. Automatic image forgery
detection based on approximate nearest neighbor leading to high
performance was proposed in [Muja and Lowe, 2009]. Adapting
k-means clustering to obtain superpixels was exploited by
Achanta et al. in [Achanta et al., 2012].
Another brute force algorithm was proposed in [Antony and
Devassy, 2018]. In this scheme, the characters were compared
from left side to right side, until all characters were matched.

III. PROPOSED METHODOLOGY FOR IMAGE FORGERY
DETECTION

This section details the proposed method for detection of
copy-move forgery. Fig. 2 shows an overview of the proposed
scheme. The details of each step is discussed as follows:

Step 1: Adaptive over-segmentation of the host image

We have exploited the AOS method for dividing the source
image into non-overlapping blocks of varying size. The AOS
method is better for detecting forged regions than the traditional
block-based approaches. Block-based methods can detect
forgery at the block level, and hence, recall ratio is usually poor
for such methods [Pun et al., 2015]. Also, the computational
cost is directly proportional to the size of the image. We used
SLIC to divide the image into significant irregular superpixels
[Achanta et al., 2012]. The initial size of the superpixel is very
crucial in accurately detecting the forged regions. The DWT
method is used to obtain the initial superpixel size, as follows:



Fig. 2: Architecture of the copy-move image forgery detection
method

We used SLIC to divide the image into significant irregular
superpixels [Achanta et al., 2012]. The initial size of the
superpixel is very crucial in accurately detecting the forged
regions. The DWT method is used to obtain the initial
superpixel size, as follows:

1) Apply 4-level DWT, on the source image and obtain
the coefficients of the high-frequency energy and low-
frequency energy:

ErLF = |
∑

CA4| (1)

ErHF =
∑
i

(|
∑

CHi|+ |
∑

CVi|+ |
∑

CDi|)

i = 1, 2, 3, 4 (2)

where, ErHF and ErLF represent the high-frequency
and low-frequency components.

2) Determine the low frequency distribution percentage
PtLF :

PtLF =
ErLF

ErLF + ErHF
∗ 100 (3)

Algorithm 1 Image forgery detection scheme

INPUT: Host Image
OUTPUT: Detected Copy-move Forgery Regions

1: Apply 4 levels of DWT algorithm with haar as wavelet
function to find out coefficients of high frequency energy
and low frequency energy and then use these coefficients
to find superpixel size.

2: Use the SLIC algorithm to segment the image into non-
overlapping blocks of varying size using superpixel size
found in the above step.

3: Use the SIFT algorithm to find location and descriptor of
keypoints inside the superpixels.

4: Use FLANN algorithm for finding matching keypoints.
Use the MatchThreshold, which we have taken 0.75 here,
as threshold for distance between descriptors of keypoints
to decide if they match or not.

5: Calculate TRB according to the distribution of correlation
coefficients. Filter the blocks matched in the previous step
according to TRB to find final matching points.

6: Again divide the source image into non-overlapping blocks
using SLIC algorithm with superpixel size 20 for images
with resolution greater than 1500 and 10 for low-resolution
images.

7: Match the local color features of keypoints detected
previously with neighbouring blocks in the new blocks.
Include the blocks with similar color features in the forgery
regions.

8: Apply morphological operation on forgery regions to
generate final forgery regions.

3) Determine the initial size of superpixels S :

S =

{√
0.02 ∗ I ∗ J PtLF> 50%√
0.01 ∗ I ∗ J PtLF < 50%

(4)

where, I and J represent the size of the input image.

Step 2: Block feature extraction using SIFT
Feature points are take out from every image block using SIFT.
SIFT features are based on the local features in an image and
proven to be invariant to image processing operations such as
compression, blurring, scale, and rotation [Huang et al., 2008].
It locates the keypoints in these image blocks. Thus, each
image block comprises of these SIFT feature descriptors and
the irregular block region information.

Step 3: Matching key points using FLANN
After obtaining the feature points, they are matched using
FLANN. It is efficient for matching features with high
dimensions or large datasets compared to other matchers like
the brute force matcher. FLANN matches a feature based on
the euclidean distance. Two keypoints are labelled as match
only if the distance between their descriptors is smaller than
the match threshold. We have set the match-threshold as 0.75
in the experiments.



