
EasyChair Preprint
№ 11885

Analyzing the Impact of Service Design on
Maintainability Factor in Microservices
Architecture

Gintoro, Ford Lumban Gaol, Haryono Soeparno and Yulyani Arifin

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 29, 2024



XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Analyzing the Impact of Service Design on 

Maintainability Factor in Microservices Architecture 

Gintoro  
Computer Science Department, 

BINUS Graduate Program – 
Doctor of Computer Science, 
Bina Nusantara University 
Jakarta, Indonesia 11480 

gintoro@binus.ac.id 
 

Ford Lumban Gaol 
Computer Science Department, 

BINUS Graduate Program – 
Doctor of Computer Science, 

Bina Nusantara University 
Jakarta, Indonesia 11480 

fgaol@binus.edu 
 

Haryono Soeparno 
Computer Science Department, 

BINUS Graduate Program – 
Doctor of Computer Science, 

Bina Nusantara University 
Jakarta, Indonesia 11480 

haryono@binus.edu 
 

Yulyani Arifin 
Computer Science Department, 

BINUS Graduate Program – 
Doctor of Computer Science, 
Bina Nusantara University 
Jakarta, Indonesia 11480 

yarifin@binus.edu

Abstract— Applications designed utilizing Microservices 

Architecture (MSA) provide the desirable trait of good 

maintainability.   To ensure optimal maintainability, it is 

important to provide services that are suitable and adhere to 

prescribed rules.   Multiple aspects must be taken into account 

while designing services to ensure optimal maintainability.   The 

objective of this study is to examine the elements that impact the 

capacity to sustain and improve maintainability in service design, 

ultimately resulting in an application that possesses strong 

maintainability.   The Systematic Literature Review (SLR) will be 

utilized to identify variables and strategies for their enhancement, 

by examining pertinent publications on the subject.   After 

examining 45 publications, the study discovered 8 elements and 14 

solutions that can enhance the highlighted parameters throughout 

the services design process.   The outcomes of this systematic 

literature review (SLR) are anticipated to give valuable insights to 

application developers, empowering them to generate service 

designs that exhibit commendable maintainability for the 

developed applications.       

Keywords—microservices, maintainability, service design, 

change request 

I. INTRODUCTION 

Application architecture is an essential consideration in the 
current environment of application development, requiring 
careful planning from the beginning.   Utilizing a suitable 
application architecture is a critical determinant of success 
when creating apps that can effectively fulfill user requirements 
[1].   Microservices Architecture (MSA) is a highly popular 
application development architecture that is widely used in the 
field of application development [2].   Application developers 
typically accept this architecture both during the original 
construction and while migrating monolithic-based apps to 
MSA.   Developers do this task to use the potential of MSA in 
the construction or upkeep of applications for future purposes 
[2].  

One compelling argument for application developers to 
embrace or transition to MSA is its inherent potential for 
maintainability [2].   The importance of maintainability is 
paramount given the fast progression of the corporate 
landscape, which necessitates prompt modifications in existing 
or ongoing application development [3].   The rapid adoption 
of modification requests may be utilized as a strategic 

advantage in the business sector to provide a competitive edge 
for the company [4].  

In order to achieve this capacity to be easily maintained, it 
is imperative to have a well-defined and accurate service 
architecture inside the Microservices Architecture (MSA).   
Flawed design, also known as anti-patterns, can result in 
problems or difficulties that develop in the program later on, 
thereby reducing the maintainability of an application designed 
using MSA [2], [5].  

The objective of this work is to examine the elements that 
might impact the maintainability of a service design in systems 
based on Microservices Architecture (MSA) and propose 
strategies to improve these characteristics during the service 
design phase.   The deliberation will be carried out employing 
the Systematic Literature Review (SLR) approach on articles 
pertaining to the subject matter, released during the timeframe 
of 2018 to 2023.  

Previous studies have extensively researched the 
maintainability factor of Microservices Architecture (MSA), 
with a focus on its characteristics and measurement. However, 
this study specifically examines the quality of the 
maintainability factor in service design.    

This study will be organized into four sections to thoroughly 
examine the elements that impact application maintainability.   
Section two will provide an in-depth analysis of the SLR 
technique utilized and its resulting effects.   Section three will 
analyze and report the results of the systematic literature review 
(SLR), while section four will provide a concise summary of 
these findings.  

 

II. RESEARCH METHODOLOGY 

This study utilizes the Systematic Literature Review (SLR) 
approach to discover the parameters that affect the 
maintainability characteristics of an application created using 
MSA and to determine how to improve these factors. The goal 
is to enable the efficient management of change requests.   

According to Kitchenham's works, the Systematic Literature 
Review (SLR) research technique consists of a structured series 
of steps for gathering, identifying, and thoroughly examining 



existing research papers [6].   The subsequent section will 
elucidate the steps entailed in performing a Systematic 
Literature Review (SLR), referencing Kitchenham's 
elucidations.  

