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Abstract— The left atrium (LA) segmentation is a
crucial and essential procedure in the field of cardiac
imaging due to its significance in cardiovascular health
and its role in diagnosing heart conditions. Magnetic
resonance imaging (MRI) is a non-invasive medical
imaging technique that has become indispensable in the
cardiovascular field, especially for visualizing and
evaluating atrial myopathy. In recent years, deep
learning has emerged as the approach with the highest
adoption rate for segmenting cardiac images. For the
purpose of segmenting the left atrium from MRI images,
we applied three Unet variation architectures to
compare the optimal one, and we experimented with dice
and cross-entropy loss.

Keywords— left atrial, segmentation , cardiac MRI,
deep learning, U-net.

I. INTRODUCTION
The left atrium is a vital component of the heart’s

structure and holds significant importance in the fields of
cardiology and cardiac health. Due to the intricate variations
in its structure among patients, accurately understanding it
becomes challenging, often resulting in misdiagnosis and
ineffective treatment [1].

Left atrial segmentation identifies and delineates the
boundaries of the left atrium in medical imaging, typically
using techniques from image analysis and computer vision.
This segmentation task holds significant importance in
cardiac imaging, as it allows precise quantification of the
left atrium’s size and shape, which can be critical in
diagnosing and monitoring various heart conditions
including atrial fibrillation, mitral valve regurgitation, and
other cardiac diseases.

Noninvasive medical imaging became essential in
cardiovascular medicine. The exceptional measurement
precision offered by MRI positions it as a perfect tool for
monitoring the advancement and treatment outcomes of
cardiovascular diseases [1].

Existing models of left atrial segmentation are based
on encoder-decoder architectures like FCN [2] and U-Net
[3]. For instance, [4] segmented the left atrial from magnetic
resonance (MR) images with two consecutive 3D U-Net
architectures. The initial 3D U-Net aimed to identify and

coarsely extract the region of interest, while the second
network focused on performing detailed segmentation from
the cropped images. [5] devised an automated left atrial
segmentation technique utilizing a FCN to enhance the
accuracy of left atrial structural delineation. This method
integrates a dual-path, multi-scaled architecture capturing
both local atrial tissue geometry and the broader positional
information of the left atrium. [6] proposed a deep 2D
U-Net, a derivation of the original U-Net, was introduced
for automatic left atrium segmentation from GE-MRIs. This
method employed multi-task learning by augmenting the
network depth and incorporating an additional classification
branch.[7] modified the 3D U-Net [4] by incorporating a
hierarchical aggregation unit (HAU) serving as a trunk
branch and an attention unit (AU) in the encoder path for 3D
left atrial segmentation. To address the segmentation issues
in GE-MRI for the left atrium, [8] created two image
segmentation networks using FCN and U-Net architectures.
They improved the segmentation accuracy by modifying the
dice loss function, aiming to reduce the impact of
imbalances between positive /negative samples. [9]
constructed a modified 3D U-Net by integrating dilated
convolutions at the deepest layer of the encoder and
incorporating residual connections, aiming to merge and
capture local and global information. [10] proposed a
two-stage method for LA segmentation from LGE MRI. The
method involves an Otsu-based localization phase followed
by fine segmentation, utilizing both 2-D and 3-D pipelines
which is based on the original U-Net architecture. [1]
developed a method for automatic left atrial region
segmentation in MRI scans of patients with LAE. This
method comprises two parts: the first one, a U-Net
architecture with Gaussian blur and channel weight neural
network (GCW-UNet) segments the left atrial region. The
subsequent part reconstructs the 2D segmented left atria into
a 3D model.

The achievements of these studies demonstrate that
designed U-Net-based architectures can perform
satisfactorily on tasks like left atrial segmentation. There
are, however, several U-Net versions, including Residual
U-Net [11], Dense U-Net [12], V-Net [13], Attention U-Net
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[14], U-Net++ [15], SegResNetVAE [16], to mention a
handful. Due to the various U-Net architectures available,
selecting the optimal one is challenging.

In this study, we compare the U-net variation for left
atrial segmentation. We tested 3DU-Net [17], Attention
U-Net [14], and SegResNet [16] variants and experimented
with the Dice and Cross Entropy loss function.

II. METHOD

A. Dataset
The dataset employed in this work from Left Atrial

Segmentation Challenge Dataset (LASC2013) [18], sourced
from STACOM’13 in MICCAI’13. This dataset comprises
30 MRI images in NIFTI format, with 20 images designated
as the training set, accompanied by manually labeled
segmentation images. The remaining images constitute the
test set, lacking manual segmentation labels. Each sample
contained 100–130 slices. Therefore, we confined the
dataset to the 20 MRI images with labels, partitioned into 15
images for training purposes and 5 images for validation.

B. Data Preprocessing
As an initial step, all files were stacked in such a way

that each example has the shape (320×320×110) and the
same-sized segmentation mask. Then, on the borders of
each volume, redundant background voxels are cropped.
This has no effect on the dataset because it provides no
significant information, which the network could ignore, but
it does reduce its size and hence its computation burden.

C. Model Architectures
To determine the optimal U-Net variation architecture,

we studied some models, including 3D-UNet [17],
Attention-UNet [14], and SegResNet [16]. Here, we present
brief descriptions of each of these models.

3D U-Net [17] (shown in Fig. 1) is composed of two
essential stages: a contracting encoder, whose primary
purpose is to examine the entire image, and a full-resolution
segmentation produced by a successively expanding
decoder. A rectified linear unit (ReLu) and two 3×3×3
convolutions are present in every encoder layer. Following
each of them, a max pooling layer of 2×2×2 is added. In a
similar manner, two 2×2×2 up-convolutions, two 3×3×3
convolutions, and ReLu comprise the decoder stage. To suit
the amount of labels, the final convolution layer 1×1×1
decreases the output channels [17].

