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Abstract—Radiation-hardened (rad-hard) processors are de-
signed to be reliable in extreme radiation environments, but
they typically have lower performance than commercial-off-the-
shelf (COTS) processors. For space missions that require more
computational performance than rad-hard processors can provide,
alternative solutions such as COTS-based systems-on-chips (SoCs)
may be considered. One such SoC, the NVIDIA Tegra K1
(TK1), has achieved adequate radiation tolerance for some classes
of space missions. Several vendors have developed radiation-
tolerant single-board computer solutions targeted primarily for
low Earth orbit (LEO) space missions that can utilize COTS-
based hardware due to shorter planned lifetimes with lower
radiation requirements. With an increased interest in space-
based computing using advanced SoCs such as the TK1, a
need exists for an improved understanding of its computational
capabilities. This research study characterizes the performance
of each computational element of the TK1, including the ARM
Cortex-A15 MPCore CPU, the NVIDIA Kepler GK20A GPU, and
their constituent computational units. Hardware measurements
are generated using the SpaceBench benchmarking library on
a TK1 development board. Software optimizations are studied
for improved parallel performance using OpenMP for CPU
multithreading, ARM NEON for single-instruction multiple-data
(SIMD) operations, Compute Unified Device Architecture (CUDA)
for GPU parallelization, and optimized Basic Linear Algebra
Subprograms (BLAS) software libraries. By characterizing the
computational performance of the TK1 and demonstrating how to
optimize software effectively for each computational unit within
the architecture, future designers can better understand how to
successfully port their applications to COTS-based SoCs to enable
improved capabilities in space systems. Experimental outcomes
show that both the CPU and GPU achieved high levels of parallel
efficiency with the optimizations employed and that the GPU
outperformed the CPU for nearly every benchmark, with single-
precision floating-point (SPFP) operations achieving the highest
performance.

I. INTRODUCTION

On-orbit data processing is crucial for space missions that
require high computational performance, but achieving this
capability is challenging due to the harsh radiation environ-
ments in space. Commercial off-the-shelf (COTS) processors
with embedded graphical processing units (GPUs) typically
offer better performance than radiation-hardened (rad-hard)
processors, but the latter is more reliable in extreme envi-
ronments. Previous research has identified the computational
limitations of rad-hard processors [1–3], and other studies have
recommended alternative architectures for better performance
and energy efficiency [4, 5].

In the past, spaceflight processors were unsuitable for
on-orbit data processing, leading to compromises in terms
of computational capabilities, such as using low-resolution
instruments for data collection and relying on ground stations
for further processing [6]. However, the increasing need for
improved onboard processor performance for tasks such as
autonomous satellite collision avoidance [7] and the use of
higher resolution sensors for various applications [5] have made
this a crucial area of focus for evolving space missions.

There are concerns about the ability of high-performance
processors to operate reliably and predictably in space while
achieving high performance per watt and delivering high
computational performance. Although space commercialization
is being pursued to drive investment and technological progress,
enhanced rad-hard solutions typically require government
support and many years of research and development to achieve
their objectives [8]. However, the feasibility of on-orbit data
processing may not be as questionable as previously thought [9],
and the cost-effectiveness of deploying equipment with a shorter
expected lifespan for certain missions, compared to previous
missions, can be improved by reducing launch expenses [10].
For these reasons, using more capable radiation-tolerant COTS
equipment for certain tasks may be more beneficial than a
purely rad-hard system.

Rad-hard processors are designed to withstand radiation
exposure in space and other harsh environments. These
processors often have re-engineered architectures to achieve
this capability, but the radiation-hardening techniques can
degrade their performance compared to commercial processors.
Additionally, the base architecture of rad-hard processors may
be outdated by the time they are released. Despite these
limitations, rad-hard processors have proven reliable for long-
term use in space missions. For example, the BAE RAD750
is a rad-hard processor with flight heritage; it was released in
2001 and first launched on NASA’s Deep Impact mission in
2005. The RAD750 is present in more recent NASA missions,
such as the Perseverance rover launched in 2020 and the
James Webb Space Telescope launched in 2021 [11]. Although
these missions use legacy processor cores capable of only
approximately 0.27 giga-operations per second (GOPS) [2],
the newly publicized BAE RAD510 SoC runs at a maximum
rated 1.3 GOPS [12]. For perspective, the RAD510 performs at
two orders of magnitude below COTS processors from almost a
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decade ago and five orders below the recently released NVIDIA
Jetson AGX Orin, which NVIDIA purports to deliver up to
275 tera-operations per second (TOPS) [13].

