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Abstract. Flood Mapping is an important activity that helps in understanding the 

spatial extent of the flood over the impacted region thereby helping emergency 

responders in chalking out plans for future emergencies. The main of this study 

is mapping waterlogged areas and silt-affected areas after the submergence of 

floods. In this study, Random Forest (RF) classifier is used for mapping water-

logged areas and silt affected areas using a pixel-based supervised classification 

approach. For the classification process, six land use/cover classes covering a 

total area of 1491.84  km2 of the Khagaria district of Bihar, India have been used. 

A four-band Sentinel-2 dataset at 10 m spatial resolution has been used for both 

pre-flood and post-flood datasets. The overall accuracy (OA) and Kappa score 

(K) for pre-flood classified data acquired using RF are (OA=84.95%, k=0.817). 

Whereas overall accuracy and kappa score for post-flood classified data using RF 

are (OA=83.325%, k=0.798) respectively. The results of post-flood classified 

data have shown that waterlogged areas and silt-affected areas have increased 

significantly from 22.40 km2, 7.22 km2 to 245.60 km2, 81.53 km2 respectively. 

Also, the classifier has shown fair Producer’s and User’s accuracy for the affected 

class that consists of Water-logged areas and Silt-affected areas. Furthermore, 

quantitative analysis of post-flood classified data shows there is a significant in-

crease in waterlogged areas and silt-affected areas. 

Keywords: Flood Mapping, Waterlogged, Remote Sensing, Sentinel-2, 

Sen2cor, Land Use Land Cover, Random Forest (RF). 
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1 Introduction 

Every year floods cause huge economic losses wreaking havoc resulting in loss of life, 

infrastructure damage, and loss of livelihood of many people around the world. They 

may occur due to a variety of reasons such as erratic rainfall, cloudbursts, and climate 

change [1-2]. Bihar is one of the flood-prone states of India that experiences flood every 

year during the monsoon season. The monsoon season in Bihar lasts from the onset of 

June to the fall of November. It consists of Southwest Monsoon (June-September) and 

Post-monsoon (October-November). Two of the main problems that occur after the 

submergence of floods are the problem of waterlogging and silting. The problem of 

water-logging continues till the fall of December. More than 73.06% of Bihar’s area is 

prone to flood [3].  

In the last few years, the Remote Sensing domain has proven to be extremely useful for 

mapping the extent of floods by leveraging the potential of very high-quality satellite 

data and various advanced state of art modern machine learning algorithms. 

The main of this study is the mapping of waterlogged areas and silt-affected areas after 

the submergence of floods using the pixel-based supervised machine learning approach 

on the Sentinel-2 dataset. This paper is structured as follows: Section 1 presents the 

basic introduction; Section 2 gives the literature review; Section 3 describes the Study 

area; Section 4 describes the dataset preparation and pre-processing; Section 5 de-

scribes the methodology and the classifiers used; Section 6 describes the results; As the 

conclusion, Section 7 summarises the study's main findings. 

2 Literature Review 

Flood mapping involves the use of various GIS techniques integrated with modern state 

of art machine learning algorithms to delineate the water body and flooded areas. The 

conventional technique for mapping flood extent involves in situ visit which is a time-

consuming and costly process [4]. Some of the techniques employed by researchers for 

mapping flood are masking and thresholding [5], rule-based classification [6], and op-

timum thresholding based on spectral bands [7].  

Satellite-based land use/cover maps have become very popular owing to the availability 

of high-quality [8]. Two of the very popular satellite data are LANDSAT and Sentinel-

2 that provide a spatial resolution of 30m and 10m respectively. 

