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Abstract—   Human  internal  state  affects  operator  well-
being  and  production  outputs,  but  it  cannot  be  directly
measured and must be estimated. This paper proposes a deep
learning  approach  to  unsupervised  nonlinear  hidden  state
estimation  using  an  auto-encoder,  by  framing  it  as  a  blind
source separation (BSS) problem. The model is composed of an
auto-encoder-based  recurrent  neural  network  (RNN)  and
extended to blind source separation through the use of  local
losses to decorrelate hidden signals. The number of sources can
be determined by adjusting the dimension of the hidden state
signal. Simulations demonstrate hidden state extraction when
the  correct  dimensionality  is  selected  and  separation  of
multiple sources. Using an auto-encoder in the model restricts
it  to  cases where there are more sensors than hidden states.
This makes it well-suited for domains with redundant sensors,
such as drones and self-driving cars.

Keywords—Unsupervised learning,  Hidden State Estimation,
Recurrent  Neural  Networks,  Auto-Encoders,  Blind  source
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I. INTRODUCTION

Human-centric systems are actively being researched, as
evidenced  by  several  recent  special  issues  [1]–[3],  an  EU
report [4], and the rising cost of labor in manufacturing. This
requirement, along with rapid change in systems encourages
the  use  of  automated/unsupervised  approaches.  However,
these approaches are limited in their application of human
control due to ethical issues. 

When  optimizing  human  operation  systems  we  are
presented with the challenge that “Systems Serve Humans”.
Therefore,  these  systems  must  balance  production
requirements with the well being of operators. The authors
believe  this  is  possible  by  controlling  systems  based  on
human internal state variables like fatigue.

This  work  is  the  starting  point  of  investigating
automatically  extracting  the  human  internal  state.  The
problem is formulated as a blind source separation problem.
A  nonlinear  deep  estimator  is  developed  to  extract  the
unmeasurable states.  The  main  objective  of  the  current
investigation  is  to  develop  a  model  that  meets  the
requirement to extract the human hidden states. Capable of
time-varying  and  state  interaction,  or  simply  nonlinear
dynamic.

The contributions are:

1. Development  of  a  dynamic  nonlinear  model  with
time-varying and source interaction capabilities.

2. By formulating image generation as a BSS problem,
we  gain  cross  pollination  of  methods,  leading  to
insights that motivate the models development.

Figure 1: Human state estimation as a dynamic problem
showing estimator requirements

II. LITERATURE

A. The importance of human unmeasurable states
States like fatigue cannot be measured directly, instead

they are estimated by measuring their effects. Sensing can be
accomplished either by gathering data from the operator or
by measuring the impact on production signals.

1) Operator sensing
Industries  with  static  operators (pilots,  long  distance

drivers)  have  seen  successful  commercial  products  using
operator  facing  cameras  and  integrating  sensors  into
instrumentation. 

However,  industries  with  dynamic  operator  tasks
(manufacturing  and  seafarers)  have  not  enjoyed  the  same
success.  Wearable sensors like accelerometers, EMGs, and
temperature sensors [10] have been used in lab experiments,
but  hinder  operator  comfort.  Biological  samples  like  oral
swabs [11] are accurate, but not suitable for in-situ sensing.

The issue is that many of these data acquisition methods
are not feasible for in-situ sensing and it is not clear whether
the information provided overlaps. 

2) Production data signals
Fatigue negatively impacts production outcomes but does

not  provide  information  about  the  underlying  causes.
However,  it  can  be  used  as  an  indicator  to  estimate  the
human state.

For instance, factors such as time of day and consecutive
work days are strong indicators of risk of injury [5], [6]. This
hints that there are multiple modalities to fatigue. We expect
one source for daily fatigue and another for weekly fatigue.
Another  example  is  that  learning  increases  operator’s
throughput rate, while circadian rhythms  [7], forgetting  [8],
work-rest ratios [9] decrease it. 
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Human  state  estimation  is  important  for  human  well
being as it can reduce risk of injury and production because it
can  affect  production  outputs.  The  examples  illustrate  the
model should be (1) dynamic, allowing time varying signals
and (2) nonlinear, allowing hidden state/source interaction.  

