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Abstract: In federated learning (FL), the idea is to train and bring out a single 

global model collaboratively with the aid of numerous client machines and 

devices while everything is being coordinated by a central server. However, 

given the variability of the data, developing a single global model could be 

problematic for some clients taking part in federated learning. Therefore, in 

order to deal with the difficulties brought in by statistical heterogeneity and the 

non-Informally, Identically Dis- tributed (IID) distribution of data, the 

personalization of the global model becomes essential. In contrast to the earlier 

research works, we suggest a novel method for creating a customized model. This 

further encourages all clients to take part in federation even in the presence of 

statistical heterogeneity. Such an arrangement is to enhance the performance as 

opposed to serving just a resource for the central server’s model training. In 

order to achieve this personalization, we use hybrid pruning which is a 

combination of structured and unstructured pruning to identify a small 

subnetwork for each client. Each pruning technique has been implemented 

based on the sparsity %.  In this proposed work, we have shown the experimental 

implementation of pruning techniques and their evaluation to reduce the 

communication cost.  This work will also help FL process to work on low 

bandwidth of the Internet connection. 

Keywords:  Federated Learning, Pruning and Quantization, Model accuracy and 

performance, Model Compression. 

 

1 Introduction 

Federated learning is an emerging field of study and research in the machine learning 
(ML) space. In FL, multiple computers / devices from different and distributed 
companies and environments immaculately cooperate to learn and expose a global 

model under the supervision of one or more central servers [1]. In federated learning, 
the client data will be never shared with central server or with other clients. Because of 
this reason, federated learning model is different from other traditional distributed 
optimization techniques. However, it requires tackling the perpetual problem of 

heterogeneous data. FL has two primary settings. One is federated learning between 
large institutions and other is federated learning across edge devices [2]. In the first 
case, each client will participate in each round and can maintain its state between the 

rounds. The second case involving client devices faces more challenges. Client devices 
cannot maintain state details across rounds. In this paper, we focus on this issue deeply. 
Many of the standard optimization methods (for example, distributed Stochastic 

Gradient Descent (SGD)) are unsuitable in federated learning and can incur high 
communication costs. To overcome this problem, many optimization methods use 
local client updates. In this process, each client updates its model multiple times before 
communicating the updated version with the centralized server. This technique will 
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greatly reduce the communication cost. There are a lot of methods available to work 
in this type of process. One such method is known as FEDAVG [1]. The original goal 

of federated learning is training and creating a single global model by linking of client 
dataset that becomes harder with non IID data [3]. FEDAVG can work with non IID 
data. The other way to alleviate the statistical heterogeneity via performing 

personalization in FL [4]. 
Herein, each client will perform multiple epochs of SGD on its local dataset. In 

this process, each client will communicate to the server, which, in turn, is averaging 

all the client models to form a new global model. The FEDAVG recently got new 
success and have highlighted its convergence issue in some settings [5]. However, 
on the adaptation side, FEDAVG is the same as SGD and hence also 

 

 

 
 

figure 1: Federated Learning. 

 

unsuitable for setting when it must deal with heavy-tail stochastic gradient noise 
distribution. Self- learning benefits immensely from adaptive learning rates, which take 

the knowledge of the previous iteration to perform more informed optimization. 
The implementation of pruning helps to compress the model size in each 

communication round. Through a range of experiments on different benchmarks, we 
observed that the clients with similar data (labels) share some personal parameters. 

Sometimes similar parameters are not necessary, so the pruning method helps to 
remove unwanted features and parameters here. We also have discovered through a 
variety of trials on various benchmarks that clients with similar data (labels) share 

comparable personal parameters. We effectively calculate the average on the remaining 
parameters of each subnetwork of each client by locating the subnetwork for each 
client as opposed to taking the average of all the parameters of all clients for the 

entire federation. Sub-FedAvg is the name we have given to this unique parameter 
average. Additionally, under our suggested method, clients are not required to be aware 
of any underlying data distributions or labeling patterns shared by other clients. Each 
client’s local data, which lacks an IID, enables distinct subnetworks to exist without 

data exchange. We use real-world datasets to verify and validate our approach to an 
example of federated picture categorization. Our approach outperforms the state-of-
the-art at this time. 