Due to the performance gap between specialized and
COTS processors, COTS processors may become essential
to supporting short-duration Low Earth Orbit (LEO) missions
that require robust onboard computation [14]. Achieving this
will likely require advancements in both software and hardware.
For example, there is ongoing research on developing image
processing algorithms that are resilient to adverse radiation
effects such as single event upsets (SEUs) [15, 16], as well
as modern load balancing strategies to improve the system’s
performance per watt [17, 18]. Private industry has also
addressed some challenges due to the overlapping concerns
of the power-conscious embedded systems market. Modern
embedded GPUs can achieve better energy efficiency compared
to Central Processing Units (CPUs) for calculations that involve
repetitive tasks with few instructions, low memory access
requirements, and can be computed concurrently [19, 20].

The NVIDIA Tegra K1 (TK1) System-on-Chip (SoC) has
been reported to be radiation-tolerant [21]. Despite the aging
Kepler architecture, previous research has demonstrated the
potential of the TK1 for modern space applications. For
example, the TK1 has been used for tasks such as 3D scanning
[22], aircraft detection [23], autonomous robotics [24], collision
avoidance [25], encryption speedup [26], fully convolutional
networks [27], object detection [28, 29], image processing
[30], Synthetic Aperture Radar (SAR) imaging [31], and target
tracking [32, 33].

Radiation-tolerant single-board computers (SBCs) based on
the TK1 have recently been developed to support low Earth
orbit (LEO) missions, such as the Innoflight CFC-500 and
Ibeos Edge [34, 35]. These boards represent a shift towards
commercial off-the-shelf (COTS) processors in a domain previ-
ously limited to specialized rad-hard devices. The development
of radiation-tolerant SBCs reflects an increasing interest in
using COTS processors for on-orbit space applications, which
motivates this study to further evaluate the TK1 for such
applications. In this study, the architecture of the TK1 is
evaluated in terms of computation performance.

II. BACKGROUND AND RELATED RESEARCH

This study aims to characterize the theoretical performance of
the TK1 for space applications, measure realizable performance
through hardware benchmarking, and conduct a final analysis
of the results. This section describes the TK1 SoC and the
notions of ideal and realizable computational performance.
First, a general description of the TK1 architecture is given,
followed by a brief examination of the methods for calculating
and measuring computational performance. The following
information lays the foundation for subsequent sections that
compare the realizable performance of the TK1.

The TK1 is an intricate, high-performance SoC that com-
prises an ARM Cortex-A15 MPCore CPU and an NVIDIA
Kepler GK20A GPU, shown in Fig. 1. The GPU can parallelize

Fig. 1: NVIDIA Tegra K1 SoC model [36–39].

massive computations containing many repetitive and indepen-
dent subtasks of which many instructions execute within a
single cycle, reducing CPU load [40, p. 4-2]. The TK1 also
uses a unified memory model in which the CPU and GPU share
the main system memory. This design significantly reduces
memory transfer overhead and further enables the GPU to act
as a performance accelerator.

A. ARM Cortex-A15 MPCore CPU

The TK1 CPU comprises four cores optimized for high
performance and operate at a maximum frequency of 2.07
GHz, with an additional power-saving core [41]. However, the
performance analysis does not include the additional core as it is
prohibited from being used concurrently with the central cores,
as per the design of the ARM Cortex [42]. Each CPU core has
two major computational units relevant to performance metrics:
the Integer Execute Unit and the Advanced SIMD (NEON) and
Vector Floating Point (VFP) units. The Integer Execute Unit
includes two symmetric Arithmetic Logic Unit (ALU) pipelines,
an integer multiply-accumulate (MAC) pipeline, integer divide
hardware, branch and condition codes resolution logic, and
result forwarding and comparator logic. The NEON and VFP
units are distinct but share registers to support Single Instruction
Multiple Data (SIMD) and floating-point operations. Each
NEON register can store up to 128 bits of vectorized data of
the same data type; for example, a NEON register can hold
four 32-bit SPFP numbers or eight 16-bit signed integers [42,
Fig. A2-3]. This feature allows for multiple operations per
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clock cycle by issuing a single instruction on multiple data.
The purpose of the VFP unit is to perform scalar floating-
point operations. The Advanced SIMD unit does not support
double-precision floating-point (DPFP) types, but the VFP
unit does. However, VFP vector support is deprecated and
not implemented in hardware on the ARMv7 [43, p. 1-2], so
the VFP unit can only support single instruction single data
(SISD) operations with DPFP data types. The SIMD unit can
execute two instructions simultaneously, known as dual issuing,
when executing a NEON load/store instruction and a NEON
computational instruction [44, p. 5-5]. However, this study
focuses on computational performance and ignores SIMD dual
issuing. Additionally, according to [40, p. 7-5], the number
of cycles required for NEON instructions is not specified,
and some instructions may require several cycles and could
vary between implementations. Due to a lack of information
from NVIDIA, this study assumes one cycle per instruction,
potentially inflating the theoretical performance results.