B. Blind source separation
The blind source separation problem is sometimes better

described by the cocktail party problem. Imagine numerous
people talking, resulting in the recipient receiving a mixed
sound  signal  and  having  to  discern  between  different
conversations.  The  authors  use  this  term  as  a  problem
formulation  rather  than  a  collection  of  methods.  BSS
methods have been used for audio source separation [12] and
signal processing [13]. 

BSS  is  often  an  ill  conditioned  problem,  resulting  in
numerous  solutions.  Specifying  further  constraints  has  the
potential  to  reduce  this.  In  some  cases,  the  signal  can  be
recovered but not the amplitude. However, this limitation can
be overcome by using a number of local losses, which will be
discussed shortly.

One  technique  for  achieving  BSS  is  Independent
Component Analysis (ICA), an extension to the well known
Principal Component Analysis (PCA). 

C. Deep blind source separation as high level feature 
separation
The authors argue that deep learning makes it possible to

represent several high-level tasks as a blind source separation
(BSS)  problem.  Among  these,  image  processing  and
generation techniques are the easiest to visualize. This insight
is valuable  for  conditioning the latent  space,  as  high-level
feature  modification  is  often  necessary  to  generate  new
images.

For  instance,  [14] separates  facial  identities  from
emotions to reconstruct faces with different emotions,  [15]
separates blur, noise, and compression image distortions, and
Fader  networks  [16] allow sliding  attributes  to  adjust  the
feature intensity, such as transforming from young to old. 

Figure  2:  Deep  blind source  separation  using  an  auto-
encoder showing disentanglement of the latent space

Disentanglement  refers  to  the  linear  separation  of
features,  styles,  and  other  information  in  the  latent  space
[17],  [18],  which  is  similar  to  source  separation.  Several
methods have been used for estimating disentanglement such
as, developing  a  linear  classifier  [19],  using  cluster
separability  [20],  applying  a  probabilistic  total  correlation
penalty that requires sampling [21], or using a discriminator
[16].  While  auto-encoders  are  commonly  used  for  this
problem [17], [22], [23], some models do not employ them
[18], making disentanglement comparison difficult. 

D.  Hebbian learning inspired local losses
One neural learning algorithm which has shown lots of

promise in this area is Hebb learning. Although it is not used
in  this  work  due  to  back-propagation  tools  being  more

mature.  The insights  found in Hebb learning motivate  the
choices for local losses here.

Hebbian learning is best described by the adage “Neurons
that fire together, wire together”  [24] . The Hebbian learning
interpretation  of  this  strengthens  of  pre-synaptic  and post-
synaptic pairs that fire together. This results in learning the
principal components [25]. On the other hand, Anti-Hebbian
learning  weakens  pre-synaptic  and post-synaptic  pairs  that
don’t fire together, resulting in decorrelation which can be
used for BSS [26], [27]. This Anti-Hebbian learning can be
imitated  using  an  auto-encoder  with  the  inappropriately
named Decov loss [14], [28]. 

Hebbian learning has also addressed some of the other
limitations  in  BSS,  by  conditioning  the  source  signals.
Unscaled  source  amplitude  is  addressed  by  enforcing  unit
variance  [27], this in turn inspires the use of unit variance
local  loss  use  here.  Similarly,  zero  mean  source  signal  is
typically achieved by whitening the data, instead we use a
small zero-mean loss.

E. Auto-encoder implications on sensor design
The auto-encoder is selected as the starting point for the

model  because  there  is  strong  evidence  that  it  performs
nonlinear  Principal  Component  Analysis  (PCA)  [29].  The
intuition  here  is  to  use  decorrelation  to  move  toward
nonlinear Independent component analysis (ICA), one of the
better known methods for BSS. However, the auto-encoder
does  place  some  restrictions  on  our  sensor  selection.  It
assumes that the number of sensor signals is greater than the
number  of  source  signals,   where   .
This is not unreasonable since redundant low-cost sensors are
often  preferred  over  fewer  high-cost  sensors  and provides
denoising benefits. 

F. Deep temporal estimators
Most BSS work considers static solutions. For example

Fourier  transform and have the limitation on time varying
signals and latent state interaction. Formulating this problem
as a dynamical system has the potential to relax these two
limitation.

