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Abstract—Multi-Target Tracking (MTT) is a challenging prob-
lem in the field of data association and sensor data fusion. Many
solutions to MTT assume a Markovian nature to the motion of the
target to solve the problem and avoid the potential computational
complexity. Recently, we have shown that considering a sequence
of three time steps and their resulting triplet costs in data
association provides a superior solution that better incorporates
the kinematic behavior of maneuvering targets. Nevertheless, the
triplet costs pose significant computational overhead and scaling
challenges. In this paper, we present significant computational
advances in a triplet cost-based data association engine for MTT
using Graphics Processing Units (GPUs). We achieve this by
improving the computational performance of the dual ascent
algorithm for dense Multi-Dimensional Assignment Problem
(MAP), presented in Vadrevu and Nagi, 2022. Our contributions
include: (1) A very fast GPU-accelerated Linear Assignment
Problem (LAP) solver that solves an array of tiled LAPs without
synchronizing with the CPU, (2) Reduction in computational
overheads of triplet costs by using gating and compressed matrix
representations, and (3) Computational performance studies that
demonstrate the effectiveness of our computational enhance-
ments. Our resulting solution is 5.8 times faster than the current
solution without compromising the accuracy.

Index Terms—Multi-dimensional Assignment, Data Associa-
tion, Multi-Target Tracking, Mixed-Integer Linear Programming,
Hungarian Algorithm, GPU acceleration, CUDA.

I. INTRODUCTION

The problem of multi-target tracking has been extensively
researched using various approaches such as mathematical pro-
gramming models, Joint Probability Data Association (JPDA),
and Multi-Hypothesis Tracking (MHT). In this paper, we
employ the Multi-dimensional Assignment Problem (MAP)
formulation [1] as a suitable approach for solving the MTT
problem. The MAP problem typically consists of a T -
dimensional graph with N nodes in each dimension, which
is a generalization of the Linear Assignment Problem (LAP)
to a T-partite graph instead of a bipartite graph.

To formulate MTT as a MAP problem we design the
following problem setting. The sensors observe targets over a
time period divided into multiple time frames, each containing
target measurements such as position and velocity. Each target
is represented by a node, and each dimension in the graph
represents a time frame. The edges in the graph connecting
the nodes across time frames represent the cost of matching
a node in one time frame to another node in the subsequent

time frame. The MAP is then solved to obtain optimal or near-
optimal assignments for each node across all T dimensions,
with the assignment of each node to another node in adjacent
time frames representing the track of the corresponding target.

The optimization formulation presented in this paper allows
one to consider the triplet costs resulting from sensor ob-
servations in three adjacent time frames between the targets.
As discussed in [2], [3], and [4], accounting for the triplet
costs has shown better results in terms of tracking accuracy
(ITCP and MMEP) and robustness. This is indeed expected as
higher-order variables are able to capture more insights of the
target trajectory, which is induced into the problem through
the objective function coefficients. [5] developed a scaleable
dual ascent algorithm that uses GPUs to obtain near-optimal
solutions to the MAP. The GPU-accelerated solution presented
in [5] to solve MAP has significant room for computational
improvement since it solves a general instance of MAP and
does not consider optimizations specific to MTT. Additionally,
the solution heavily relies on a GPU-accelerated LAP solver
developed by [6] which has many CPU-GPU synchronization
overheads.

In this paper, we provide a complete and high-performance
solution for the MTT problem. Our contributions include the
following: (1) A multi-threaded cost generator that simulates
the motion of targets and generates accurate costs based on
spline interpolation-based techniques with filtering. (2) A very
fast GPU-accelerated LAP solver that is free of CPU-GPU
synchronization and performs ∼ 500× faster than [6]. (3)
A compressed representation of the filtered triplet costs and
modification of the dual ascent algorithm to operate on the
compressed costs to reduce the computation time by ∼ 5.86×
with minimal impact on memory footprint and accuracy.