A. Research Questions 

In order to initiate the Systematic Literature Review (SLR) 

process, two research questions will be formulated. These 

questions will specifically target the aims of this study and 

will serve as the fundamental basis for the next stages of the 

SLR process.   The following are the two research inquiries:  

RQ1: What are the variables that influence the 

maintainability of MSA service design?   

The initial inquiry will concentrate on determining the 

elements that might impact the service design in an MSA-

based application in order to improve its maintainability.  

RQ2: How may the maintainability of service design be 
enhanced by improving relevant factors?  

Once these characteristics have been recognized, the 

subsequent inquiry will center on endeavors to improve 

them, aiming to generate service designs with commendable 

maintainability. 

  

B. Search Strategy and Process 

The process of searching for papers will commence by 

defining keywords that can address the two research 

questions previously defined above. The identification of 

keywords will be carried out for both of the aforementioned 

research questions, along with the identification of words 

that are synonyms of the identified keywords. Next, from 

these keywords, a search string will be constructed to search 

for a list of papers from the specified paper repositories. The 

following is the search string that will be used for the search: 

TITLE-ABSTR-KEY(("Microservices" OR "Microservice" 
OR "Microservices Architecture") AND ("Change Request" 

OR "Change Impact" OR "Software Update" OR 

"Maintainability" OR "Maintainability Metrics" OR 

"Software Design Quality Metrics")). 

The search is focused on four major paper repositories 

commonly used in Software Engineering research, with the 

search criteria limited to papers published between 2018 

and 2023. Only papers from conferences and journals are 

included, and they must be in English. Based on the search 

criteria, a search string was used to locate papers. The 

results included 440 papers, out of these 202 were selected 
as potential candidate papers after reviewing their titles and 

keywords, Table I below displays these search results 

according to search string usage and selected criteria: 

TABLE I.  DIGITAL LIBRARY SEARCH RESULT 

No. Digital Library Found Candidate Selected 

1. 
ACM Digital Library 

(http://portal.acm.org) 
20 9 3 

2. 
IEEE Digital Library  

(http://ieeexplore.ieee.org) 
169  100 32 

3. 
Science@Direct  

(http://www.sciencedirect.com) 
29 29 4 

No. Digital Library Found Candidate Selected 

4.  
Springer Link  

(http://link.springer.com) 
222 64 6 

Total Papers Selected 440 202 45 

 

C. Study Selection 

The selection of papers for further research from the list of 

papers found in the digital library will be based on selection 

criteria as shown in Table II below: 

TABLE II.  SELECTION CRITERIA 

Inclusion Criteria Exclusion Criteria 

I1. Studies related to or 

mentioning factors that impact 

the maintainability of services 

design. 

 

I2. Studies related to how to 

enhance those factors to produce 

service designs with good 

maintainability. 

E1. Studies are not written in 

English. 

 

E2. Studies are an editorial, 

book, article, opinion, or 

technical report. 

 

E3. Studies only focus on 

microservices and do not 

consider their impact on 

maintainability. 

From the selection results using the criteria in Table II, out 

of the 202 papers identified in the abstracts above, 45 papers 

were further selected for in-depth research to find answers 

to both research questions. Table I presents the further 

selection results from each digital library. 

 

D. Data Extraction 

In order to maintain consistency in the data obtained from 

the chosen publications, the research procedure for the 45 

studies will utilize certain criteria for data collection, as 

outlined in Table III.   The data gathering criteria are 

associated with solving the pre-established study topics. 

TABLE III.  DIGITAL EXTRACTION FORMS 

Data Field Notes 

F1. Factors that can influence 

the service design in an MSA-

based application to enhance its 

maintainability 

Related with RQ1 

F2. How the improve the factor Related with RQ2 

 

E. Data Synthesis 

The synthesis of outcomes will rely on the results produced 

from the prior data extraction phase.   In order to determine 

the elements in service design that impact the 

maintainability of applications, each of these elements will 
be correlated with the papers that specifically address them, 

one by one.   The conversation is classified as either direct 

discussion or solely derived from the article.   A factor will 

be awarded a score of 1 for explicit discussion, whilst a 

value of 0.5 will be assigned for discussion that is indirectly 

mentioned in the work.   By summing up the values for each 

element, we can identify the 8 factors with the greatest 



values. These factors are regularly covered throughout the 

publications.   The following elements will be examined 

thoroughly, and subsequently, solutions will be sought for 

the second research question on how to improve these 

characteristics in the service design process based on the 
chosen articles. 

 

III. RESULT AND DISCUSSION 

A. Variables That Influence the Maintainability of 

Microservices Architecture (MSA) Service Design 

Upon completing the examination of the documents and 
conducting the process of data synthesis, the outcomes have 
been acquired and displayed in Table IV.   Among the 45 
publications that underwent examination, 36 of them addressed 
the elements that influence maintainability during service 
design, whether directly or implicitly.   The remaining 9 studies 
did not address these factors, however, they did offer insights on 
enhancing them.   Table IV presents the distribution of these 
parameters based on the data collected from the 36 studies.   The 

symbol "●" denotes that the paper expressly addresses the 

factors, whereas the symbol "○" implies that the document does 

not clearly mention them.   The use of the "-" symbol signifies 
the omission of these issues in the paper's discussion.   Research 
from the study suggests that the frequency of discussion of a 
certain issue in the examined studies reflects its level of effect.  