Well  known  estimators  like  the  Kalman  filter   and
extended Kalman filter have been widely applied. However,
their  linear  limitations  are  known  [30],  [31].  Another
generation  of  filters  use  computationally  intensive  monte
carlo simulations to estimate nonlinear behavior  [32]. Deep
estimation techniques tend to incur this computational cost
upfront  by  learning  filtering  parameters  and  estimating
functions,  resulting  in  cost  effective  inference.  Here,  the
functions or  parameters  are  learned.  A desirable  trait  with
deep filters is the ability to include prior known information ,
usually in the form of partially known dynamics [33].

G. Summary
To summarize, human state estimation can benefit human

well being and production output. These models require time
varying and interacting source capabilities. Due to the variety
of  sensing  means,  humans  automated/unsupervised
estimation will be beneficial. On the other hand, the ability to
incorporate known dynamics is desirable.

Since the human state cannot be measured directly, we
suggest modeling it as a BSS problem. By formulating deep
image-processing tasks also as a BSS problem, we gain the
insight  that  a  decorrelated  AE  perform  nonlinear  ICA.
Hebbian inspired local losses can address the limitations of
ill-conditioned models.

Disentanglement: Feature separation and 
conditioning of latent space
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III. THEORY

The figure that follows depicts the decisions made when
developing the model. Starting from a standard auto-encoder,
moving towards a supervised temporal estimator, and then an
unsupervised estimator.

We begin by developing the model, then describing the
local losses required to shape the latent state.

A. Neural architecture and losses
The model is developed with three losses, starting from a

standard  auto-encoder  with  the  reconstruction  loss
 included. 

Figure 3: From left  (1) shows  the supervised estimator
and (2) the unsupervised estimator.

Next  we  create  a  supervised  estimator  by  adding  an
evolution/transition  function   and  loss

.  Figure  2  illustrates  this.  Some
important  notes  here  are  that  (1)  we  assume  our  sensor
dimension  to  be  higher  than  our  latent  dimension

.  This  is  advantageous since  it  is
common  to  have  numerous  redundant  sensors  for  noise
reduction, cost reduction, and reliability. At this stage we are
presented  with  a  choice.  Ideally,  the  transition  function is
known and used. This work instead assumes an ANN is used.
The hidden state data  is used for training an ANN but in
the next step, we lift this condition.

The  final  step  is  unrolling  in  a  similar  way  to  other
recurrent  neural  networks.  Here  a  loss  penalizes  the  error
between  the  sequential  predictions  of  the  model

,  specifically  the  encoded
temporal-prediction from the current time   and next
encoded prediction  . Figure 3 illustrates this. This
change removes the requirement for the hidden state data ,
relying  only  on   returning  to  an  unsupervised  learning
problem.  The  cost  of  this  is  that  batches  of  at  least  2
sequential  data-points  be  used.  If  the  equation   is
known, it can be substituted for the neural network. 

Since we do not supply the function, the model must infer
it,  which  can  result  in  several  effects.  Firstly,  the
dimensionality of x now becomes a design choice, meaning
that  we can  decide  how many variables  to  include in  our
input. Secondly, this is a poorly conditioned problem, which
means that numerous solutions exist and we may not receive
the same solution between multiple training sessions. In other
words, the model may converge to different solutions each
time it is trained.

B. Local losses
 A  widely  accepted  strategy  to  address  the  issue  of

numerous solutions is to calibrate the source signals to some
domain,  for  example  .  In  this  work,  we  use  a
number  of  losses  that  are  local  to  the  mini-batch  used  in
training.  First,  a  mean  loss  encourages  zero  mean

.  The  second  loss  ensures  unit  variance
. 

A  decorrelation  loss  disentagles  sources
,  where

.  The  intuition  for  this  choice  is
moving from PCA to ICA. The resulting local  losses  can
then be weighted and summed, .

C. The dimensionality of the latent space
Given this  model,  one design choices  is  to choose  the

dimensionality of ,  where . The dimensionality of
,  where , is dictated by the sensors. We will select
 such that we can learn more about the system. 

In  summary,  we now have a model  that  is  capable  of
dynamic estimation of sources with interaction. Although the
model can incorporate known dynamics in the form of the
transition function,  this  work  is  interested  in  inferring  the
transition. This introduces the dimension of the latent space
as a design parameter.