B. NVIDIA Kepler GK20A GPU

The GPU incorporates a single Kepler Streaming Mul-
tiprocessor (SMX), which performs the computations. The
SMX launches a CUDA kernel function, implemented as an
array of concurrent threads known as the Single Instruction
Multiple Thread (SIMT) execution model (an extension to
Flynn’s Taxonomy) [45]. The underlying SMX components
assessed in this study are the Streaming Processors (also
referred to as CUDA cores), Double Precision (DP) units, and
Special Function Units (SFU). The SMX, based on the Kepler
microarchitecture, contains 192 32-bit CUDA cores capable
of a maximum frequency of 852 MHz. Each core executes a
kernel instance and participates in a bundle of 32 threads called
a warp, where a group of eight CUDA cores spends four clock
cycles executing a SIMT. The Kepler architecture can issue
1024 threads per block, where each thread block is issued to a
CUDA core. The TK1 includes 64 DP units to support DPFP
computations, as the CUDA cores are restricted to SPFP data.
The TK1 has 32 SFUs that are hardware accelerators for SPFP
intrinsic functions [46]. The SFU implements basic arithmetic
and transcendental functions with varying rounding criteria
(e.g., round up, round down, and round nearest even).

C. Quantifying System Performance

The TK1 is a complex SoC that integrates both a CPU
and GPU, each of which has a distinct architecture that
presents unique challenges when evaluating performance.
The device’s computational performance varies depending on
the data type, operation, and memory usage. To adequately
address performance variation between computational units
and to determine the theoretical maximum performance, this
study adopts the methodology described by [47, 48]. This
study’s approach to measuring device performance, known as
computational density (CD), is shown in Eq. 1.

CD = f ×
n∑

i=1

Ni

CPIi
(1)

where f is the device frequency, N is the number of execution
units, and CPI is the number of cycles per instruction. The
summation operation over i accounts for SIMD architectures,
where n is the number of discrete values for which a given
data type can fit into a SIMD register. The ARM CPU has
four high-performance cores, each with a dual pipeline integer
unit, a MAC unit, and NEON/VFP units. Therefore, CPU CD
is represented by Eq. 2.

CDCPU = CDALU + CDMAC + CDNEON/V FP (2)

The GPU has a maximum core frequency of 852 MHz, 192
CUDA cores, also called Streaming Processors (SP), 64 DPs,
and 32 SFUs; therefore, the GPU CD is expressed by Eq. 3.

CDGPU = CDSP + CDDP + CDSFU (3)

The total SoC computational performance is composed of the
total CD of the GPU and CPU, as shown in Eq. 4.

CDSoC = CDCPU + CDGPU (4)

D. Measuring System Performance

Assessing processor performance poses a challenge due
to memory transfers, pipeline hazards, and additional over-
head. Furthermore, comparing the performance claimed by
manufacturers can prove difficult due to the need for more
transparency in their metrics. A viable approach for evaluating
processor performance in space-based computing involves
benchmarking software, such as NSF SHREC SpaceBench.
This software assesses the execution time of a diverse array
of computational kernels, employing varying parameters on
processors specifically designed for space applications [49].

The benchmark tasks are meticulously constructed to ap-
praise the performance of various combinations of parameters,
encompassing the compute unit, kernel function, problem size,
and data type. These tasks focus on specific devices and units,
including the CPU’s integer unit and SIMD/VFP unit, as well as
the GPU’s CUDA cores, DP units, and SFU units. SpaceBench
executes various computational kernels, such as matrix addition,
multiplication, transposition, and convolution.