A few of the most popular indices used for mapping flood and water areas are NDWI 

(Normalized Difference Water Index), MNDWI (modified NDWI), and AWEI (Auto-

mated Water Extraction Index) [9-11]. The first two indices have been widely used for 

mapping flood and water areas. However, these two methods cannot capture floods in 

urban areas [9-10]. Mobley et. al used Random Forest (RF) to generate a flood map 

using scikit library [12]. Landsat data owing to its large archive has been extensively 

used by researchers for mapping the extent of the flood. Wang et al. [13] used Landsat 

7 TM images to determine the flooded areas by separating the water features from non-

water features. 
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Gianinetto et al. used MNDWI by using LANDSAT data for mapping flood and deter-

mining the extent of flood damages [14]. Li et al. used Sentinel-2 data for flood map-

ping by using independent component analysis after separating water and land using 

modified NDWI (MNDWI) [15].  

LULC maps can be produced by using different methods and classification algorithms 

[16-17]. The results and the performance of these classification algorithms are influ-

enced by various factors such as training/testing samples used, the sensor’s data em-

ployed, and the number of classes [18-19]. 

3 Study Area 

The study area chosen is the Khagaria district located in Bihar, India. It is among one 

of the most affected districts in the flash floods in Bihar in 2020. The rectangular extent 

of the khagaria district is given by 25° 15' 14.1048"N to 25° 43' 54.4512"N latitude and 

86°16' 44.076"E to 86° 51' 24.696"E longitude with a total spatial area of 1491.84 sq. 

km. The district is bordered on the west by the River Kosi. Fig. 1 describes the study 

area. Fig. 2  (a) display the pre-flood and (b) post-flood images respectively in the false-

color composite format. 

  

 

Fig. 1.  (a) The Study Area located in India (b) Khagaria district located in the Bihar District 

(c) The study Area boundary. 
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Fig. 2.  Saharsa (a) Pre-flood and  (b) Post-flood Data in False Color Composite. 

4 Dataset Preparation and Pre-processing 

4.1 Sentinel 2 Data 

The European Space Agency (ESA) launched two satellites (Sentinel-2A/2B) in 2015 

and 2017 respectively. Sentinel-2 data finds applications in many fields such as vege-

tation mapping, land cover mapping, geological remote sensing, water mapping, and 

many other applications [20-24]. The images taken are in WGS 1984 UTM projection, 

zone 45N. 
                                                                                                                 TABLE I  Band characteristics of Sentinel-2. 

Band No. Band Name Resolution(m) Wavelength (mm) 

(B)1 Coastal Aerosol Band 60 0.433–0.453 

(B)2 Blue Band 10 0.458–0.523 

(B)3 Green Band 10 0.543–0.578 

(B)4 Red Band 10 0.650–0.680 

(B)5 Vegetation (Red-Edge)Band-1 20 0.698–0.713 

(B)6 Vegetation (Red-Edge)Band-2 20 0.733–0.748 

(B)7 Vegetation (Red-Edge)Band-3 20 0.773–0.793 

(B)8 Near Infra-Red (NIR) Band 10 0.785–0.900 

(B)8A Narrow-Near Infrared Band 20 0.855–0.875 

(B)9 Water vapour Band 60 0.935–0.955 

(B)10 Short Wave Infrared  Cirrus Band 60 1.360–1.390 

(B)11 (Short Wave IR)Band-1   20 1.565–1.655 

(B)12 (Short Wave IR)Band-2 20 2.100–2.280 
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4.2 Image Pre-Processing 

Sentinel-2 data needs to be atmospherically corrected to remove the effect of scattering 
and absorption from the given dataset. The Sen2Cor processor is used to rectify data 
from the effects of atmospheric conditions. It is a Level 2A processor which converts 
images from Top-Of-Atmosphere (L1C) form to Bottom-Of-Atmosphere (L2A) form 
[25].  

5 The Methodology and Classifiers Used 

5.1 Methodology 

In this study, the pixel-based supervised classification method is used for mapping of 

waterlogged areas and silt affected areas using pixel-based supervised classification 

technique. Fig. 3 describes the classification process methodology. The training data 

samples are generated using a polygon shapefile with the help of high-resolution 

Google Earth Imagery. Two sets of training data before the flood and one after the flood 

have been created for the raster dataset. After performing the classification, the area of 

each class before and after the flood is calculated for the quantitative assessment of 

post-flood impacts. 