 

1.1 About Our Federated Learning-based Framework 

In this work, we have focused on the non-IID properties of the clients’ data, and 
focusing about critical factor of the communication cost and personalization. In 
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federated learning process, we must need to take care of a few practical issues 
including client dataset that changes as the data is added and deleted, the availability 

of clients, corrupt updates by the clients, etc. After studying all these challenges, we 
propose a framework for federated learning that will address the issues of heterogeneity, 
communication cost, and personalization. Our framework fits for the second case of 

cross-device federated learning. Our framework leverages adaptive federated 
optimization method (using structured and unstructured pruning) and will be providing 
convergence analysis in general nonconvex setting as vividly illustrated in figure 1. 

 

1.2 The Contributions 

Our framework can show and prevent the above-mentioned problems by proposing a 
single solution and address all the challenges simultaneously. Our main contributions 
are: 

 

In the current work, we consider a real scenario, where each of the clients 
participating in the learning process owns limited data with non-IID settings. Here we 
leverage the statistical heterogeneity as a helping factor with the aim of proposing new 
framework for personalized federated learning. In the proposed method, clients are not only 
the source of data for model training, but also contribute to enhance the performance of 
their personalized target distribution. Our method is a straightforward and effective 
solution capable of cooperating in the communication process. Also, the solution 
enables federated learning by defining a subnetwork for each client through a hybrid 
phenomenon, which is a combination of structured and unstructured pruning based on 
sparsity.  This is also enhanced through the unstructured pruning strategy on the neural 
model of the clients. The technique of model pruning implementation (for removing 
unwanted and repetitive features and redundant data) in each communication round 
will help us to communicate better on low bandwidth network. We have implemented 
these techniques to compress our model. 

 

2 RELATED WORK 

In federated learning, the edge devices that participating in the FL process carry 
most of the load of computation and communication cost, and a central server 
updates the model parameters using the updates provided by the edge devices. 

However, FL has three unique characteristics that will be keeping FL method ahead 
and better from the parallel optimization system in the following aspects. 

 
Statistical Heterogeneity behavior - The main aim of clients for taking part in FL 

process is to improve their own model performance. Especially, the client associated 

with limited secret data will benefits most from collaboratively learned models. 
However, the clients associated with enough private data, there is not much benefits to 
participate in FL. This type of issues will occur more badly when we deal with 

statistical Heterogeneity of the clients. Due to the non-IID distribution of the data 
across the devices, some new scenario might arrive where some of the participant may 
gain no benefits by the participation in federated learning process since the global 
shared model is less accurate than the local models that they can train on their own 

[6]. 
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Communication Efficiency in Federated Learning- The framework defines and entails 
each of the clients participating in FL process. Each client sends a full model update 
back to the global server in every communication round.  However, for large networks, 
this step will be a bottleneck of FL due to the Internet speed and its asymmetric nature.  

If we consider this scenario, the upload is slower than the download. To overcome this 
perpetual problem, we have proposed a solution that necessitate less uplink 
communication cost [7]. For instance, some existing model can reduce the 

communication cost with structured updates [8]. Others do so by compressing the 
gradients [9][10]. 

 
Personalization and Accuracy for individual Clients - Our framework is basically 

designed for dealing with non-IID clients, but most of the previous works have been 

implemented for measuring the global accuracy not the local accuracy.  
W h e n e v e r  the clients’ context and their personal data are nicely arranged in 
dataset form, then a globally defined model is bound to perform very well. This is 
not possible with most of the participating clients. In current scenario, most of the 

personalization techniques either affect the privacy or it will involve two separate steps 
where a global model is following the first step and is collaborating with clients. 
And then the global model is personalized for each client using the client’s private 

data in the second step. These two steps might add extra computational overhead. Each 
client’s data distribution is out of balance, and each client’s network speeds, processing 
capabilities, etc. vary widely.  There will be participants with backward iterations if all 
clients are permitted to take part in federated learning training. The entire system might 

not finish the combined training if certain clients don’t answer for an extended period 
of time. Therefore, it is important to think about how to select the clients who will take 
part in the training.  The clients who will take part in the training are chosen at random 

by the FedAvg algorithm. However, the FedAvg algorithm model does not always 
perform well when the network topology is complicated and the data is not independent 
and identically distributed. 