Fig. 1. The 3D U-Net architecture.

Attention U-Net [14] expands the basic U-Net by
incorporating an attention gate (seen in Fig. 2) in the
decoder section to emphasize important features that move
through the skip connections. Prior to the concatenation
process, the attention gate modifies the encoder's feature
map to merge only the relevant activations. It figures out
which parts of the encoder's feature map are most
significant, taking cues from the contextual information
provided by the previous decoder block's feature map. This
is accomplished by multiplying the weight values
determined by the attention gate by the encoder feature map.
These weight values, which are limited to the interval (0, 1),
indicate the degree of focus that the neural network is
applying to a certain pixel [14].

Fig. 2. The attention gate's architecture. Attention weights
(α) get multiplied by input features (xl). To calculate α, the
feature map from the associated encoder level and the input
features (xl) are first processed by 1x1x1 convolution and
then added together. After that, a further 1x1x1 convolution
and ReLU activation are used. Finally, trilinear interpolation

is used to upsample attention weights [14].

SegResNet is based on [16] but the variational autoencoder
(VAE) mentioned in the article is not included in the
module. The method relies on a CNN architecture featuring
an encoder-decoder design. It employs an asymmetrical
larger encoder to capture image features and a smaller
decoder for reconstructing the segmentation mask (shown in
Fig. 3). In the encoder, ResNet is implemented as blocks.
Each block comprises two 3x3x3 convolutions accompanied
by normalization and ReLU activation, followed by an
additive identity skip connection. The decoder follows a
similar structure to the encoder, but it contains a single
block for each spatial level. Each decoder level commences



by decreasing the feature count by a factor of two using
1x1x1 convolutions while simultaneously increasing the
spatial dimension utilizing 3D bilinear operations, then
adding encoder output from the same spatial level. The
resulting decoder output matches the original input feature
size both in terms of spatial dimensions and feature size
after 1x1x1 convolution and a sigmoid function [16]

Fig.3. The architecture of SegResNet. Every green block
represents a ResNet-like block incorporating group

normalization [16].

D. Loss function
When handling medical images, it is usual for the anatomy
segment to occupy minor areas of the image, which could
result in a significant bias in the background; thus, the
foreground regions are typically underrepresented or
missing in the subsequent predicted segmentations. To solve
this class unbalance, we applied DiceCross-Entropy loss,
which is a hybrid of dice loss [13] and cross-entropy loss.

III. EXPERIMENTS AND RESULTS

A. Augmentation
The quantity of training data has a significant impact on

their excellent segmentation task performance. The data
augmentation technique can have a big impact when these
networks are applied to tiny datasets. It is used to reduce the
issue of overfitting by increasing the dataset during
training, thereby improving the performance of network
architecture.

During the training, we apply to each image/mask pair a
composition of image transformations such as RandomFlip,
CropForeground, and Random Scale and Shift Intensity,
which provides an expanded dataset that offers a wider
range of image variations. As a result, during training,
random transformations prevent the network from fixating
on specific features within its perceptive field by constantly
shifting these features across the field.

B. Evaluation Metric
We have evaluated our results using the Dice Coefficient

score, referred to as the overlapping index, which measures
the extent of overlap between the ground truth and the
predicted output.

For a given class, Gi and Pi indicate the ground truth and
predicted values for voxel i. The Dice score metric is
defined by the following formula:
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C. Experimental Results

To compare the segmentation models of various U-Net
variations as described earlier, we implemented our work in
PyTorch1 and MONAI2. We set the learning rate at 1*10-5
and employed the Adam optimizer.

According to our experiments (the detailed results are
shown in Table 1), the 3D U-Net achieves the highest
average Dice score. SegResNet has a similar score as of
Attention U-Net, but their training time is two times greater
than that of a 3D U-Net.

Table1. Averaged Dice scores of the data comparing the 3D
U-Net, SegResNet, Attention-Unet models.

Fig.4 below presents the visual comparison of
segmentation effects achieved by the previous approaches
using predicted segmentation images from one dataset
example, contrasted with manual segmentation images. The
first row displays the MRI images earmarked for
segmentation, while the second row shows the manual
labeling of the left atrial structures by an expert.
Commencing from the third row are the segmentation
outcomes for various models. Regarding the results
obtained, the 3D-UNet showed the best performance,
successfully segmenting the left atrium along with its
appendages (LAA). On the other hand, the remaining
models achieved decent segmentation but failed to
encompass the left atrium's appendages. An inherent
limitation across all three models, notably visible in the
Attention U-Net, was the inability to emphasize key features
in cardiac MRI images, primarily due to sequence
connections and low contrast between the left atrium and its
surrounding tissues.

Model 3D U-Net SegResNet AttentionU
-net

DSC
(Train)

0.9294 0.8240 0.8027

DSC (Test) 0.9005 0.8098 0.7774

http://pytorch.org/
https://monai.io/


Fig.4. Segmentation results for different networks.

IV. CONCLUSION

The study is limited to a small number of samples, the
changes in scale, and the high imbalance between the left
atrial structure and its surrounding areas. These factors
made challenges in accurately segmenting the left atrial,
making it difficult to achieve precise delineation. These
limitations might affect future research general findings. To
improve this, future studies could explore and compare
more U-Net variant models, helping to better understand
how to segment the left atrial effectively.
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