According to the weighting computations, the examined 
publications identified coupling as the most influential 
component, with a weight of 17.5.   The ranking of the factors, 
in descending order, is as follows: modifiability (16), modularity 
(13), complexity (11), testability (8), cohesion (6.5), size (5.5), 
and reusability (2.5). 

The following are factors that affect maintainability when 
designing services:  

1. Coupling refers to the degree of connection between 
modules, indicating the level of interdependence among 
them.   In the context of MSA, coupling refers to the 
interconnections between different services.   Increased 
coupling between microservices can lead to more 
complexity, resulting in reduced testability and modularity 
[7], [8].  

2. Modifiability is a sub-characteristic of maintainability, 
according to the ISO 25010 software quality standard. It 
pertains to the ability to modify goods or systems without 
introducing flaws or reducing the quality of the current 
product.   Modifiability refers to the degree of simplicity 
with which a system may be adjusted or altered to 
accommodate new requirements, difficulties, or to address 
them [9].  

3. Modularity is a design paradigm that entails dividing 
systems into smaller, autonomous components, known as 
modules, each of which carries out a distinct purpose.   
Subsequently, each of these modules may be individually 
designed, tested, and updated, resulting in enhanced 
maintainability, modifiability, and reusability of the entire 
system [4], [9].  

4. Complexity pertains to the extent of interconnectedness and 
interdependencies across different microservices inside a 
system.   This encompasses factors such as the quantity of 
services, their interconnections, and the efficient 
management and coordination of all of them.   The 
heightened intricacy of a system can render it more 
challenging to comprehend, alter, and sustain, while also 
amplifying the likelihood of errors and system downtime 
hazards [10].   

5. Testability refers to the capacity of a system to reveal its 
flaws through testing that involves executing it [2].   The 
presence of high testability allows for the effective detection 
and resolution of problems within its framework, leading to 
enhanced dependability and ease of maintenance [5], [11].  

6. In the context of MSA, cohesion refers to the degree to which 
the components inside a microservice are interconnected and 
how tightly their tasks are related to each other.   Attaining 
strong cohesiveness inside a microservice in a microservices 
architecture (MSA) is advantageous as it results in enhanced 
modularity and maintainability [8].   

7. The size of a service can have a significant impact on its 
maintainability.   Smaller services are often more 
comprehensible, modifiable, and testable for administrators 
and developers, hence improving their maintainability [2], 
[12].   

8. Reusability pertains to the capacity of a microservice to be 
employed in different contexts or applications.   This implies 
that the design and implementation of the system should be 
done in such a way that it may be used again in various 
sections of an application, and possibly in separate 
applications as well [9]. 

As discussed earlier, coupling is an essential aspect in 
service design to ensure the maintainability of an MSA-based 
application. However, it is not the only factor that needs to be 
considered in the service design process. Seven other factors are 
also crucial, as they are interrelated and contribute to developing 
an application that can quickly accommodate change requests.  

Therefore, it is important to factor in all these aspects during 
the service design process. 

 

B. How May the Maintainability of Service Design be 

Enhanced by Improving Relevant Factors? 

Following discussion on the factors of service design that 
can impact maintainability, the discussion will move on to the 
second research question, which is how to enhance these factors 
in order to produce service designs with good maintainability. 
According to the review conducted on papers related to the 
second research question, here are strategies that can be done to 
improve those 8 factors: 

1. Design for Single Responsibility, each microservice should 
be created to do one task well and this reduces dependency 
between services, making them simpler to maintain and less 
likely to be affected by changes elsewher



TABLE IV.  VARIABLES THAT INFLUENCE THE MAINTAINABILITY OF MICROSERVICES ARCHITECTURE (MSA) SERVICE DESIGN 

Studies CL MY MD CX TT CH SZ RS  Studies CL MY MD CX TT CH SZ RS 

 [8] ● ● ● - - - ● -  [13] - - - - ● - - - 

 [14] ● - ● ● - ● - ○  [3] ● ● - ● - ● ● - 

[9] ● ● ● - - - - -  [15] ● - - ● - ○ - - 

[16] - - - ● - - ● -  [17] - ● - - - - - - 

[18] ○ ● ○ ● - - - -  [19] - - ○ - - - - - 

[20] ● ● - - - ● - -  [21] - - ● ● ● - ○ - 

[22] - ● - - - - - -  [23] ● ● - - - ○ ● ● 
[24] - - - - ● - - -  [25] - - ● - - - - - 

[26] ● - ● - - - - -  [27] ● ● - - ○ - - - 

[28] - - ● ○ - - - -  [29] - - ● ● - - - - 

[30] ● ● - - ● ● - -  [4] ● - ● - - - - - 

[31] - ● - - - ● - -  
[5] - - - ● ● - - - 

[32] ● - - - ○ - - -  [33] - ● - - - - - - 

[34] ● - ● ● ● - - -  
[35] ○ - - - - - - - 

[36] - - ○ - - - - -  [37] - ● ● ○ - - - - 

[38] - ● - - - - ● -  
[39] - - - - ● - - - 

[40] ○ - - - - - - -  [41] ● - - - - ○ - ● 

[42] ● ● - - - - - -  
[1] ● ● ● ● - - - - 

                  Total Weight 17.5 16 13 11 8 6.5 5.5 2.5 

 