The rest of the paper is organized as follows: Section II
describes some of the previous relevant work in the MTT do-
main and sets notation. Section III concretely defines the MAP
formulation and explains the dual ascent algorithm. Section
IV describes our solutions in detail with pseudocodes and
parallelization strategies. Section V illustrates the individual
performance improvement of each solution and the overall
performance improvement. Section VI gives a summary of
our contributions, improvements, and scope for future work.



II. NOTATION AND LITERATURE REVIEW

For setting up the MTT problem, we consider a 2-
dimensional Region of Interest (ROI), there are N identical
targets that randomly move in the region with (approximately)
constant velocity. The sensor(s) capture these targets at T
distinct times with a fixed frequency, these captures are
referred to as frames. The captured data gives the coordinates
(x, y) of the objects. For the sake of simplicity, we initially
assume that the sensor(s) has excellent resolution and there are
no missed detections or false alarms. We will see later that our
techniques can be adapted to incorporate these realistic issues
(similar to [4]). For brevity, we define a set of indices from
{1, . . . , L} as [L] where L ∈ Z+.

Multiple techniques have been explored to study Multiple
Target Tracking (MTT). Some of the significant works in this
area include the development of combinatorial models for
MTT by Morefield and Mahajan [7], and the use of Joint
Probabilistic Data Association Model (JPDA) to solve Multi-
Hypothesis Tracking (MHT) by Bar-Shalom and Fortmann [8].
MTT has also been formulated as MAP by [9] using a sliding
window model. Additionally, several genetic algorithms have
been proposed to solve MTT by [10], [11], [12], and [13].
Since MTT is fitted into the MAP framework, the definition
of edge costs is always subject to the problem conditions. [14]
compared the performance effects of multiple cost definitions
based on spline interpolation techniques and it was shown
that clamped spline interpolation best captures the motion of
maneuverable targets. MAP formulations have been solved
for decomposible costs by [15] using a Multi Dimensional
Assignment with Decomposible Cost (MDADC) formulation.
[4] compared the MDADC formulation with a triplet cost-
based formulation and showed that the solutions generated
with triplet costs are robust to missed and false detections.

MAP is NP-Hard even with triplet costs, exact algorithms
become computationally expensive beyond a problem size
due to combinatorial explosion. MAP has many polynomial
approximation algorithms within a factor 2 of the optimal
solution. [16] developed a primal-dual approximation algo-
rithm with theoretical guarantees and developed a solution for
multi-target tracking for application in videos. In this paper,
we significantly improve the computational performance of the
dual ascent algorithm for MAP presented in [5] by developing
some general and special optimizations for the MTT problem.

III. FORMULATION AND SOLUTION TECHNIQUE

We use the formulation established in [17] for the MTT
problem. The MTT problem is modeled as a MAP on a T-
partite graph where T is the number of frames. Each partition
of the graph has N nodes that represent the location of N
targets detected by sensor(s). The variables associated with
the problem formulation match all the nodes in timeframe
t with a node id i. All matchings over T time frames are
then interpreted as a track of target i. As explained earlier the
objective function of this formulation considers both pairwise
and triplet costs. We explain the estimation of these costs
in Section II Fig. 1 illustrates a T-dimensional assignment

Fig. 1. Multi-Dimensional Assignment Problem Representation

problem. The formulation assumes that there are no missed
detections and false alarms, this assumption can be easily
relaxed by adding dummy nodes with infinite costs, see
[17] for details. The objective of the MAP formulation with
pairwise and triplet costs is defined as:

min

N∑
i=1

N∑
j=1

T−1∑
p=1

Cp
ijx

p
ij +

N∑
i=1

N∑
j=

N∑
k=1

T−2∑
p=1

Dp
ijkx

p
ijx

p+1
jk (1)

Here the binary variable xp
ij indicates the matching of node

i in time frame p with node j in time frame p + 1. The
formulation has simple assignment constraints for one-to-one
matching. This formulation in above form is highly intractable
due to its nonlinear nature. Since xp

ij is binary, their product
can be replaced with a lifted variable ypijk = xp

ij × xp+1
jk

with additional linear constraints to relate x and y variables.
These additional constraints are then relaxed using Lagrange
multipliers to obtain a linear formulation with LAP constraints.
We do not go into the details of this relaxation. Interested
readers can refer to [17] for a detailed derivation. The relaxed
formulation with Lagrange multipliers (v̂pjk) is as follows:

LRMAP:

min
N∑
i=1

N∑
j=1

T−1∑
p=1

Cp
ijx

p
ij +

N∑
i=1

N∑
j=1

N∑
k=1

T−2∑
p=1

(Dp
ijk − v̂pjk)y

p
ijk

(2)

s.t.
N∑
i=1

xp
ij = 1 ∀j ∈ [N ], p ∈ [T − 1]; (3)

N∑
j=1

xp
ij = 1 ∀i ∈ [N ], p ∈ [T − 1]; (4)

N∑
k=1

ypijk = xp
ij ∀i, j ∈ [N ], p ∈ [T − 2]; (5)

N∑
k=1

yT−2
kij = xT−1

ij ∀i, j ∈ [N ]; (6)

xp
ij ∈ {0, 1} ∀i, j ∈ [N ] p ∈ [T − 1]; (7)

ypijk ≥ 0 ∀i, j, k ∈ [N ] p ∈ [T − 2]. (8)
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The dual formulation of the Linear Programming (LP) relax-
ation of the LRMAP has an interesting structure, we refer to it
as DLRMAP. Let α, β, γ, δ be the dual variables for constraints
(3), (4), (5), and (6) respectively. DLRMAP is given as:

DLRMAP:

max

N∑
j=1

T−1∑
p=1

αjp +

N∑
i=1

T−1∑
p=1

βip (9)

s.t. αjp + βip − γp
ij ≤ Cp

ij , ∀i, j ∈ [N ] p ∈ [T − 2]; (10)

αj(T−1) + βi(T−1) − δij ≤ CT−1
ij ,∀i, j ∈ [N ]; (11)

γp
ij ≤ Dp

ijk − v̂pjk, ∀ i, j, k ∈ [N ], p ∈ [T − 3]; (12)

γ
(T−2)
ij + δjk ≤ DT−2

ijk − v̂T−2
jk , ∀i, j, k ∈ [N ]; (13)

αjp, βip, ∀i, j, k ∈ [N ], p ∈ [T − 1]; (14)
γp
ij ∈ R, ∀i, j ∈ [N ], p ∈ [T − 2]. (15)

A key observation in the dual formulation is its decompos-
ability into two subproblems, these are referred as X and Y
subproblems. From (10), for

∑
j

∑
p αjp +

∑
i

∑
p βip to be

maximized, γp
ij has to be large. However by (12), the γp

ij

variable has to be constrained according to the following Y
subproblem:

∆p
ij(v̂) = max

{
γp
ij

∣∣∣γp
ij ≤ D̂p

ijk,∀ i, j, k, p
}
,

where D̂p
ijk = Dp

ijk − v̂pjk.

A. Dual Ascent Algorithm

Based on the structure of X and Y subproblems, a dual
ascent algorithm has been developed in [5] and a GPU-
accelerated solution was presented. The authors also show that
the developed solution is scaleable to multiple CPU nodes
with near-linear scaling behavior. As explained in Section I,
we significantly improve the performance of this solution. To
explain the dual ascent algorithm, we represent the multiplier
reduced costs as Ĉp

ij := Cp
ij − γp

ij , and D̂p
ijk = Dp

ijk − v̂pjk.
Algorithm 1 presents the dual ascent algorithm. The compute
upper bound function in Step 5c. of Algorithm 1 can be per-
formed by constructing a feasible solution from the DLRMAP
solution and connecting the pairwise assignments of adjacent
time steps (x) through the T dimensions. The y variables are
simply computed from the x values as ypijk = xp

ij × xp+1
jk .

Such a solution will not have any conflicts in the y and the
x variables. The objective value (2) is computed using this
feasible solution. Based on the upper bound (UB) from the
feasible solution and lower bound (LB) from DLRMAP, the
optimality gap is calculated as: gap = UB−LB

UB × 100.

