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ABSTRACT 
 
Artificial Neural networks are capable of learning for themselves that will be 
essential for the future quantum computers mainly quantum error correction 
and these networks outstrip other error correction strategies. The quantum 
information is highly sensitive to noise from its environment and needs 
regular quantum error correction, and this role is performed by artificial 
neural networks as they gather information about the state of the quantum 
bits. The solution is in the form of an additional neural network i.e. one 
neural network uses its prior knowledge of the quantum computer that is to 
be controlled to train another and guide towards successful quantum 
correction. In this paper, we propose both conventional neural network 
model and a novel deep network structure i.e. “ Network In Network” ( NIN) 
to address quantum error correction. The conventional convolutional layer 
uses linear filters followed by nonlinear activation function to scan the input. 
Instead, Deep NIN uses multiple micro neural network to enhance local 
modelling and utilize global average pooling over feature maps in the 
classification layer, which is less prone to overfitting than traditional fully 
connected layers. We demonstrated the performances with MNIST dataset 
and the test results are encouraging which motivates the possibility of one 
neural network training another via NIN.  
 

INTRODUCTION 
 
Artificial neural networks are computer programs that mimic the behavior of 
interconnected nerve cells or neurons  and are capable of learning for 
themselves which will be essential for the operation of future quantum 



computers : quantum error correction. With sufficient training this approach 
of using artificial neural networks will outstrip other error-correction 
strategies. 

In quantum computers, the quantum information i.e. quantum bit or qbit is 
highly sensitive to noise from its environment and the quantum information  
needs regular repairs – that is quantum error correction. 

Essentially, we need to preserve a pattern representing a certain quantum 
state of qbit pieces and these are the quantum error correction operations. 
The quantum error correction role is performed by artificial neural networks 
as they can even outstrip correction strategies devised by intelligent human 
minds. However, one artificial neural network alone is not enough as it can 
only gather small amounts of information about the state of the quantum 
bits. 

The solution comes in the form of an additional neural network that acts as 
a teacher to the first network. With its prior knowledge of the quantum 
computer that is to be controlled, this teacher network is able to train the 
other network and thus guides toward successful quantum correction. 

 

METHODOLOGY 
 
Artificial neural networks have had a reputation of incorporating prior 
knowledge, and the Bayesian models and the state of art of those – 
Bayesian networks – solve this problem naturally but these models have 
their own known limitations. 
The known strategies for incorporating prior knowledge in to a neural 
network model ( feed forward or recurrent ) are as below : 

 The simplest type of prior knowledge often used is weight                                   
decay. Weight decay assumes the weights come from a 
normal distribution with zero mean and some fixed variance. 
This type of prior is added as an extra term to the loss 
function. 

  Also there are other, less straight forward methods to 
incorporate prior knowledge into neural networks. One of 
them is Data Augmentation i.e. by training the network on 
data perturbed by various class – preserving 
transformations. The data augmentation e.g. by rotation or 
mirroring images, it changes the image but its class ( label ) 



remain the same. The richer set of transformations we use, 
the more prior information is encoded in the model through 
augmented dataset. The other is Regularization Loss 
Terms, similar to weight decay. 

 Semantic Based Regularization ( Soumali Roychoudhury et 
all., 2018 ) as a general and novel way to integrate prior 
knowledge into deep learning. This takes as input the prior 
knowledge, expressed as a collection of first-order logic 
clauses ( FOL ), where each task to be learned corresponds 
to a predicate in the knowledge base. Then, it translates the 
knowledge into a set of constraints which can be either 
integrated into the learning process or used in a collective 
classification step during the test phase. This is realized via 
the same backpropagation schema that runs over the 
expression trees of the grounded FOL clauses. 
 

As there are different methods to incorporate prior knowledge into artificial 
neural networks and however, in this paper we followed the following 
methodology :  

  Conventional Convolutional Neural Network ( Sharing limited field – 
of – view kernels over spatial locations exploits knowledge about 
data which incorporates prior knowledge into the model ) 

  Implementation of Network In Network ( NIN ) 
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We have already heard of image or facial recognition or self—driving cars. 
These are real-life implementations of Convolutional Neural Networks 
(CNNs).  We implement these deep, feed-forward artificial neural networks 
by overcoming overfitting with the regularization technique called “dropout”.  

We have used the MNIST dataset for training and testing the image 
processing. The MNIST database (Modified National Institute of Standards 
and Technology database) is a large database of handwritten digits that is 
commonly used for training various image processing systems. The MNIST 
database contains 60,000 training images and 10,000 testing images. To 
load the data, we first need to download the data from the  link and then 
structure the data in a particular folder format  to be able to work with it. 

From the above, we can see that the training data has a shape of 60000 x 
784: there are 60,000 training samples each of 784-dimensional vector. 
Similarly, the test data has a shape of 10000 x 784, since there are 10,000 
testing samples. 

The 784 dimensional vector is nothing but a 28 x 28 dimensional matrix. 
That's why we will be reshaping each training and testing sample from a 
784 dimensional vector to a 28 x 28 x 1 dimensional matrix in order to feed 
the samples in to the CNN model. 

As a first step, we convert each 28 x 28 image of the train and test set into 
a matrix of size 28 x 28 x 1 which is then fed into the network. 

The Deep Artificial Neural Network 

We used  three convolutional layers: 

 The first layer will have 32-3 x 3 filters,  

 The second layer will have 64-3 x 3 filters and  

 The third layer will have 128-3 x 3 filters.  

In addition, there are three max-pooling layers each of size 2 x 2. 