 
There are some optimization strategies introduced by a few researchers. In each 

update of joint training, the Fed-CS algorithm, a greedy algorithm protocol mechanism, 

chooses the client with the highest model iteration efficiency for aggregate update. This 
optimizes the federated learning algorithm’s overall convergence efficiency.  The Fed-
CS algorithm can reach improved accuracy, according to the experiments.  However, 

one drawback is that it only works effectively with models that are rather simple, like 
a virtual dynamic neural network. Fed-CS will lessen the effectiveness of choosing 
the best aggregation client in cases where the network structure or the number of 

parameters is more complicated. This increases the number of communications trips 
and reduces the time efficiency. In order to address this issue of poor performance 
based on non-IID data on the FedAvg algorithm, the Hybrid-FL protocol algorithm 
came and this could handle client data whose data set is non-IID. The Hybrid-FL 

protocol enables the server to choose a few clients through the phases of the resource 
request in order to create a local data set that is roughly independent and identically 
distributed for federated learning training and iteration. Additionally, they demonstrate 

that Hybrid-FL outperforms other federated learning classification methods for non-
IID data types in terms of accuracy. 

 

3 METHOD 

The CNN architecture has shown significant inferences cost since they have more 
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layers and due to more learnable parameters. When we consider a FL scenario, the 
network capacity may be hindered. Therefore, network size must be on the lesser side. 
If we consider the example of ResNet-152 having more than 65 million parameters and 
consuming more than 20 billion float-point- operations per second (FLOPs) when 

training an image with resolution 224*224[11]. This is directly impacting resource-
constrained edge devices [12]. There are optimization and compression approaches and 
algorithms to improve prediction accuracy without compromising on the performance 

level. Among all the adopted models, we got to know the progressive pruning 
emerging as the outstanding one. A deep neural network (DNN) is trained and then 
pruned. Then parameter and hyperparameter optimization techniques are leveraged to 
keep up their performance [13]. 

 

3.1 EFFICIENT LEARNING WITH PRUNING 

In this paper, we have shown the practical implementation of an FL scenario. There is 
a smaller and similar subnetwork for the client which has the same label of data and 
that can help to enhance the accuracy of each other in this process. Based on the 
result, we can make some observations here. 

• After going with lots of experiments on various CNN and DNN networks on some 
benchmarked dataset, we noticed that the existence of similar subnetwork and 
finding the clients with partial similar data and (labels) It is cost-effective to 
develop new algorithm to improve the accuracy for each sub network. 

• Specially in these types, we have considered a feed forward neural network 
model f(x) that will be dense in nature We consider an initialization parameter for 
each participating client as well as for the central server. Further we have assumed 
SGD as our first optimization method for each client’s k’s in neural network on its 
own training set and it reaches minimum validation loss on given iteration. 

• After this process, in the next step, we have applied a pruning technique to remove 
the unwanted layer and connection which are not needed and this action will 
reduce the computation cost. Removing connections and layers will reduce the 
overall size of the model. 

• Pruning techniques that we have implemented here for compression and for 
reducing the com- mutation cost is based on sparsity. With sparsity techniques, we 
can remove connection or neuron using structured and unstructured pruning, it 
will help to find less-featured neuron and connection for removing. 

• Pruning will reduce the size of the trained model so that communication between 
central server and local devices will be easy and efficient. That will help to reduce 
the high dependency of the Internet service for remote communication. 

•  

3.2 STRUCTURED, UNSTRUCTURED, AND HYBRID 

PRUNING 

In the proposed work, we are targeting to find a smaller sub-network for each client. In 

the FL scenario, there are different pruning techniques such as the channel level 
pruning (structured), parameter level pruning (unstructured), and hybrid (combination 
of structured and unstructured). Unstructured level pruning will help to achieve high 

level flexibility and to gain higher compression rate [14] for both small and deep 
neural networks illustrated in figure 2. 
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figure 2: Type of Pruning 

 

On other hand, if we take the channel-level pruning, it is easy to remove the neurons of 
deep CNNs and it is less flexible compared to the unstructured pruning. That means 
pruning will be good whenever we will consider a deep CNNs [15] Channel-level 
pruning provides a trade-off between flexibility and ease of implementation. The 

hybrid-level pruning can be applied on any type of CNNs or fully connected networks. 
The results of hybrid pruning are better comparatively. 