The dual ascent algorithm consists of 3 main steps: (1)
cost transfer (or distribution), (2) solving Y Linear Semi
Assignment Problem (LSAP), and (3) solving X LAP. On
analyzing the dual ascent algorithm in detail we observed that
the main chunk of time is taken by cost transfer and X-LAP
operations. Figure 2 shows their relative contribution.

Algorithm 1: RMAP Dual Ascent (RMAP-DA)
1) Cost Initialization:

a) Initialize m← 0, vm ← 0,
ν̄(DLRMAP)← −∞, and GAP←∞.

b) Initialize cost matrices C and D.
2) Termination: Stop if m > ITN LIM or

GAP < MIN GAP or LB improvement over last 5
iterations is < 0.1%

3) Cost Distribution and solving the y subproblem:
a) Update the dual multipliers

(v̂pjk)
m ← (v̂pjk)

m−1 + λijkp

b) Update D̂p
ijk ← D̂p

ijk − (v̂pjk)
m,∀(i, j, k, p)

4) Solving the y subproblem:
a) Solve y subproblem and cost coefficients D̂.
b) Let

∆p
ij(u

m)← ν(y subproblem(i, j, p)),∀ (i, j, p).
c) Update Ĉp

ij ← Ĉp
ij +∆p

ij(v
m), ∀ (i, j, p).

5) Solve x-LAPs:
a) Solve T x LAPs of size N ×N and cost

coefficients Ĉ.
b) Update ν(DLRMAP(vm))← ν(x− LAPs).
c) Compute Upper Bound (UB) and GAP.

6) Update m← m+ 1. Return to Step 2.

Fig. 2. Relative time for each step in Dual Ascent

IV. OUR SOLUTION

In this section, we discuss the details of our high-
performance data association engine for the MTT problem.
We first discuss the cost generation part and its multi-threaded
implementation in detail.

A. Cost Generation with Gating

Scoring is a critical aspect of the solution for models based
on mathematical programming. These scores ultimately end up
in the objective function and drive the optimal solution. The
MAP literature for the MTT problem generally uses Euclidean
distances as costs with random noise on an imaginary trajec-
tory. However, the noise is present in the location of the object
when it is detected by the sensor. Also, the Euclidean costs
represent the shortest distance between the detected positions.
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Fig. 3. Generating Particle Trajectories for 3 particles on X-Y grid

In reality, a maneuverable target does not always take a straight
path between the targets. Many sensors also detect the heading
(velocity direction) of the target. So for a finitely maneuverable
object, it is important to consider the path it takes while
changing its direction in order to reach the next position. The
randomly generated costs based on Euclidean distances fail to
benefit from this information. [14] showed that considering
clamped spline costs that use the heading data accurately
mimic the triplet costs.

Based on these observations, we develop a multi-threaded
cost generator for pairwise and triplet costs. We start by gener-
ating a polynomial path with randomly generated coefficients.
The degree of the polynomial can be specified by the user, we
use 3rd and 4th-degree polynomials for our experiments. For a
4th degree polynomial, let the randomly generated coefficients
for a specific target be {a0, a1, a2, a3, a4}. Here, ai represents
the coefficient of xi. To avoid abrupt slopes and turns, we keep
reducing the max value of the coefficients (i.e., E(|a0|) ≥
42E(|a1|) ≥ 44E(|a2|) ≥ 46E(|a3|) ≥ 48E(|a4|)) where
E(.) is the expectation function. Let the polynomial function
generated for target i be fi(t), where t represents the time. We
assume that each target is moving with a constant speed (Vi)
which is randomly generated in U [1, 2]. Using the speed and
timeframes, we find the position and velocity of the targets (yi
and dyi

), using inbuilt tools from the polynomialsolve
function of alglib [18]. This involves finding intersection of a
circle with polynomial curve. The method used by alglib to
find this intersection is out of the scope of this paper. Once yi
and dyi

are generated, we rotate each point along the origin by
a randomly generated angle θ ∈ U(−Π,Π]) and translate by a
randomly generated distance d ∈ U(0, 2.5). We represent the
modified positions and velocities by ỹi and d̃yi

. We represent
this process in Fig. 3. After generating ỹ, we add noise to the
points using a Gaussian random generator.