CL: Coupling; MY: Modifiability; MD: Modularity; CX: Complexity; TT: Testability; CH: Cohesion; SZ: Size; RS: Reusability 

●: Mentioned by the studies (weight 1)      ○: Not explicitly mentioned by the studies (weight 0.5)         -: Not mentioned by the studies (weight 0) 

2. Decentralize Data Management, microservices should 
utilize their own private databases in order to ensure data 
consistency and reduce synchronization needs between 
services, making maintenance simpler. By eliminating 
dependencies between services, coupling can be reduced 
drastically making them simpler to maintain [24]. 

3. Use Published Interfaces, microservices should 
communicate with one another using clearly delineated, 
published interfaces that make the relationship between them 
simpler by only needing know about their interface rather 
than its inner workings [4]. 

4. Avoid Over-Coupling, when microservices depend on each 
other for their functionality, they become over-coupled. This 
makes maintenance difficult as changes to one service may 
affect others; to prevent this issue from arising, design your 
services so they are as independent of one another as possible 
[4]. 

5. Reduce Business Coupling Between Services, when the 
business logic of two services are tightly interdependent, any 
problems in either one could cause difficulties in others. To 
reduce this risk, design services to be as independent from 
one another in terms of their business logic as possible [26].  

6. Consider the Size of Microservices, a microservice's size can 
greatly influence its ability to interact with other services. 

Larger microservices often have more interactions between 
themselves and other services, which makes maintenance 
harder. Consider breaking large microservices down into 
more manageable chunks [4].  

7. Use Connectivity Patterns, the way in which service 
members connect can have a major effect on its 
maintainability, so use connectivity patterns that reduce 
coupling to make service maintenance simpler [4], [44]. 

8. Separate Persistency, when each microservice has its own 
database, modularity and modifiability increase [9]. 

9. Appropriate Service Relationships, such as using separate 
databases for each microservice, increase both modularity 
and modifiability [9]. 

10. Right Cuts, having appropriate cuts promotes modularity as 
functionalities are properly divided and not spread across 
various microservices, meaning changes will only impact 
one or two services when implemented, making maintenance 
and scaling of systems easier [9].  

11. Separate Libraries, separating libraries promotes modularity 
because microservices become more autonomous. 
Modifiability is increased significantly while fault tolerance 
increases as misbehaving libraries won't impact other 
microservices [9]. 

 



TABLE V.  MAPPING VARIABLES AND IMPROVEMENT STRATEGY 

  Factors that Impact Maintainability in Service Design 

No. Strategy to Improve Those Factor CL MY MD CX TT CH SZ RS 

1 Design for Single Responsibility V V V V V V V - 

2 Decentralize Data Management V V V V V V V - 

3 Use Published Interfaces V V - V V - - - 

4 Avoid Over-Coupling V - - V - - V - 

5 Reduce Business Coupling Between Services V V - V - - V - 

6 Consider the Size of Microservices V V - V - - - - 

7 Use Connectivity Patterns V - - V - - - - 

8 Separate Persistency - V V - - - - - 

9 Appropriate Service Relationship - V V - - - - - 

10 Right Cuts - - V - - - - V 

11 Separate Libraries - - V - - - - V 

12 Non-ESB Microservices - V V - - - - V 

13 Domain-Driven Design - - - - - V V - 

14 Bounded Context - - - - - V V - 

CL: Coupling; MY: Modifiability; MD: Modularity; CX: Complexity; TT: Testability; CH: Cohesion; SZ: Size; RS: Reusability 

V: Strategy to improve the factor       - : Improvement strategy not related with the factor 

12. Non-ESB Microservices, not having ESB microservices 
makes the system less complex and enhances modularity. An 
ESB microservice can be a single point of failure, and hence 
fault tolerance is higher when having less number of ESB 
microservices [9], [45]. 

13. Domain-Driven Design, or DDD, involves developing 
microservices around business domains for optimal 
cohesion. All functionality within each microservice will 
relate directly to its purposeful business domain [2], [46].  

14. Bounded Context, is a central pattern in Domain-Driven 
Design that defines the scope within which models apply and 
provides consistency of meaning and language use across 
models within that context. This approach increases 
cohesion as all functionality within microservices relates 
back to one specific environment [2].   

 The Table V shows how each strategy can be utilized to 
enhance the identified factors. By analyzing the mapping of 
these strategies and factors, the second research question can be 
answered. This involves increasing the factors using the 
strategies that have been obtained from the review paper. To 
produce a service design with good maintainability, it is 
essential to consider two significant strategies - design for single 
responsibility and decentralized data management. These 
strategies are highly effective in improving seven out of eight 
influential factors. Thus, it is highly recommended to employ 
these strategies while designing services. The contribution of 
this study is to give new insight about factors and strategies to 
improve maintainability in designing the services in 
Microservices Architecture (MSA). With this insight, service 
designers can design applications with a good level of 
maintainability, while for academics this insight will be able to 
provide a basis for the research of good service design by paying 
attention to the factors that affect the maintainability of an 
application. 