 

                                          Fig. 3. Classification Process Methodology. 

5.2 Classifiers Used 

Random Forest 



6 

 

Random forest is a very popular and highly effective machine learning algorithm that 

uses bootstrapping techniques to build a group of decision trees [26-27]. In this tech-

nique, the different tree produces a subset of feature and training data with replacement. 

It combines the techniques of bootstrapping and random feature selection. Some of the 

samples in bootstrapping will be chosen frequently while some of the samples will not 

be picked at all. The unselected samples as such are used to evaluate the model perfor-

mance. Each tree participates in the voting process and based on the votes from the 

trees, the most popular tree is selected as the output. It is ideally suited for classification 

and regression, however, it is most commonly used for classification-related tasks. 

There are two important parameters in the RF algorithm that need to be tuned which 

are mtry (number of independent variables sampled at each split) and ntree (number of 

trees to grow) [26].  

 

6 Results and Discussion 

The main aim of this study was to map the waterlogged areas and Silt-affected areas 

after the submergence of floods using the Sentinel-2 dataset. In this study, a four-band 

dataset consisting of the Red, Blue, Green, and Near-Infrared bands is used to classify 

the pre-crisis and post-crisis images. The training and testing samples are generated 

manually using the stratified random sampling technique with the help of high-resolu-

tion Google Earth Imagery. The number of testing samples taken for pre-flood and post-

flood data is shown in Table II. The classification process is carried out in the R frame-

work using the caret package using the Random Forest classifier. Here, the default val-

ues of all the tuning parameters of RF have been utilized for the pre-flood and post-

flood classification. For the classification process, six land use/cover classes were iden-

tified after the careful analysis of the study area namely (1) Water-Body, (2) Vegeta-

tion, (3) Fallow Land, (4) Built-up, (5) Waterlogged Areas, and (6) Silt-Affected Areas 

covering a total area of 1491.84 km2 of the Khagaria district, Bihar were determined.  

 

 For the Accuracy assessment of the classifier, a few accuracy measures are used ( 

Overall Accuracy (OA), Kappa Score (k), Precision (P), and Recall (R) ). For further 

details, Table IV and Table V give the Confusion matrix for the individual class for the 

pre-flood and post-flood classified data respectively. It can be observed from the con-

fusion matrix (Table V) that there is misclassification between the waterlogged areas 

and the waterbody. Also, a few of the silt-affected areas have been misclassified as 

built-up areas. Table VI gives a quantitative analysis of pre-flood and post-flood clas-

sified data using the random forest classifier. The impacted class consisted of water-

logged areas and silt-affected areas. The quantitative analysis of post-flood classified 

data shows that there is a significant increase in waterlogged areas and silt-affected 

areas after the submergence of floods which can also be realized by the obtained maps 

as shown in Figure. The results of post-flood classified data have shown that water-

logged areas have increased significantly from 22.40 km2 to 245.60 km2. Whereas, the 

silt-affected areas have increased from 7.22 km2 to 81.53 km2. The classifier shows 

good producer accuracy and user accuracy for waterlogged areas and silt-affected areas. 
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The resulting recall and precision values achieved using RF for waterlogged areas are 

81%, 100% for pre-flood classified data, and 67.5%, 92.2% for post-flood classified 

data respectively. Whereas the resulting recall and precision values achieved for silt-

affected areas are 60.4%, 86.2% for pre-flood classified data, and 82.1%, 87.2% for 

post-flood classified data respectively. It can be visualized from the post-classified data 

maps that most of the impact is along the river channel along the northwestern part and 

southeastern part of the district. 

 

                                TABLE II Number of Testing Samples for Pre-flood/Post-flood Data 

Number of 

Samples 

Water 

Body 

Vege-

tation 

Fallow 

Land 

Built-up 

Areas 

Water-logged 

Areas 

Silt-Affected  

Areas 

Pre-flood 800 900 800 500 500 500 

Post-flood 800 900 600 500 600 600 

                                                   

TABLE III Accuracy Metrics. 