We start scoring once (x̃, ỹ) and (d̃x, d̃y) are generated for
each target at every timeframe. Algorithm 2 shows the recipe
and the parallelization strategy. Here, the Spline-Fit and
Curve-Dist functions are taken from alglib [18]. Gating is
introduced in y-costs to reduce their computational footprint.
Since Euclidean distance is the shortest distance between two
points, the target is unlikely to take a path where the distance
is higher than how much it can travel. To avoid aggressive
filtering, we relax the constraints by a factor of ϵ. ϵ needs
to be tuned to achieve a desired level of filtering, selecting
ϵ depends on the quality of data and the noise in the sensor
readings. We observe that the dual ascent algorithm is not
very sensitive to wrong values of ϵ and always solves to
near optimality. Scoring can also be accelerated on GPUs
since it is embarrassingly parallel. However, CUDA does not
have a well-documented library for interpolation and curve
intersection (like alglib).

Algorithm 2: Gated Scoring
Input: N ← Num Targets,
T ← Num Frames,
δt ← Time between each frame (1/frequency)
M : Big Number (106)
(xi, yi, dxi , dyi), Vi ∀i ∈ N
Output: Pair costs Xcosts, Triplet costs Ycosts

// Initialize vectors
Ycosts ← ϕ, Xcosts ← ϕ;
// Parallel for each i
for i, j ← 1 to N do

for k ← 1 to N do
for t← 1 to T − 2 do

if Eucli-Dist(i, j)< Vi×δt ×ϵ and
Eucli-Dist(j, k)< Vi×δt × ϵ then

Ycosts (i, j, k, t) =
Abs-Spline-Dist(i, j, k);

else
Ycosts (i, j, k, t) = M+
Abs-Spline-Dist(i, j, k);

for t← 1 to T − 1 do
Xcosts(i, j, t)=|Eucli-Dist(i, j)-Vi×δt |

def Abs-Spline-Dist(i, j, k):
Curve = Spline-Fit
(xi, xj , xk, yi, yj , yk, dxi

, dxj
, dxk

, dyi
, dyj

, dyk
);

return
|Curve-Dist(i, j)|-|Curve-Dist(j, k)|

B. Block LAP solver for X-LAP

The dual ascent algorithm relies on the LAP structure of
the X subproblem. It can be clearly seen from Algorithm 1
that the X subproblem contains T disjoint LAPs. The imple-
mentation by [5] uses a tiled LAP solver developed by [14].
Following a detailed computational analysis, we found that this
LAP solver has too many CPU-GPU synchronization barriers
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which tremendously slows down performance. GPUs offer
massive parallelism but their performance can be constrained
by the Single Instruction Multi-Data (SIMD) architecture. The
thread hierarchy of a GPU consists of thread blocks that
are synchronizable. Each GPU has several 100s of thread
blocks that are resident in a Streaming Multiprocessor (SM)
and each thread block has several 1000s of threads. For Ex.
the NVIDIA A100 GPU has 108 SMs and each SM can
concurrently handle a maximum of 2048 threads. The SMs
can be thought of as individual computational hardware in the
GPUs, synchronizing within the SM (in particular, the thread
block) has low overhead while synchronizing across SMs is
latency bound. A usual but inefficient strategy to synchronize
across SMs is to terminate the GPU kernel and launch another
one for the next operation which causes significant overheads.

To tackle this, we implemented a Block LAP solver. The
implementation details of this solver are out of the scope
of this paper. Interested readers are requested to refer to
[19] for a detailed explanation of a similar approach. The
important observation here is that the Block LAP solver has no
synchronization overheads with the CPU and is well-balanced
in terms of task distribution per thread. As the name suggests,
the Block Hungarian solver uses one thread block to solve an
LAP. With this structure, the threads in a single thread block
concurrently perform similar operations which is suitable to
the SIMD architecture. Block Hungarian also performs many
efficient operations to improve the computational performance.
We gain tremendous performance improvement by replacing
the tiled LAP solver with block Hungarian.