 

3.3 WHY LEARNING WITH PRUNING IN FL IS 

EFFICIENT 

We consider synchronized algorithms for FL and suggested some steps: 1) Choose 
clients, which are randomly selected and presented as a subset. Each of them is to 
download current model parameters from the server. 2) Each client present in the 
subset will compute and update the model based on its local data and apply pruning 

to prune the neural network according to the algorithm that we had already explained 
above to work on a sub-network.3) Then the model get updated on the server for the 
selected clients.4) On the central server, all the models get aggregated by applying 
Sub-FedAvg, in which the average is taken only on the intersection of remaining 

channels (in structured pruning) and the remaining parameter(unstructured pruning) 
for each client to develop a better global model. In the proposed work, we have 
explained about the conceptual knowledge of pruning methods and then we have 

proposed FEDAVG on the server. We have explained about the algorithm and finally 
we have shown the performance evaluation. 

Remark-1: When we start the process of federated learning, each client will download 

the model from the global server. The model consists of features and all the embodied 
data of all the clients. After downloading the model from global server, client will 
start training on its local data. Due to the statistical heterogeneity of clients, filter or 
channel and parameters are being personalized for each client. We will apply the pruning 

technique iteratively to prune network based on sparsity and we remove commonly 
shared parameters of each layer and will keep the personalized parameters that are 
associated with feature information of local data in each client. Since some of the 

clients have similar data (label), there is a possibility for similar personalized parameters 
getting overlapped. By using FedAvg algorithm, we do average the models of the 
clients on the global server by taking intersection of remaining filter or channel and 

parameters present of the clients. This kind of model aggregation method is not only 
giving good impact on performance accuracy of each client with heterogeneous data 
but also helping in setting up non-IID behaviors to improve the accuracy significantly. 
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3.4 ALGORITHM 

Unstructured Pruning - At each communication round, the global server will randomly 
select the group of client’s ‘S’ and transmit the model to selected clients. Each 

client,”  Ck ,” will begin training on the local model using their own data set after 
receiving the model. For each communication cycle, throughout this procedure, a 
given target pruning with a specified sparsity percentage is derived. And a pruning 

technique will be used on each cycle of communication as each client trains their 
model on their own data set. The following is the prescribed pruning method. 

 

 
 

figure 3: Weight Pruning 

 

Weight pruning - The weight matrix is the main consideration in neural network 
weight pruning. In this method, each end every individual weight present in weight 
matrix will set to zero. Which will result in the removal of the connections as shown 
in figure 3. 

• Here we are ranking of individual weights in the weight matrix “W” based on 
their magnitude or its absolute value |wi, j| to find the sparsity of K(in 
percentage). 

• After the above step, we need to focus on the ranked weight matrix and order 
it according to magnitude/absolute or Norm value (L1-Norm, L-2 Norm) in order 
to identify the specific weights in the weight matrix that are of lower priority, such 
weights are not significant and are undesirable so set them to zero with the least 
K. 

• After completing above steps, we remove the weights which are not providing 
enough information. Those weights are set to zero. 

• Now take the sparse weights matrix and remove the connection between the neurons 
based on steps followed above. 

Structured Pruning - We use the same technique that has been followed in unstructured 
pruning. But here we focus on for neuron (filter) pruning instead of connection 
pruning. We are adopting the same scenario that we did in the unstructured pruning. 

That pruning technique will be used on each cycle of communication as each client 
trains their model on their own data set. The following is the prescribed pruning 
methods. 

 
Unit/Neuron Pruning - In this type of pruning, the main aim is to focus on 

neurons present in layers, and focusing on entire column in the weight matrix to be set 
to zero for deleting the output neurons. This will cause of removal of connection and 
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neurons both at same time explained in figure  4. 

• To achieve the sparsity of K (in percentage), each column of the weight matrix 
must be ranked based on their L2-norm. 

• Entire weight matrix column is set to zero. 

• To remove the neurons, first find the smallest K value and remove the output 
neurons based on these smallest K value. The network tends to grow less dense 
as the sparsity percentage (k%) value increases and number of zero in the 
corresponding matrix will increase. We tested weight pruning and unit pruning 
for CIFAR and compared their performances using several datasets, such as 
the MNIST and FMNIST datasets. It may be necessary to lower the frequency 
arguments 
if, during implementation, the desired sparsity cannot be attained. These networks 
can require more training time and make hyper-tuning changes to produce the best 

results. We recommend first copying the original model, and then pruning the 
copied model with a smaller magnitude. 
 