The correlation coefficient map is created based on feature
matching. The correlation coefficient CC tells the number
of matched keypoints between two blocks. If N blocks are
generated by adaptive over-segmentation, then there will be
N(N−1)

2 correlation coefficients in the generated map.
After detecting the matched features, block-matching thresh-

old TRb is used to match the corresponding image blocks,
which filters the false matched features, especially for those
tampered parts that are similar to the background of the image.
Every image has its own block-matching threshold, which
depends on the features of the image.

To determine the block-matching threshold of an image, the
first step is to sort the correlation coefficients in ascending
order. We define CCs = {CC1, CC2, CC3, . . . , CCt} where
these values are sorted. Then, the first derivative, mean value of
the first derivatives and second derivative of CCs are calculated.
The smallest correlation coefficient whose second derivative is
greater than the average of first derivative vector is taken as
the block-matching threshold:

f ′′(CCs) > f ′(CCs) (5)

For the matched block pairs, the feature points are located
and marked to localize the suspected forged regions.

Step 4: Localization of Forged Regions
To obtain the tampered regions, the superpixels are combined
according to the local colour feature. In the experiments, the
initial size S of the superpixels is 20 for high-resolution images,
say 5000× 5000 and to 10 for low-dimensional images, say
1500× 1500.

To detect the suspected areas more accurately, for every
suspected area, the local color feature of the neighboring blocks
in varied orientations such as {45, 90, 135, 180, 225, 270, 315,
360} are computed [Pun et al., 2015]. Thereafter, it is compared
with the local color feature of the corresponding forged area.
If the difference between these local color features is less than
the threshold TRsim, then the neighboring blocks are merged
with the suspected area. In the experiments, TRsim is set to
15. Finally, small gaps in the merged regions are filled using
the close morphological operation with a circular structuring
element.

IV. EXPERIMENTAL RESULTS

We conducted various experiments to validate the
performance of the proposed algorithm on standard datasets.
The experiments were conducted on a machine with Intel(R)
Core(TM) i7-10750H CPU @2.60GHz, 64-bit processor, and
16GB RAM with Nvidia GeForce RTX 2060 on MATLAB
R2019b. We used MICC-F-2000 [Amerini et al., 2011],
MICC-F-600 [Amerini et al., 2011], Image Manipulation
Dataset [Christlein et al., 2012], Copy-Move Hard (CMH)
[Cozzolino et al., 2014], and CMFDdb grip [Silva et al.,
2015] as the standard datasets to test the proposed scheme. A
brief description of these datasets is as follows:

1) MICC Dataset: This dataset is one of the earliest and
the most commonly accessible datasets. This dataset

consists of two subsets as MICC-F-2000 and MICC-600.
Various operations such as scaling, rotation, compression
have been performed to create tampered images. MICC-
F-2000 consists of 686 and MICC-F-600 consists of 207
images.

2) Copy-Move Hard (CMH) Dataset- This dataset
consists of images tampered with scaling and rotation
operations set to various values. This dataset consist of
four subsets i.e. CMHp1, CMHp2, CMHp3, and CMHp4.
CMHp1 consists of images where the cloned areas are
just copied and then moved, CMHp2 consists of images
with a rotation of the copied area (orientations in the
range of 90 to 180), CMHp3 consists of images with
resizing of the copied part with a scaling factor in the
range of 80% to 154%, and CMHp4 consists of images
having both rotation and resizing at different values.
This dataset consists of 108 images.

3) CMFDdb grip Dataset: This dataset was made by
Cozzolino et al. for measuring the performance of their
CMFD algorithm. This dataset consists of images that
have a slight change in the size of copy-move regions.
Also, the size of images in this dataset is not very large.
This dataset consists of 80 images

We evaluated the proposed scheme against various exper-
iment scenarios. The following are details of each of these
scenarios briefly:

1) The rotation operation is used on the tampered part in
this scenario. Some portion of an image was copied,
rotated by some angle and then pasted somewhere else
on the original image. Results for some images having
this scenario are shown in Fig. 3.
• Dimension of the given image is 3264 × 2448

and the tampered part is inserted at the coordinate
(198, 1579) after rotating by 30°. Dimensions of
copied part is 583× 153.