 

IV. CONCLUSION 

With the rapid development of today's business world, the 
demand for change requests in software is one of the most 
frequent in software development activities. Microservices 
Architecture (MSA) adoption is one of the answers to help 
application developers respond quickly to change requests. 
Proper and good service design factors in applications built with 
Microservices Architecture (MSA), will help improve the 
maintainability of the application. The paper conducts 
systematic literature review (SLR) study to identify factors that 
can influence the service design in a Microservices Architecture 
(MSA)-based application to enhance its maintainability and the 
strategy to improve those factors.  

Based on review in the 45 papers from the systematic 
literature review (SLR) process, conducted with Kitchenham 
stages, 8 factors that can influence the service design were 
obtained. The service designer in Microservices Architecture 
(MSA) needs to focus on studying and improving eight 
important factors, which are coupling, modifiability, 
modularity, testability, cohesion, size, and reusability.  In this 
study, strategies to enhance these factors during the service 
design process have been discussed. One such strategy is the 
implementation of the Single Responsibility Principle, which 
aims to ensure that each service has only one function. This 
helps keep the size of the services small and less complex. 
However, one limitation of this paper is that it does not involve 
practical service designers or companies that have already used 
service design in Microservices Architecture (MSA). Therefore, 
the proposed strategies and factors may still need improvement 
to make them more relevant.  

Due respect to another paper, this research seeks new 
novelty in finding factors and strategies to enhance those factors, 
that influence the maintainability of Microservices Architecture 
(MSA) service design. For the future study from this paper, 
besides involving Microservices Architecture (MSA) service 



design practitioner, some measurement techniques for each 
factor can be deployed to measure each factor, before the 
services design is implemented in the software development 
stage. 

 

REFERENCES 

[1] R. Mishra, N. Jaiswal, R. Prakash, and P. N. Barwal, “Transition from 

Monolithic to Microservices Architecture: Need and proposed 

pipeline,” in 2022 International Conference on Futuristic Technologies 

(INCOFT), Belgaum, India: IEEE, Nov. 2022, pp. 1–6. doi: 

10.1109/INCOFT55651.2022.10094556. 

[2] S. Li et al., “Understanding and addressing quality attributes of 

microservices architecture: A Systematic literature review,” 

Information and Software Technology, vol. 131, p. 106449, Mar. 2021, 

doi: 10.1016/j.infsof.2020.106449. 

[3] M. H. Hasan, Mohd. H. Osman, N. I. Admodisastro, and M. S. 

Muhammad, “From Monolith to Microservice: Measuring Architecture 

Maintainability,” IJACSA, vol. 14, no. 5, 2023, doi: 

10.14569/IJACSA.2023.0140591. 

[4] C. Zhong, H. Zhang, C. Li, H. Huang, and D. Feitosa, “On measuring 

coupling between microservices,” Journal of Systems and Software, 

vol. 200, p. 111670, Jun. 2023, doi: 10.1016/j.jss.2023.111670. 

[5] T. Schirgi and E. Brenner, “Quality Assurance for Microservice 

Architectures,” in 2021 IEEE 12th International Conference on 

Software Engineering and Service Science (ICSESS), Beijing, China: 

IEEE, Aug. 2021, pp. 76–80. doi: 

10.1109/ICSESS52187.2021.9522227. 

[6] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, 

and S. Linkman, “Systematic literature reviews in software engineering 

– A systematic literature review,” Information and Software 

Technology, vol. 51, no. 1, pp. 7–15, Jan. 2009, doi: 

10.1016/j.infsof.2008.09.009. 

[7] R. C. Amantha Hutapea, A. P. Wahyudi, and Suhardi, “Design Quality 

Measurement for Service Oriented Software on Service Computing 

System: a Systematic Literature Review,” in 2018 International 

Conference on Information Technology Systems and Innovation 

(ICITSI), Bandung - Padang, Indonesia: IEEE, Oct. 2018, pp. 375–380. 

doi: 10.1109/ICITSI.2018.8696092. 

[8] R. Yilmaz and F. Buzluca, “A Fuzzy Quality Model to Measure the 

Maintainability of Microservice Architectures,” in 2021 2nd 

International Informatics and Software Engineering Conference 

(IISEC), Ankara, Turkey: IEEE, Dec. 2021, pp. 1–6. doi: 

10.1109/IISEC54230.2021.9672417. 

[9] S. Pulnil and T. Senivongse, “A Microservices Quality Model Based on 

Microservices Anti-patterns,” in 2022 19th International Joint 

Conference on Computer Science and Software Engineering (JCSSE), 

Bangkok, Thailand: IEEE, Jun. 2022, pp. 1–6. doi: 

10.1109/JCSSE54890.2022.9836297. 

