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Abstract. In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex numbers

with real part 1
2

. Many consider it to be the most important unsolved problem in pure

mathematics. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. If

the Robin’s inequality is true for every natural number n > 5040, then the Riemann

hypothesis is true. We demonstrate if for every natural number n > 5040 we have that
d(n) ≤

√
n, then the Robin’s inequality is true for n, where d(n) is the number of divisors

of n. In this way, we found another way of proving that the Riemann hypothesis could
be true.

1 Introduction

In mathematics, the Riemann hypothesis is a conjecture that the Riemann
zeta function has its zeros only at the negative even integers and complex
numbers with real part 1

2 . Many consider it to be the most important unsolved
problem in pure mathematics [2]. It is of great interest in number theory
because it implies results about the distribution of prime numbers [2]. It was
proposed by Bernhard Riemann (1859), after whom it is named [2]. In 1915,
Ramanujan proved that under the assumption of the Riemann hypothesis,
the inequality: ∑

k|n

k < eγ × n× log log n

holds for all sufficiently large n, where γ ≈ 0.57721 is the Euler’s constant and
k | n means that the natural number k divides n [1]. The largest known value
that violates the inequality is n = 5040. In 1984, Guy Robin proved that the
inequality is true for all n > 5040 if and only if the Riemann hypothesis is
true [1]. Using this inequality, we show a new step forward in proving that
the Riemann hypothesis could be true.

2 Results

On the one hand, d(n) is the number of divisors for a natural number n [3].
In general, if n is written as the product of prime factors: n = pa× qb× rc . . .
then the number of divisors, d(n) = (a+ 1)× (b+ 1)× (c+ 1) . . . [3]. Euler’s
totient (phi) function is is the number of integers less than n and co-prime to
it, denoted by φ(n) [3].
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Theorem 2.1 For every natural number n, we obtain that n = φ(n) +
d(n)− 1.

Proof This is true, because every number lesser than or equal to n complies
that is co-prime or divisor of n. In addition, we subtract by 1, because the
number 1 is consider as a divisor and co-prime of n at the same time.

Theorem 2.2 For a natural number n > 5040, then the Robin’s inequality
can be restated as∑

k|n

d(k)− n× (eγ × log log n− 1) < d(n).

Proof We can transform the Robin’s inequality∑
k|n

k < eγ × n× log log n

as the following inequality∑
k|n

(φ(k) + d(k)− 1) < eγ × n× log log n

due to Theorem 2.1. However, that would be equivalent to∑
k|n

φ(k) +
∑
k|n

d(k)−
∑
k|n

1 < eγ × n× log log n

where we know that
∑
k|n φ(k) = n and

∑
k|n 1 = d(n) [3]. Consequently, we

obtain that

n+
∑
k|n

d(k)− d(n) < eγ × n× log log n

and thus, we have that∑
k|n

d(k)− d(n) < eγ × n× log log n− n

and ∑
k|n

d(k)− n× (eγ × log log n− 1) < d(n).

Theorem 2.3 For every natural number n > 5040, the inequality∑
k|n

d(k)− n× (eγ × log log n− 1) < d(n)

is true when d(n) ≤
√
n.

Proof If we divide by d(n) the inequality∑
k|n

d(k)− n× (eγ × log log n− 1) < d(n)
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then, we obtain that∑
k|n

d(k)

d(n)
− n

d(n)
× (eγ × log log n− 1) < 1.

However, we know for every number k that divides n, then d(k)
d(n) ≤ 1. Hence,

we obtain that∑
k|n

d(k)

d(n)
− n

d(n)
× (eγ × log log n− 1) ≤ d(n)− n

d(n)
× (eγ × log log n− 1).

because of
∑
k|n 1 = d(n) [3]. In this way, if we prove that

d(n)− n

d(n)
× (eγ × log log n− 1) < 1

then we achieve to show that the Theorem 2.3 is true. For every natural
number n > 5040 and d(n) ≤

√
n, we have that

d(n)− n

d(n)
× (eγ × log log n− 1) ≤

√
n−
√
n× (eγ × log log n− 1)

where
√
n−
√
n× (eγ × log log n− 1) =

√
n× (2− eγ × log log n)

and we know that
√
n× (2− eγ × log log n) < 1

because of

2− eγ × log log n ≤ 0

when n > 5040. In conclusion, we obtain that the Theorem 2.3 is indeed
true.

Theorem 2.4 If for every natural number n > 5040 we have that d(n) ≤√
n, then the Riemann hypothesis is true.

Proof This is a direct consequence of Theorems 2.2 and 2.3.

3 Conclusions

The practical uses of the Riemann hypothesis include many propositions
known true under the Riemann hypothesis, and some that can be shown
equivalent to the Riemann hypothesis [2]. Certainly, the Riemann hypothe-
sis is close related to various mathematical topics such as the distribution of
prime numbers, the growth of arithmetic functions, the Lindelöf hypothesis,
the large prime gap conjecture, etc [2]. In this way, a possible proof of the
Riemann hypothesis could spur considerable advances in many mathematical
areas, such as the number theory and pure mathematics [2].
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