IV. METHODOLOGY

Two simulations are conducted. The first investigates the
effect of selecting the dimensionality of the latent space. The
second simulation investigates extracting multiple nonlinear
sources.

A. Model
In order to evaluate the filters behavior they are tested on

a toy problem of one pendulum acting as a single source. The
state is generated by the system transition . The
model receives the sensor signal  which is mixed and noise
is added according to . The goal of the model is to
estimate the transition function  and the state estimation
function .

Two  mixing  strategies  are  considered.  Firstly,
independent nonlinear mixing, via , which tests
the models ability to perform nonlinear estimation. Next, a
nonlinear  combination  mixing,  ,  testing
source separation. These sensor models significantly change
the  signal  and  do  not  allow  negative  values  in  these
simulations.  This has an impact on the resulting transition
function.

Figure 4: Simulation used for testing model

We  explore  the  selection  of  the  latent  space  and
encounters the repeated signals issue. 

B. Multiple sources
Next  a  system  consisting  of  two  sources  at  different

frequencies are used. This section tests source separation. 
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A number of systems are used. Firstly, the pendulum is
selected for its familiarity. Also the Van der pol attractor is
selected as it can be tuned to represent nonsymmetric waves
[34].   Finally,  the  triangular  wave  it  used  due  to  its
discontinuous nature.

V. RESULTS

A. Single source pendulum state estimation
As  expected  the  model  infers  principal  signals.  The

leading  and  lagging  relationship  between  the position  and
velocity was learned. We also see that noise is present in the
result, it is unclear if regularization can improve the results.
The relative increasing magnitude is also captured, showing
time varying signals are captured.

Figure 5: The model successfully estimates the two hidden
states (position and velocity) of the pendulum.  

This result would indicate that the model is sufficient for
decoding and predicting some indicators of the hidden state.

B. Varying the latent space dimensionality
In our experiments, we observed that when the number of

source  signals  (n)  is  equal  to  1,  the  resulting  signal  was
unique,  meaning  that  different  runs  with  random
initialization  produced  the  same  output  signal.  However,
when n>1, the results were not unique, and tthe signals' mean
and sign  would  vary. Furthermore,  when n was  increased
beyond 2, repeated signals occurred, which is likely due to
the  presence  of  repeated  principal  components.  Therefore,
identifying  unique  signals  can  be  used  to  select  the
appropriate  principal  dimension  size  for  a  given  dataset.
Currently,  this  process  is  often  done  through  visual
inspection,  which  can  be  time-consuming  and  subjective.
Therefore,  automated approaches should be investigated to
improve the efficiency and reliability of this process.

Figure 6: Repeated principal signals are estimated. The
authors notice this happens when the dimension of the latent
space is too high.

C. Source separation
The  process  is  repeated  with  multiple  sources  and

decorrelation added to the model to determine whether the
model can perform blind source separation. 

Figure 7: The model performing source separation.

The figure above clearly shows that the separated signals
are  observed.  It  is  also  clear  that  signals  are  affected  by
noise. Again the amplitudes are not repeatable between runs.

D. Common systems
The triangular  wave was also reproduced,  showing the

model can learn signals that are not smooth.



Figure 8: The model separating a triangular wave which
has sharp discontinuous peaks.

A Van der Pol attractor was used and the model was able
to  reconstruct  these  signals.  Showing  it  can  model
nonsymmetric waves and limit cycles.

Figure 9: The mode separating a time varying, nonsymmetric
Van Der pol attractor.

E. Conclusion and further work
In conclusion, estimating the human state  can improve

operator  well-being  and  increase  production  throughput.
Using examples from literature, we have determined that the
model  for  human  state  estimation  should  be  capable  of
handling nonlinear dynamics. Formulating the task as a blind
source separation problem resulted in a deep AE-RNN model
that meets these requirements and can infer hidden states in
an  unsupervised  manner,  with  the  option  of  incorporating
prior information in the form of a transition function. The
dimensionality  of  the  hidden  state  was  selected  based  on
visual inspection, which is suboptimal and requires  further
research to develop a more effective selection method. 
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