[10] M. Garriga, “Towards a Taxonomy of Microservices Architectures,” in 

Software Engineering and Formal Methods, vol. 10729, A. Cerone and 

M. Roveri, Eds., in Lecture Notes in Computer Science, vol. 10729. , 

Cham: Springer International Publishing, 2018, pp. 203–218. doi: 

10.1007/978-3-319-74781-1_15. 

[11] T. Vassiliou-Gioles, “A simple, lightweight framework for testing 

RESTful services with TTCN-3,” in 2020 IEEE 20th International 

Conference on Software Quality, Reliability and Security Companion 

(QRS-C), Macau, China: IEEE, Dec. 2020, pp. 498–505. doi: 

10.1109/QRS-C51114.2020.00089. 

[12] F. Fahmi, P.-S. Huang, and F.-J. Wang, “Detecting Artifact Anomalies 

in Microservice-Based Financial Applications,” in 2020 IEEE 

International Conference on Services Computing (SCC), Beijing, 

China: IEEE, Nov. 2020, pp. 418–421. doi: 

10.1109/SCC49832.2020.00061. 

[13] F. Osses, G. Márquez, and H. Astudillo, “Exploration of academic and 

industrial evidence about architectural tactics and patterns in 

microservices,” in Proceedings of the 40th International Conference on 

Software Engineering: Companion Proceeedings, Gothenburg 

Sweden: ACM, May 2018, pp. 256–257. doi: 

10.1145/3183440.3194958. 

[14] K. Sellami, M. A. Saied, and A. Ouni, “A Hierarchical-DBSCAN 

Method for Extracting Microservices from Monolithic Applications.” 

arXiv, Jun. 14, 2022. Accessed: Oct. 12, 2023. [Online]. Available: 

http://arxiv.org/abs/2206.07010 

[15] L. Cao and C. Zhang, “Implementation of Domain-oriented 

Microservices Decomposition based on Node-attributed Network,” in 

2022 11th International Conference on Software and Computer 

Applications, Melaka Malaysia: ACM, Feb. 2022, pp. 136–142. doi: 

10.1145/3524304.3524325. 

[16] D. Guo and H. Wu, “A Review of Bad Smells in Cloud-based 

Applications and Microservices,” in 2021 International Conference on 

Intelligent Computing, Automation and Systems (ICICAS), Chongqing, 

China: IEEE, Dec. 2021, pp. 255–259. doi: 

10.1109/ICICAS53977.2021.00059. 

[17] M. H. Hasan, M. H. Osman, N. I. Admodisastro, and M. S. Muhammad, 

“Legacy systems to cloud migration: A review from the architectural 

perspective,” Journal of Systems and Software, vol. 202, p. 111702, 

Aug. 2023, doi: 10.1016/j.jss.2023.111702. 

[18] M. I. Joselyne, G. Bajpai, and F. Nzanywayingoma, “A Systematic 

Framework of Application Modernization to Microservice based 

Architecture,” in 2021 International Conference on Engineering and 

Emerging Technologies (ICEET), Istanbul, Turkey: IEEE, Oct. 2021, 

pp. 1–6. doi: 10.1109/ICEET53442.2021.9659783. 

[19] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kroger, 

“Microservice Decomposition via Static and Dynamic Analysis of the 

Monolith,” in 2020 IEEE International Conference on Software 

Architecture Companion (ICSA-C), Salvador, Brazil: IEEE, Mar. 2020, 

pp. 9–16. doi: 10.1109/ICSA-C50368.2020.00011. 

[20] R. Capuano and H. Muccini, “A Systematic Literature Review on 

Migration to Microservices: a Quality Attributes perspective,” in 2022 

IEEE 19th International Conference on Software Architecture 

Companion (ICSA-C), Honolulu, HI, USA: IEEE, Mar. 2022, pp. 120–

123. doi: 10.1109/ICSA-C54293.2022.00030. 

[21] C.-Y. Li, S.-P. Ma, and T.-W. Lu, “Microservice Migration Using 

Strangler Fig Pattern: A Case Study on the Green Button System,” in 

2020 International Computer Symposium (ICS), Tainan, Taiwan: IEEE, 

Dec. 2020, pp. 519–524. doi: 10.1109/ICS51289.2020.00107. 

[22] H. R. Lima, K. C. Souza, L. V. De Paula, L. M. C. E Martins, W. F. 

Giozza, and R. T. De Sousa, “Acceptance Tests over Microservices 

Architecture using Behaviour-Driven Development,” in 2021 16th 

Iberian Conference on Information Systems and Technologies (CISTI), 

Chaves, Portugal: IEEE, Jun. 2021, pp. 1–6. doi: 

10.23919/CISTI52073.2021.9476643. 

[23] R. A. Schmidt and M. Thiry, “Microservices identification strategies : 

A review focused on Model-Driven Engineering and Domain Driven 

Design approaches,” in 2020 15th Iberian Conference on Information 

Systems and Technologies (CISTI), Sevilla, Spain: IEEE, Jun. 2020, pp. 

1–6. doi: 10.23919/CISTI49556.2020.9141150. 