Classifiers Pre-flood Data Post-Flood Data 

Overall 

Accuracy 

Kappa 

Score 

Overall 

     Accuracy 

Kappa 

Score 

RF 84.95 0.817 83.325 0.798 

                                      

Table IV Confusion Matrix for Pre-flood RF Classified Data. 

Class Water 

Body 

Vege- 

tation 

Fallow 

Land 

Built-up 

Areas 

Water 

Logged 

Areas 

Silt 

Affected 

Areas 

Classifica-

tion  

Overall 

User’s 

Accuracy 

(Precision) 

Water Body 784      0 0 0 95 0 879 0.891 

Vegetation 0 815 0 0 0 0 815 1.0 

Fallow Land 0 85 640 0 0 0 725 0.882 

Built-up Areas 16 0 160 452 0 198 826 0.547 

Water-Logged 

Areas 

0 0 0 0 405 0 405 1.0 

Silt Affected Ar-

eas 

0 0 0 48 0 302 350 0.862 

Truth Overall 800 900 800 500 500 500 4000  

Producer’s  

Accuracy(Recall) 

0.98 0.905 0.8 0.904 0.81 0.604   

                                                                  

Table VI Confusion Matrix for Post-flood RF classified Data. 

Class Water 

Body 

Vege- 

tation 

Fallow 

Land 

Built-up 

Areas 

Water 

Logged 

Areas 

Silt 

Affected 

Areas 

Classifica-

tion  

Overall 

User’s 

Accuracy 

(Precision) 

Water Body 735     0 0 0 175 3 913 0.805 

Vegetation 2 811 6 0 4 0 823 0.985 

Fallow Land 0 79 453 36 16 0 584 0.775 

Built-up Areas 0 2 134 436 0 104 676 0.644 

Water-Logged 

Areas 

26 8 0 0 405 0 439 0.922 

Silt Affected Ar-

eas 

37 0 7 28 0 493 565 0.872 

Truth Overall 800 900 600 500 600 600 4000  

Producer’s 

 Accuracy(Recall) 

0.918 0.901 0.755 0.872 0.675 0.821   
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Table VI Quantitative Analysis of pre-flood and post-flood classified Data 

 

 

 

 

 
 

Fig. 4.  RF pre-flood and post-flood Classified Data Maps. 

 

 

 

Class 

Description 

Pre-Flood Data 

(Area in km2) 

Post-Flood Data 

(Area in km2) 

Water Body 40.18 108.62 

Vegetation 708.11 575.31 

Fallow Land 573.70 354.22 

Built-up Areas 140.23 126.56 

Water Logged Areas 22.40 245.60 

Silt-Affected Areas     7.22       81.53 
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7 Conclusion 

The main aim of this study was to map the waterlogged areas and Silt-affected areas 

after the submergence of floods using the Sentinel-2 dataset. The overall accuracy (OA) 

and kappa score (k) for pre-flood classified data obtained using RF are (OA=84.95%, 

k=0.817). Whereas overall accuracy and kappa score for post-flood classified data us-

ing RF are (OA=83.325%, k=0.798). The results of post-flood classified data show that 

waterlogged areas and silt-affected areas have increased significantly from 22.40 km2, 

7.22 km2 to 245.60 km2, 81.53 km2 respectively. Also, the classifier shows fair Pro-

ducer’s and User’s accuracy for the affected class that consists of Water-logged areas 

and Silt-affected areas. Waterlogging and Siltation make areas inaccessible and unusa-

ble for agricultural activity, causing severe damage to the soil and the ecosystem. It can 

be visualized from post-classified data maps that most of the impact is along the river 

channel in the northwestern part and southeastern part of the district. As a future scope, 

one can use advanced machine learning techniques such as convolutional neural net-

works, deep learning to get better results. 
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