Distinct implementations of these kernels cater to different
computing architectures, including the general-purpose CPU
pipeline, OpenMP for multithreading, NEON for SIMD, GPU
for SIMT, and GPU SFU for low-precision SPFP acceleration.
These kernels comprise m×m matrix operations where m can
be 128, 256, 512, 1024, or 2048, and they support a range of
data types, such as SPFP and DPFP, 8-bit, 16-bit, 32-bit, and
64-bit integers. Nonetheless, it is important to acknowledge
that each compute unit may only support a subset of these data
types.

III. METHODOLOGY

This section outlines the hardware and software configura-
tions used to execute SpaceBench, and the analysis tools used
to verify processor utilization and report runtimes in GOPS.
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A. Experimental Setup

The NVIDIA Jetson TK1 development kit was used to
examine the SoC. The board was installed with the latest
TK1-supported release of Linux for Tegra (L4T) 21.8, which
provides Ubuntu 14.04 with the GNU/Linux kernel version
3.10.40, and CUDA toolkit 6.5 [50, 51]. The graphical user
interface (GUI) was disabled for all testing (i.e., headless
mode). The CPU governor was set from the default "interactive"
mode to "performance" mode before benchmarking to reduce
frequency ramp-up time. After doing so, the operating system
reported a maximum frequency of 2.32 GHz, rather than the
previously reported upper limit of 2.07 GHz. SpaceBench
was executed via a terminal BASH script, and the output was
redirected to a comma-separated value (CSV) file.

B. Analysis Tools

The NVIDIA Profiler helped identify potential SpaceBench
bottlenecks. The most time-consuming tasks are usually asso-
ciated with memory allocation, which is not included in the
recorded runtime. The next longest task is when the system
synchronizes threads, impacting runtime calculations. The
CUDA Occupancy Calculator helps ensure proper GPU settings
to utilize all available cores when appropriate [52]. Several
parameters contribute to GPU occupancy, such as the NVIDIA
microarchitecture, L2 partition size for shared memory, the
number of threads per block, and registers per thread. The Table
of Processes (top) command monitored the CPU utilization to
confirm processor saturation.

C. Calculating Theoretical Performance

The CPU integer ALU is a dual pipeline and, therefore,
capable of performing two instructions per cycle [36, p. 2-3].
The ALU performance, CDALU , can be found using Eq. 1,
where N = 4 (i.e., one integer unit per core), and CPI = 0.5
(since CPI is the inverse of instructions per cycle). The MAC
unit is a single pipeline capable of one instruction per cycle.
CDMAC is found using Eq. 1, where N = 4 (i.e., one MAC
per core), and CPI = 1. The SIMD unit executes a single
instruction on 128 bits of vectorized data; accordingly, the
effective operations per cycle differ per the used data type
size. CDNEON/V FP is found using Eq. 1, where N = 4 (i.e.,
one SIMD unit per core), CPI = 1, and n is the amount
of numbers for which a given data type can fit into a 128-
bit SIMD register. For example, if the SIMD performs 8-bit
integer operations (e.g., add, shift, multiply), the unit can
support up to 16 operations per instruction. Also, recall that
the SIMD unit only supports up to 32-bit vectorized data types,
so only one DPFP can be used per register. The theoretical
CPU performance given the frequency value provided by the
TK1 datasheet is shown in Table I. The performance of the
CUDA cores, CDSP , is found using Eq. 1, where N = 192,
and CPI = 1. The total performance of the DP units, CDDP ,
is also found using Eq. 1, where N = 64, and CPI = 1.
Finally, the performance of the SFU units, CDSFU , is found
using Eq. 1, where N = 32, and CPI = 1. Refer to Table I
for the GPU performance calculations. The total performance

of the TK1 is found by simply applying Eq. 4. See Table I for
a comprehensive theoretical performance summary reported in
GOPS.