[24] S. S. De Toledo, A. Martini, P. H. Nguyen, and D. I. K. Sjoberg, 

“Accumulation and Prioritization of Architectural Debt in Three 

Companies Migrating to Microservices,” IEEE Access, vol. 10, pp. 

37422–37445, 2022, doi: 10.1109/ACCESS.2022.3158648. 

[25] J. Bogner, J. Fritzsch, S. Wagner, and A. Zimmermann, “Microservices 

in Industry: Insights into Technologies, Characteristics, and Software 

Quality,” in 2019 IEEE International Conference on Software 

Architecture Companion (ICSA-C), Hamburg, Germany: IEEE, Mar. 

2019, pp. 187–195. doi: 10.1109/ICSA-C.2019.00041. 

[26] X. Zuo, Y. Su, Q. Wang, and Y. Xie, “An API gateway design strategy 

optimized for persistence and coupling,” Advances in Engineering 

Software, vol. 148, p. 102878, Oct. 2020, doi: 

10.1016/j.advengsoft.2020.102878. 

[27] P. Bacchiega, I. Pigazzini, and F. A. Fontana, “Microservices smell 

detection through dynamic analysis,” in 2022 48th Euromicro 

Conference on Software Engineering and Advanced Applications 

(SEAA), Gran Canaria, Spain: IEEE, Aug. 2022, pp. 290–293. doi: 

10.1109/SEAA56994.2022.00052. 

[28] V. Lakhai, O. Kuzmych, and M. Seniv, “An improved approach to the 

development of software with increased requirements for flexibility and 

reliability in terms of creating small and medium-sized projects,” in 

2022 IEEE 17th International Conference on Computer Sciences and 

Information Technologies (CSIT), Lviv, Ukraine: IEEE, Nov. 2022, pp. 

474–477. doi: 10.1109/CSIT56902.2022.10000787. 



[29] K. Sooksatra, R. Maharjan, and T. Cerny, “Monolith to Microservices: 

VAE-Based GNN Approach with Duplication Consideration,” in 2022 

IEEE International Conference on Service-Oriented System 

Engineering (SOSE), Newark, CA, USA: IEEE, Aug. 2022, pp. 1–10. 

doi: 10.1109/SOSE55356.2022.00007. 

[30] J. Gong and L. Cai, “Analysis for Microservice Architecture 

Application Quality Model and Testing Method,” in 2023 26th ACIS 

International Winter Conference on Software Engineering, Artificial 

Intelligence, Networking and Parallel/Distributed Computing (SNPD-

Winter), Taiyuan, Taiwan: IEEE, Jul. 2023, pp. 141–145. doi: 

10.1109/SNPD-Winter57765.2023.10223960. 

[31] M. G. Moreira and B. B. N. De França, “Analysis of Microservice 

Evolution using Cohesion Metrics,” in Proceedings of the 16th 

Brazilian Symposium on Software Components, Architectures, and 

Reuse, Uberlandia Brazil: ACM, Oct. 2022, pp. 40–49. doi: 

10.1145/3559712.3559716. 

[32] S. Soares De Toledo, A. Martini, A. Przybyszewska, and D. I. K. 

Sjoberg, “Architectural Technical Debt in Microservices: A Case Study 

in a Large Company,” in 2019 IEEE/ACM International Conference on 

Technical Debt (TechDebt), Montreal, QC, Canada: IEEE, May 2019, 

pp. 78–87. doi: 10.1109/TechDebt.2019.00026. 

[33] J. A. Valdivia, X. Limon, and K. Cortes-Verdin, “Quality attributes in 

patterns related to microservice architecture: a Systematic Literature 

Review,” in 2019 7th International Conference in Software 

Engineering Research and Innovation (CONISOFT), Mexico City, 

Mexico: IEEE, Oct. 2019, pp. 181–190. doi: 

10.1109/CONISOFT.2019.00034. 

[34] Y. Zhang, B. Liu, L. Dai, K. Chen, and X. Cao, “Automated 

Microservice Identification in Legacy Systems with Functional and 

Non-Functional Metrics,” in 2020 IEEE International Conference on 

Software Architecture (ICSA), Salvador, Brazil: IEEE, Mar. 2020, pp. 

135–145. doi: 10.1109/ICSA47634.2020.00021. 

[35] S. Speth, “Semi-automated Cross-Component Issue Management and 

Impact Analysis,” in 2021 36th IEEE/ACM International Conference 

on Automated Software Engineering (ASE), Melbourne, Australia: 

IEEE, Nov. 2021, pp. 1090–1094. doi: 

10.1109/ASE51524.2021.9678830. 

[36] A. Steffens, H. Lichter, and J. S. Döring, “Designing a next-generation 

continuous software delivery system: concepts and architecture,” in 

Proceedings of the 4th International Workshop on Rapid Continuous 

Software Engineering, Gothenburg Sweden: ACM, May 2018, pp. 1–

7. doi: 10.1145/3194760.3194768. 

[37] F. Ponce, J. Soldani, H. Astudillo, and A. Brogi, “Should Microservice 

Security Smells Stay or be Refactored? Towards a Trade-off Analysis,” 

in Software Architecture, vol. 13444, I. Gerostathopoulos, G. Lewis, T. 