We used a RELU as our activation function which simply takes the output 
of max_pool and applies RELU. 

Flattening layer: 

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Training_set
https://en.wikipedia.org/wiki/Image_processing


The Output of a convolutional layer is a multi-dimensional Tensor. We want 
to convert this into a one-dimensional tensor. This is done in the Flattening 
layer. We simply used the reshape operation to create a single dimensional 
tensor. 

Fully connected layer: 

 

Now, let’s define and create a fully connected layer. Just like any other 
layer, we declare weights and biases as random normal distributions. In 
fully connected layer, we take all the inputs, do the standard z=wx+b 
operation on it. The Fully Connected Layer has 128 Neurons. 

We added Dropout into the network to overcome the problem of overfitting 
to some extent and also to improve the training and validation accuracy. 
This way, turning off some neurons will not allow the network to memorize 
the training data since not all the neurons will be active at the same time 
and the inactive neurons will not be able to learn anything. 

The Test results show good accuracy between training and validation data 
 

IMAGE CLASSIFICATION USING DEEP LEARNING AND 
PRIOR KNOWLEDGE ( NIN ) 
 

Convolutional networks, operate directly on the images as is. The filters 

(also called kernels) are moved across the image left to right, top to bottom 

as if scanning the image and weighted sum of products are calculated 

between the filter and subset of the image the filter is superimposing on. 

This is the convolution operation. What is to be noted here is that the 

operation is linear. Of course these are then passed through various other 

operations like non-linear activations and pooling. 

Network In Network 

On the other hand, NIN  has a new take on how the convolution filters are 

designed and how we map extracted features to class scores. This formed 

the basis of the inception architecture. Two new concepts were introduced 

in this CNN architecture design: 



 MLPconv: Replaced linear filters with nonlinear Multi Linear 

Perceptrons to extract better features within the receipt field. This 

helped in better abstraction and accuracy. 

 Global Average Pooling: Got rid of the fully connected layers at the 

end thereby reducing parameters and complexity. This was replaced 

by the creation of as many activation maps in the last layer as there 

are classes. This was followed by averaging these maps to arrive at 

final scores, which is passed to softmax. This is performant and more 

intuitive. 

MLPConv 

                             

Linear Convolutional Layer                                     MLPConv Layer 
 

Traditional CNN architectures use linear filters to do the convolution and 

extract features out of images. The early layers try to extract primitive 

features like lines, edges, and corners, while the later layers build on early 

layers and extract higher-level features like eyes, ears, nose etc. These are 

called latent features and  there can be variations in each of those features 

- there can be many different variations in eyes alone. 

NIN introduced the concept of having a neural network itself in place of a 

convolution filter. The input to this mini network would be the convolution, 

and the output would be the value of a neuron in the activation. Hence it 

does not alter the input/output characteristics of traditional filters. This mini 

network, called MLPconv, can then convolved over the input. The benefit of 

having such an arrangement is two-fold: 

 It is compatible with the backpropagation logic of neural 

nets, thus this fits well into existing architectures of CNN’s 



 It can itself be a deep model leading to rich separation 

between latent features 

Global Average Pooling 

In traditional CNN architectures, the feature maps of the last convolution 

layer are flattened and passed on to one or more fully connected layers, 

which are then passed on to softmax logistics layer for spitting out class 

probabilities. The issue with this approach is that it is hard to decode how 

the usual fully connected layers seen at the end of CNN architectures map 

to class probabilities. They are black boxes between the convolution layers 

and the classifier. They are also prone to overfitting and come with lots of 

parameters to train. An estimate says that the last FC layers contain 90% 

of the parameters of the network. 

In the approach proposed by the NIN,  the last MLPconv layer produces as 

many activation maps as the number of classes being predicted. Then, 

each map is averaged giving rise to the raw scores of the classes. These 

are then fed to a SoftMax layer to produce the probabilities, totally making 

FC layers redundant. 

The advantages of this approach are: 

 The mapping between the extracted features and the class scores 

is more intuitive and direct. The feature can be treated as category 

confidence. 

 An implicit advantage is that there are no new parameters to train 

(unlike the FC layers), leading to less overfitting. 

 Global average pooling sums out the spatial information, thus it is 

more robust to spatial translations of the input. 

 



 

              Overall Structure of Network In Network (NIN) 

Thus, the above is the overall structure of NIN with global average 
pooling at the end. 

The overall structure of NIN is a stack of mlpconv layers, on top of which lie 
the global average pooling layer. 

The number and size of layers are as in Conventional CNN except for two 
mlpconv( 1X1 ) layers between convolutional layers and avgpool( 8X8 ) 
layer at the end. Also, we have applied a dropout of 0.5. 

We have used the MNIST dataset for training and testing the image 
processing implementation  in the approach as proposed  by the NIN. 
 

RESULTS 
 
It is observed that NIN does indeed help with the gain in overall accuracy in 
comparison to Conventional CNN due to combination of mlpconv, 
globalavgpool and dropout. 
 

CONCLUSION 
 
Quantum Computers where the quantum states are extremely sensitive to 
constant interference from their environment and to combat this using 
active protection for quantum error correction system based on artificial 
neural networks, that are capable of learning by themselves,  is presented. 
We proposed a conventional CNN and a novel deep network called “ 
Network In Network “ ( NIN ) which consists of mlpconv layers & a global 



average pooling layer for classification tasks. With these two components 
of NIN we demonstrated classification performance on MNIST dataset. The 
test results are encouraging and this motivates the possibility of one neural 
network training another via NIN. 
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