D. Software Optimizations and Enhancements

The differing architectures of the underlying TK1 proces-
sors require different procedures to implement comparable
algorithms, and application programming interfaces (APIs)
are needed to utilize specialized accelerators. Accordingly,
SpaceBench uses three crucial software extensions to target
underlying devices: OpenMP for CPU multithreading, NEON
for SIMD, and CUDA C for the GPU. OpenMP is an API
to enable CPU multithreading. SpaceBench uses OpenMP
to execute 1-12 threaded kernel function runs. NEON is an
advanced SIMD computer architecture extension for ARM
Cortex A-series processors used for vectorized computation.
SpaceBench uses a C API to utilize NEON intrinsic functions,
which interface the ARM SIMD unit for computation speedup.
CUDA is a programming model created for NVIDIA GPUs,
and SpaceBench uses CUDA C (an extension to C/C++) to
utilize the GPU. Due to its complicated memory hierarchy and
thread issuing strategy, optimizing CUDA code requires more
fine-tuning than the previously implemented enhancements.
The hardware capabilities are fairly represented by consid-
ering additional factors, such as pipeline stalling caused by
cache misses. For example, multiplication, transposition, and
convolution-blocking algorithms are implemented to compare
against naive algorithm implementations.

E. Measuring Realizable Performance

Characterizing the TK1’s computational performance pro-
vides a sensible assertion of its capabilities [49]. This study
focused on the TK1’s processor computational performance
instead of pure instruction performance. A single operation
in this context is a mathematical computation consisting of
addition and multiplication, whether it is an add instruction
and a multiply instruction or only one MAC instruction. This
method focuses the metrics on the core calculation performance
rather than any programmatic overhead for assigning values to
counters and other analogous program instructions.

SpaceBench was used to measure the realizable performance
of the TK1 by recording the execution time for functions crafted
to utilize the CPU and GPU independently. The average runtime
over several iterations for each computational kernel was then
converted to GOPS, the normalized number of operations per
runtime. The transpose function takes exception to this criteria
since the whole process consists only of memory transfers;
therefore, an operation in this context is simply the finalized
relocation of a value from the input matrix to the output matrix.

IV. RESULTS AND ANALYSIS

To measure the computational performance of the TK1,
the processor benchmarking aimed to measure the number of
operations it could perform in a given unit of time. However,
accurately comparing the performance of different processor
architectures can be difficult due to the varying overhead of
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TABLE I: Theoretical TK1 Performance

add, sub, shift multiply multiply & accumulate

Processor Unit Int8 Int16 Int32 SPFP DPFP Int8 Int16 Int32 SPFP DPFP Int8 Int16 Int32 SPFP DPFP

ARM Cortex-A15 MPCore CPU
ALU/Int MAC 16.5 16.56 16.56 – – 8.28 8.28 8.28 – – 8.28 8.28 8.28 – –

NEON/VFP 132.48 66.24 33.12 33.12 8.28 132.48 66.24 33.12 33.12 8.28 132.48 66.24 33.12 33.12 8.28

NVIDIA Kepler GK20A GPU
SP 136.32 136.32 136.32 163.58 – 27.26 27.26 27.26 163.58 – 27.26 27.26 27.26 163.58 –
DP – – – – 6.82 – – – – 6.82 – – – – 6.82

SFU – – – 27.26 – – – – 27.26 – – – – – –
NVIDIA Tegra K1 SoC CPU+GPU 285.36 219.12 186.00 223.97 15.10 168.02 101.78 68.66 223.97 15.10 168.02 101.78 68.66 196.70 15.10

– unit, type, and instruction combination not supported.

implementing equivalent algorithms. In order to address this
challenge, the runtime of various algorithms implemented on
different compute units of the TK1 was measured, and the
calculations only incorporated core mathematical operations re-
quired to solve each problem. This approach aids in preventing
inflated performance metrics and ensures that implementation
details do not distort the results.

A. Theoretical Performance
The following analysis relies on the estimated theoretical

CPU performance shown in Table I and Fig. 2. The CPU’s
maximum performance decreases as the data type size increases
because the SIMD registers are limited to 128-bits. Therefore,
the CPU can achieve the highest performance by performing
SIMD operations using the smallest data type, Int8. It is
anticipated that Int16 will exhibit approximately half the
performance of Int8 due to its increased memory requirements,
while Int32 is expected to exhibit roughly half the performance
of Int16. On ARMv7, NEON does not support DPFP operations,
and VFP vectorization is deprecated. As a result, the CPU’s
DPFP performance using the VFP unit is limited to one
instruction per DPFP per cycle.

Fig. 2: TK1 theoretical performance for MAC operations

This study posits that Int8 and Int16 exhibit performance
on par with Int32, which is estimated at 27 GOPS for SP
units, as there is insufficient information available on the
GPU’s performance for Int8 and Int16 arithmetic instruc-
tions. Moreover, the GPU’s SFUs for transcendental functions

contribute an additional estimated performance of 27 GOPS,
excluding rounding operations. While the GPU’s 64 DP units
have a more modest capability of performing approximately
eight operations per cycle, they still achieve a respectable
theoretical performance of around 6.8 GOPS for addition and
multiplication tasks.