Batista, and T. Bureš, Eds., in Lecture Notes in Computer Science, vol. 

13444. , Cham: Springer International Publishing, 2022, pp. 131–139. 

doi: 10.1007/978-3-031-16697-6_9. 

[38] S. Dalla Palma, M. Garriga, D. Di Nucci, D. A. Tamburri, and W.-J. 

Van Den Heuvel, “DevOps and Quality Management in Serverless 

Computing: The RADON Approach,” in Advances in Service-Oriented 

and Cloud Computing, vol. 1360, C. Zirpins, I. Paraskakis, V. 

Andrikopoulos, N. Kratzke, C. Pahl, N. El Ioini, A. S. Andreou, G. 

Feuerlicht, W. Lamersdorf, G. Ortiz, W.-J. Van Den Heuvel, J. Soldani, 

M. Villari, G. Casale, and P. Plebani, Eds., in Communications in 

Computer and Information Science, vol. 1360. , Cham: Springer 

International Publishing, 2021, pp. 155–160. doi: 10.1007/978-3-030-

71906-7_13. 

[39] C.-F. Wu, S.-P. Ma, A.-C. Shau, and H.-W. Yeh, “Testing for Event-

Driven Microservices Based on Consumer-Driven Contracts and State 

Models,” in 2022 29th Asia-Pacific Software Engineering Conference 

(APSEC), Japan: IEEE, Dec. 2022, pp. 467–471. doi: 

10.1109/APSEC57359.2022.00064. 

[40] S. Kapferer and O. Zimmermann, “Domain-Driven Service Design: 

Context Modeling, Model Refactoring and Contract Generation,” in 

Service-Oriented Computing, vol. 1310, S. Dustdar, Ed., in 

Communications in Computer and Information Science, vol. 1310. , 

Cham: Springer International Publishing, 2020, pp. 189–208. doi: 

10.1007/978-3-030-64846-6_11. 

[41] J. Bogner, B. Choudhary, S. Wagner, and A. Zimmermann, “Towards 

a Generalizable Comparison of the Maintainability of Object-Oriented 

and Service-Oriented Applications,” in Advances in Service-Oriented 

and Cloud Computing, vol. 1115, M. Fazio and W. Zimmermann, Eds., 

in Communications in Computer and Information Science, vol. 1115. , 

Cham: Springer International Publishing, 2020, pp. 114–125. doi: 

10.1007/978-3-030-63161-1_9. 

[42] L. D. S. B. Weerasinghe and I. Perera, “Evaluating the Inter-Service 

Communication on Microservice Architecture,” in 2022 7th 

International Conference on Information Technology Research 

(ICITR), Moratuwa, Sri Lanka: IEEE, Dec. 2022, pp. 1–6. doi: 

10.1109/ICITR57877.2022.9992918. 

[43] G. Rodriguez, L. F. Esteberena, C. Mateos, and S. Misra, “Reducing 

Efforts in Web Services Refactoring,” in Computational Science and 

Its Applications – ICCSA 2019, vol. 11622, S. Misra, O. Gervasi, B. 

Murgante, E. Stankova, V. Korkhov, C. Torre, A. M. A. C. Rocha, D. 

Taniar, B. O. Apduhan, and E. Tarantino, Eds., in Lecture Notes in 

Computer Science, vol. 11622. , Cham: Springer International 

Publishing, 2019, pp. 544–559. doi: 10.1007/978-3-030-24305-0_41. 

[44] G. Vale, F. F. Correia, E. M. Guerra, T. De Oliveira Rosa, J. Fritzsch, 

and J. Bogner, “Designing Microservice Systems Using Patterns: An 

Empirical Study on Quality Trade-Offs,” in 2022 IEEE 19th 

International Conference on Software Architecture (ICSA), Honolulu, 

HI, USA: IEEE, Mar. 2022, pp. 69–79. doi: 

10.1109/ICSA53651.2022.00015. 

[45] Y. Rouf, J. Mukherjee, and M. Litoiu, “Towards a Robust On-line 

Performance Model Identification for Change Impact Prediction,” in 

2023 IEEE/ACM 18th Symposium on Software Engineering for 

Adaptive and Self-Managing Systems (SEAMS), Melbourne, Australia: 

IEEE, May 2023, pp. 68–78. doi: 10.1109/SEAMS59076.2023.00018. 

[46] H. Vural, M. Koyuncu, and S. Misra, “A Case Study on Measuring the 

Size of Microservices,” in Computational Science and Its Applications 

– ICCSA 2018, vol. 10964, O. Gervasi, B. Murgante, S. Misra, E. 

Stankova, C. M. Torre, A. M. A. C. Rocha, D. Taniar, B. O. Apduhan, 

E. Tarantino, and Y. Ryu, Eds., in Lecture Notes in Computer Science, 

vol. 10964. , Cham: Springer International Publishing, 2018, pp. 454–

463. doi: 10.1007/978-3-319-95174-4_36. 

 