  
 

figure 4: Removing connection in neuron pruning 

 

3.5 AI Model Pruning in FL 

• To determine the structure to prune the model without degrading performance and 
prediction, various types of criteria were devised. Here, we focus on two types of 
these standards. 

• Take a network into consideration, train it without pruning, and then, based on the 
percentage sparsity K, prune and quantize the trained model. 

• Consider training a CNN without pruning, followed by applying pruning and 
quantization to the trained network with additional training and hyper-tuning to 
achieve the desired compression ratio. 

• In the first work, we examine the outcomes for both weight pruning and unit 
pruning using pruning and quantization on three different dataset types.  For this, 
the pruning model exploration was implemented using the Keras model library.  
The performance and efficiency of the network in various scenarios have been 
compared using a set of three different datasets, For instance, 
performing pruning on a trained model, training a model first, doing the 
pruning, and choosing a random network. 

• The problem of pruning is divided into multiple steps. We recommended pruning 

on a custom- built assumed network, using a Keras model without pruning and 
ReLU-activated four hidden layers neural networks. There isa fully connected 



9  

network with 200, 500, 1000, and 1000 neurons in each. The output logit layer is 
the fifth layer, and its size is set to 10. Output layer connected through all the 
intermediate layers directly, so as sparse layers, we can use 
them for pruning. Each layer present in that process like, the convolution layers, 

dropout layers, batch normalization layers, and AVG pooling layers have also 
been excluded. Above-mentioned algorithms run on this network, and models are 
trained on it without the network being pruned. Datasets used in experiment are 

MNIST, FMNIST, and CIFAR, which have multiple numbers of classes and 
input shapes in order to construct the model architecture. The sparsity 
percentage is also considered when developing architecture in order to reduce the 
size of the model. An uncompressed Keras model with a dense layer is utilized for 

modelling with shapes [1000, 1000, 500, 200]. Here we are following the 
constraints that we assigned 60000 samples for training and 10000 samples for 
validation and optimizer will update it in each process. After 50 epochs 

completion, the training result, and their performance metrics with keras without 
using pruning technique are shown. 

• In weight and unit pruning, we have considered the sparsity percentage K as 
[0.25, 50, 60, 70, 80, 90, 95, 97, 99]. Sparsity will not affect in softmax layer 
weight, when it is applied in trained pruning method. It takes kernel and bias (for 
a dense layer) and will return the unit pruned version of each in that way it 
works. The ‘k’ weights matrices will be 2-D, ‘b’ weight will be a 1-D matrix 
of the biases of a dense layer, and here ‘k’ sparsity will play a role to set 
weights matrix as zero based on sparsity percentage. We will get return the kernel 
weight, a sparse matrix with the same shape as original weight matrix, and a 
bias weight,  a  sparse array with the same shape as the original bias array. 
Here in the proposed work of weight pruning, we have used trained model, it 
will take k-weights, b-bias and k-sparsity as input arguments. The network will 
copy the kernel weights and obtain the ranked indices of their absolute k weight in 
the processing function. 

• In k sparsity techniques, the number of indexes is set to be zero.In b weight, firstly 
it will copy all the bias weights and then it will rank the indexes of their absolute 
after completion of processing. After completion of these process, we will get 
back kernel weights and kernel bias. When we consider case of unit pruning, we 
are giving k weights, b weights, k sparsity as input argument and executing 
processing function on them. In unit processing function, we are giving k weight 
as an input argument and copying the kernel weight there. After this we getting 
ranked indices using column wise L2 norms for k sparsity functions, and then we 
are setting those indices as zero. Here that mean 2-D weight matrices are set to 
be zero. Function processing will copy the bias weights and it get ranked based on 
abs value for all the b weights. In this scenario, the indices in the 1-D bias weight 
are set to zero called as sparse cut-off indices, which will be same as the indices 
of the column that was taken out. 