B. CPU Parallel Performance

The parallel efficiency of TK1 CPU was evaluated for
matrix multiplication using OpenMP and four different im-
plementations: naive, blocking, NEON, and OpenBLAS. A
single-threaded run served as a benchmark for comparison
with additional multi-threaded tests for each implementation
to evaluate their performance under varying thread numbers.

The results for the naive algorithm are shown in Fig. 3a.
Near-linear speedup was observed until a thread occupied
each core, after which performance plateaued. Int32 data type
performed best for the smallest problem sizes; however, as the
problem size increased, a decline in performance was observed
due to increased cache misses.

The performance of the blocking algorithm is shown in Fig.
3b, where it was observed that the algorithm scaled up as
more threads were assigned to it until reaching a maximum
performance when each core was assigned a single thread. The
Int32 data type performed the best, achieving a maximum of
approximately 2.75 GOPS for the 2048× 2048 problem size.
The SPFP performance reached its limit at the 1024× 1024
problem size, while the DPFP performance reached its limit
at the 256× 256 problem size. The performance of the integer
benchmark decreased as the problem size grew, most likely
due to increased cache misses.

The OpenBLAS library’s matrix multiplication implementa-
tion was the highest-performing algorithm tested on the CPU,
supporting only SPFP and DPFP data types. The outcomes of
this implementation are displayed in Fig. 3d, where it achieved
a maximum performance of nearly 8 GOPS for SPFP and
about 6.5 GOPS for DPFP, with a near-linear increase in
performance as more threads were added until all available
cores were utilized.

The parallel efficiency of the TK1 CPU was evaluated for
matrix multiplication using four different implementations:
naive, blocking, NEON, and OpenBLAS. The OpenBLAS
library performed best but did not improve further when more
than four threads were added. The results show that the although
naive algorithm had a greater percent increase in performance
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(a) naive algorithm (b) blocking algorithm (c) NEON acceleration (d) OpenBLAS library

Fig. 3: ARM Cortex-A15 MPCore CPU parallel speedup

(a) naive algorithm (b) blocking algorithm (c) CuBLAS library

Fig. 4: NVIDIA Kepler GK20A GPU parallel speedup

per added thread, the blocking algorithm performed better
overall. However, it was observed that the blocking algorithm
did not achieve the desired level of scalable performance. In
future studies, similar blocking algorithms will be implemented
to improve temporal locality and reduce cache misses, thereby
better demonstrating the performance of the CPU pipeline.

C. GPU Parallel Performance

In the current version of SpaceBench, the CUDA pro-
gramming model is utilized to take advantage of the parallel
processing capabilities of the GPU. However, an unresolved bug
impacted the execution of the naive and blocking algorithms
on problem sizes of 2048 × 2048 and larger. Consequently,
the results presented in the subsequent sections are limited
to matrix multiplication implementations with a maximum
problem size of 1024 × 1024. The results shown in Fig. 4a
indicate that the GPU performance improved as the number of
threads per block increased. However, utilizing the maximum
value of 1024 threads per block resulted in a decline in
performance, suggesting that fully occupying the GPU does
not guarantee improved performance. The blocking algorithm
performed well with larger problem sizes, but it did not have a
linear increase in performance. The size of the blocks used in
the algorithm also had a notable effect on performance, with
larger block sizes resulting in better performance, as shown in
Fig. 4b. However, it is challenging to quantify how much of
the improvement can be attributed solely to the algorithmic

block size in the current implementation, as it is coupled
with the number of threads per block. The implementation of
CuBLAS, a library of BLAS optimized for GPU acceleration,
resulted in a significant improvement in speed for SPFP,
as evidenced by the results shown in Fig. 4c. However,
performance improvement stalled after reaching a problem
size of 768 × 768. Meanwhile, the DPFP implementation
saturated at a problem size of 256× 256. Due to data transfer
overhead, smaller problem sizes usually do not benefit from
using the GPU. However, the GPU performed better than
the CPU in all tests except DPFP, likely due to its unified
memory model, which eliminates the need to transfer memory
between the CPU and GPU. The GPU generally exhibits
improved performance with increasing problem size, except in
the case of DPFP, where the highest level of performance was
achieved at a problem size of 256× 256 and did not improve
with further size increases. When creating algorithms for the
GPU, it is crucial to consider various parameters carefully
to attain optimal performance. For example, utilizing many
threads may be straightforward, as demonstrated in the naive
implementation, but other strategies may be more effective.
The CUDA programming model provides a convenient way to
implement a blocking algorithm using internal thread indexing
variables, as used in the blocking algorithm. However, this
can also affect device performance unexpectedly, making it
challenging to isolate and identify the specific factors that
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impact performance. Therefore, optimizing GPU resources and
fine-tuning algorithm parameters are essential for obtaining
the best results. The crucial point to remember is to utilize
optimized libraries, such as CuBLAS, whenever possible, as
they are designed to be high performing.