2) The second scenario involves tampering the original
image by compressing the JPEG quality. This implies
that the forged image will be of a lower JPEG quality
with respect to the original quality of the image. Results
for some images considering this scenario are shown in
Fig. 4.
• In the given image, dimension of original image

was 1024 × 768. The size of original image was
999 KB which was converted to 337 KB after JPEG
compression reducing original image to 33%. The
tampered part is inserted at (591, 664).

3) The third scenario involves having a tampered image
with scaling-down operation. A portion of an image is
copied, scaled to a smaller size and then pasted on the
other portion of the image. Results for some images
considering this scenario are shown in Fig. 5.
• In the given image, dimension of original image was

2048× 1536. The tampered part is scaled by 0.57.



Fig. 3: Result of images with tampered part rotated

Fig. 4: Result of images after JPEG compression

Fig. 5: Result of images with tampered part scaled down

The tampered part is inserted at (807, 979). Size of
original part was 142 × 214 which was scaled to
81× 122.

4) The fourth scenario involves having a tampered image
with scaling-up operation. A portion of an image is
copied and then scaled to a larger size before pasting on

the other portion of the image. Results for some images
considering this scenario are shown in Fig. 6

• In the given image, dimension of original image was
2048× 1536. The tampered part is scaled by 1.23.
The tampered part is inserted at (1164, 745). Size
of original part was 187× 111 which was scaled to



Fig. 6: Result of images with tampered part scaled up

230× 137.
To judge the performance of the presented scheme in the

experiment scenarios, we used recall and precision as the
evaluation metrics [Amerini et al., 2011], [Christlein et al.,
2012]. We defined precision as the ratio of the number of
rightly detected tampered pixels to the number of identified
forged pixels. It represents the probability that the parts detected
by the algorithm are essential [Pun et al., 2015].

precision =
|Ω ∩ Ω′|
|Ω|

(6)

where Ω represents the recognised tampered regions from the
proposed technique from the dataset and Ω′ represents the true
tampered regions of the dataset.

The recall is the ratio of the number of rightly identified
tampered pixels to the number of tampered pixels in ground
truth tampered image. It represents the probability that relevant
regions are identified [Pun et al., 2015].

recall =
|Ω ∩ Ω′|
|Ω′|

(7)

F1 measure is a reference number that is a combination of
recall and precision to give a metric for the tampered detection
[Singh et al., 2016].

F1 = 2× recall.precision

recall + precision
(8)

Table I summarizes the results of the proposed scheme on
the standard datasets MICC-F-2000, MICC-600, CPH, and
CMFDdb grip using the aforementioned metrics.

TABLE I: Forgery detection results for the proposed scheme

Datasets Precision (%) Recall (%) F1 (%)
MICC-F-2000 95.81 98.67 97.07

MICC-600 93.82 96.24 94.57
CMH 96.30 94.79 97.33

CMFDdb grip 95.80 99.34 97.48

The comparison between results of the proposed technique
with the state-of-the-art algorithms are tabulated in Table II.

TABLE II: Comparison results of the proposed scheme

Datasets Proposed Method F1(%) [Pun et al., 2015]
F1(%)

MICC-F-2000 97.07 75.74
MICC-600 94.57 86.41

CPH 97.33 92.97
CMFDdb grip 97.48 97.55

V. CONCLUSION

This paper proposed an image forensic technique for detect-
ing copy-move forgery in images. It extracted SIFT features
for irregular sized non-overlapping blocks of the forged image
and thereafter, exploited FLANN matching to detect forged
regions based on keypoints matching between these blocks.
The proposed method proved to be effective in performance
under varied attack scenarios such as down-sampling, JPEG
compression and geometric transforms. As a future study, the
proposed method can be extended to tackle other types of
forgery such as image splicing, contrast changes, noise addition,
etc.
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