 

3.6 L2-Norm 

 
The L2 norm is defined as by taking the square root of the sum of the square vector 
values. The L2 norm is used to fit the regularization technique for machine learning, 

same like the L1 norm.  It is a method for keeping the model coefficient low, which 
will make the model simpler to comprehend. Calculating the L2 Norm will enable you 
to determine the weight magnitude and rank them by magnitude in this case of pruning 

and quantization.   The square of the weight matrix, which is the L2 norm for this 
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weight, will yield a positive magnitude. We can set the weights based on this to 
obtain the sparsity k.  To eliminate the output neurons, we will set the weight to 0 and 
select the smallest value for k based only on their rank. Whole model can be pruned 
using selection” weight” and” neuron” after the sparsity value and other arguments 

conclude the function execution successfully. We will essentially remove the zeros we 
set during the sparsity selection phase, Alternately, we can get rid of all the zeros in the 
model that were caused by sparsity and are associated with weight and bias during the 

pruning step of any method we have chosen. The process function takes a model with 
several layers and reduces its weight when we prune the entire model. 

Model (the Keras model) and k Sparsity (the model’s target sparsity) are passed to 
the processing methods, which then return a sparse model that is a sparsified version of 

the original model. A list of the names of each component (w+b) of each layer and a 
list of the weights for each component (w+b) of each layer are obtained throughout this 
procedure after copying the temporary sparse model from our original model. Start a 

list with the new sparse weight and begin iterating over all layers except the last two as 
the concluding stage in the procedure. After setting zero by the sparsity percentage, 
this will determine the new weight and bias for the sparse model. The sparsity 

percentage is 10% in this case, and various existence percentages are evaluated to 
select the best pair of sparsity for pruning. We can determine how effectively pruning 
performs for this model by using sparsity. Among most of the instances, 0.5 sparsity 
(50 percent) has resulted in best model without losing any of the original data. 

Although there is a possibility of losing original information and accuracy when we 
make the model sparser, we can still achieve greater compression. But in addition to 
reducing the size of the model, we also want to maintain the model’s accuracy and the 

original data. We have examined how sparse our three different datasets are in the 
section that follows. 

 

4 Comparative study among the Pruning Methods 

4.1 Prune a trained network and fine-tune 

The structure of this section is as follows: In order to develop techniques to prune a 

trained neural network, we first concentrate on the concept of” non-significance” in 
functions and neural networks. Additionally, certain decisions made by the neural 
network will be random. After pruning, we can examine the results and contrast them 

with the outcomes of other pruning techniques to reach a conclusion. The TensorFlow 
model, which was chosen for implementation purposes, serve as the basis for the 
code’s final assessment. Function approximations also refer to neural networks. We 

can  

  
 

figure 5: Resulting graphs obtained for accuracy and loss 

 

teach them to perceive the representations of input data points, which are crucial and 
support them to learn parameters as well. Think about the subsequent function. 
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f (x) = x + 5x2 

On the RHS of the above function, there are two terms: x and x2, with a coefficient 
of 1 for x and 5 for x2 respectively. From figure 9 and 10, we can observe that there is 
no significant difference for moving the first coefficient.  The provided coefficients 
have no significance on the original function. Even if we omit the given coefficients, 
the function will not change significantly. The same can be expanded to and applied to 
neural networks, although additional information is needed for this to happen. For 
simplicity, we now consider the weight of a trained network.  A challenge emerges 
when we do this. How can we tell if the weight under consideration is non-significant? 
To solve the problem, the recommendation is to leverage gradient descent. 

We are now applying pruning methods to the model. There are two techniques for 
pruning when using TensorFlow model optimization. We are now applying pruning 
methods to the model. There are two techniques for pruning when using TensorFlow 

model optimization. 

• Pick a trained network, then prune it with further training. 

• Construct a network with a random initialization and train it using pruning from 

scratch. 

In the subsequent sections, we are to analyze both experiments illustrated in figure 
5. Pruning a network using a training schedule is done to improve the training 

objectives, which will lead to improved gradient updates that will effectively alter the 
un-pruned weights.  Using the TensorFlow optimization kit, you can prune model 
layers. 

 

4.2 Choose a Trained Network, Prune it with more Pruning 

We start by pruning the network that was previously been built and trained. We employ 
the pruning schedule (to be mentioned by the developer) during the training process to 
maintain the level of sparsity.  The trained model must be recompiled before we can 
prune, and we will do so using the same process as before. The currently functional 

parameter has been modified because Tensor flow optimization adds a non-trainable 
mask here for each weight in the network to indicate whether a particular weight 
should be pruned. It adds a mask that is either 0 or 1. The pruning model will not 

affect performance in this situation. The pruning scheme needs to be set at the time of 
training in order to be used for pruning. Based on the sparsity and magnitude thresholds 
indicated in the summary of training pruning, the summaries’ will be produced. Hyper 
parameter, helps to provide another pruning schedule when pruning take places. The 

end-step argument has been set in the pruning schedule to be greater than or equal to 
the number of epochs we used to train a model. The argument of frequency which will 
take place when pruning is done to achieve good performance and desired sparsity, 

must also be taken account here. 