D. Realizable Performance

In Fig. 5, we present the results of all matrix multiplication
benchmarks performed on the TK1 device. The best-case
CPU performance for integer data types varied between 2.26
and 6.86 GOPS, with Int32 showing the lowest performance
across all benchmarks. The CPU performance for SPFP and
DPFP data types was significantly higher, reaching 7.76 and
6.83 GOPS, respectively. On the other hand, the GPU integer
performance remained relatively consistent, with a range of
8.47 and 9.15 GOPS, and again Int32 demonstrated slightly
lower performance than the other integer data types. The best-
performing benchmarks on the GPU were SPFP and DPFP, with
a maximum performance of 97.46 and 6.40 GOPS, respectively.

Fig. 5: TK1 realizable performance

TABLE II: Realizable TK1 Performance

Performance (GOPS)

Processor Implementation Int8 Int16 Int32 SPFP DPFP

ARM Cortex-A15 MPCore CPU

naive 1.52 0.50 0.54 0.56 0.50
blocking 1.36 1.42 0.92 1.13 0.42
NEON 6.86 3.00 2.26 3.14 –
BLAS – – – 7.76 6.83

best case 6.86 3.00 2.26 7.76 6.83

NVIDIA Kepler GK20A GPU

naive 0.42 0.63 0.50 0.64 0.62
blocking 9.15 8.94 8.47 8.96 5.07
BLAS – – – 97.46 6.40

best case 9.15 8.94 8.47 97.46 6.40
NVIDIA Tegra K1 SoC best case 9.15 8.94 8.47 97.46 6.83

– unit, type, and instruction combination not implemented.

Fig. 6: TK1 realizable utilization

E. Realizable Utilization (RU)

The CPU and GPU performance results on different data
types are shown in Fig. 6. The CPU performed better in DPFP
operations but had a lower RU for all other data types. The
OpenBLAS library had an RU of 23% for SPFP and 83% for
DPFP, whereas the GPU’s floating-point units showed strong
performance, with the CuBLAS library achieving a RU of 60%
for SPFP and 94% for DPFP. In contrast, the TK1 integer
units had the lowest RU, with the CPU averaging 5% and the
GPU at around 33%. This is due to the TK1’s optimization
for high SPFP performance, making it ideal for applications
such as video processing, computer graphics, and scientific
computations.

V. CONCLUSIONS AND FUTURE RESEARCH

In space-based computing, it is vital to consider the impact
of extreme radiation environments on processor performance.
Rad-hard processors are designed to be reliable in these
conditions but may not offer the computational performance
needed for next-generation space missions. As a COTS-
based alternative, we explored the TK1 SoC, which has
demonstrated the ability to withstand the radiation levels
present in LEO. This study characterized the theoretical and
realizable CPU and GPU performance to better understand the
TK1’s capabilities and determine its suitability for space-based
computing applications. The TK1’s GPU outperformed its CPU
in nearly every benchmark, with SPFP operations achieving the
highest performance. Based on these findings, it is generally
preferred to use the GPU rather than the CPU for all data
types, especially for SPFP operations. Optimizing software
for each computational unit within the TK1’s architecture,
and using optimized libraries such as BLAS, can significantly
improve performance and make it possible to effectively port
applications to the TK1 and improve space systems’ capabilities.
The results of this study suggest that the TK1 may be a
suitable alternative to traditional radiation-hardened processors
for short-duration LEO space missions requiring enhanced
computational performance. Future research directions will
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include testing both the CPU and GPU simultaneously, adding
new optimizations and computations to the analysis, and
comparisons with other radiation-tolerant SoCs, such as the
AMD Ryzen Embedded V1605B.
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