 

4.3 Take randomly initialize network, prune it after training from 

scratch 

Apart from one step, all the stages for this approach are the same as those for the pre- 
ceding method. In this case, a network that has already been trained is not the starting 
point. We instead begin with a network that has been randomly initialized It often 
takes a lot longer when we train a network from scratch. When the network seeks to 

optimize parameters and sparsity for best performance, this situation occurs 
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figure 6: Model behavior for pruning randomly initialized network:  

Accuracy 

 

 

figure 7: Model behavior for pruning randomly initialized network: Loss 

We must go deeper into pruning’s concept in order to fully grasp its potency. 

• Export an unpruned and pruned network (model) and compress them and take a 
note of their size. 

• Apply quantization technique on both. Quantize and compress the models with the 
quantize version. Take a note of their size and then at last step evaluate their 
performances. 

The model behavior on pruning for randomly initialized network is illustrated in the 
below graph in figure 6 and 7. 

 

4.4 Performance Evaluation 

To compress the model into a zip file, we used the zip file library. For serializing 
the pruned model time, we additionally need to use the tfmot.sparsity.keras.strip 

pruning function. It helps to get rid of the pruning wrapper that TensorFlow model 
optimization added to the model. 

 

4.5 Quantizing the models, compressing them c o m p a r i n g  

performance 

To further compress the model size without degrading the performance, we have 
quantized our model using Tensorflow Lite library. It needs to be kept in mind that, 
we need to strip the pruning wrap- pers while passing the model to Tensorflow Lite.It 

is preferable to load the baseline model that was previously serialized and transform it 
using TFLite explained in table 1 and table 2. When we want to work on bulk data. 
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Pruning type Size 

(bytes) 
Validation 

Accuracy (%) 
Baseline (No Pruning) 78039 0.980199993 

Pruning a Trained Network 48338 0.980199993 
Pruning and Training a Network from 

Scratch 
48883 0.970000029 

table 1: Compression achieved using three types of pruning 

 
TF Lite model type Size 

(bytes) 
Validation 

Accuracy(%) 
Baseline (No Pruning) 17820 0.9807 

Pruning a Trained Network 13430 0.9806 
Pruning & Training a Network from 

Scratch 
13224 0.9704 

table2: Results obtained after quantization using     

TensorFlow Lite model 

 

5 Conclusion 

The focus of this study is on streamlining the development and deployment of AI 
models by reducing their size and complexity. The FL approach helps multiple clients 
to communicate with the central server easily and economically. The network 

bandwidth consumed is low. Dropping unwanted or redundant parameters will help to 
reduce the size of a model in each communication round. This activity will take place 
based on sparsity %, which will help to find which are the features-less parameters. 

In each communication round, pruning takes place to enable this dropping. 
Reducing the model size brings a lot of advantages. Whenever we perform Fed-AVG 
after pruning of the model on central server, output model will be more accurate, 

concise, and light weighted.In this paper, we have looked at two methods for deriving 
lightweight models: pruning and quantization. In this case, models are pruned and 
compressed without sacrificing accuracy or efficiency, making them ideal for use in 
low-powered edge devices. The first of our two proposed methods are weight and 

neuron pruning, which is carried out by selecting the sparsity percentage using weight 
magnitude and the L2 norm. For 50% sparse MNIST datasets, we get a compression 
ratio of 3.x using them.  Combining this with pruning (without tensor flow 

optimization) and quantization techniques (with TFLite) yields a compression ratio of 
10.x. Pruning and quantization procedures are now being carried out via a Tensorflow 
optimization tool. The plan includes two distinct sorts of hands-on activities. For 

pruning in the” take trained network then prune” approach, the compression ratio of 
roughly 1.6 or 1.x times is attained when utilizing the Tensorflow optimization tool 
that demonstrates a compression ratio of roughly 10.x may be achieved when the 
pruning technique is used in conjunction with quantization using Tensorflow 

optimization. 
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