C. Compressed Cost Distribution

It is clear from Fig. 2 that the second most time-consuming
operation of the dual ascent algorithm is cost distribution. This
operation is embarrassingly parallelizable, but the computa-
tional complexity O(N3T ) of this problem makes it expensive.
Algorithm 3 gives the implementation of the naive function.
We can see that there are O(N2T ) threads launched. For a
problem with 100 targets and 100 time frames, this function
would need around 1M threads, with each thread performing
100 operations. Following a careful inspection of the dual
ascent algorithm, we can see that the Lagrange multipliers are
upper bounded by Xcosts. The Xcosts are only updated by δ
(see step (4b) in Algorithm 1) which is mink y(i,j,k,p). Since
gating ensures that each particle will have some finite triplet
cost, the minimum is bounded by max Ycosts : Ycosts! = M .
Hence, the Lagrange multipliers are significantly small com-
pared to M . Hence, we can totally avoid the cost distribution
operation for Ycosts : Ycosts ≥M .

In this passage, we discuss the techniques used to avoid
the cost transfer operation for Ycosts ≥ M . We first use a
compressed format for storing the Ycosts array, this format
is similar to the Compressed Sparse Coordinate (CSRCOO)
format which is widely used to represent sparse matrices. Fig.
4 shows the representation. We use this representation and
store all the index values (i, j, k, t). On experimenting with
the dataset, we observed that gating reduces almost 80% of

Algorithm 3: Naive Cost Distribution
Input: N ← Num Targets,
T ← Num Frames,
Ycosts, V ← Lagrange Multipliers
// Launch N2 × T threads
t =threadIdx.y
j =threadIdx.x%N
k =threadIdx.x/N
for i in N do

Ycosts (i, j, k, t) = Ycosts (i, j, k, t) - V (j, k, p);

Fig. 4. Compressed Sparse Coordinate representation

the values. We store this compressed dataset along with the
original Ycosts. Note that this compression needs to be done
only once while generating the data. Post compression we
can use an algorithm similar to Algorithm 3 but only launch
threads for the entries with Ycosts ≤ M . Since the threads
residing in the same block are SIMD, we further improve
this approach by launching N2 thread blocks each with 32
threads. Each thread block picks a specific chunk of entries
from Ycosts and processes them using the compressed index
array. Algorithm 4 illustrates the recipe. Note, this algorithm
performs around 80% fewer computations and is more suited
to the SIMD architecture.

Algorithm 4: Compressed Cost Distribution
Input: N ← Num Targets,
T ← Num Frames,
Ycosts, V ← Lagrange Multipliers,
RowPointer ← From CSRCOO.
// Launch N ∗ T thread blocks (32

threads each)
k =blockIdx.x % N
t =blockIdx.x / N
for p = threadIdx.x; p < |RowPointer (k, t)|;
p+ = 32 do

(i, j) = RowPointer (k, t)[p] ;
Ycosts (i, j, k, t) = Ycosts (i, j, k, t) - V (j, k, t);
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V. COMPUTATIONAL EXPERIMENTS

We perform computational experiments to evaluate the
performance of our solutions. We also perform incremental
analysis to provide the isolated performance impact of each
solution. The baseline and our solutions are compared on the
same computational platform. These are the main results in
this section:

1) The impact of gating on MMEP and ITCP scores
2) MMEP scores with Euclidean versus Spline costs
3) Time speedups with block LAP
4) Time speedups with compressed cost distribution

A. Experimental Setup and Problem Data

This section’s findings were generated using a high-
performance computing cluster named “delta”, which is
equipped with a dual-socket 64-core AMD EPYC 7763 (“Mi-
lan”) CPU and NVIDIA A100 40GB HBM2 GPU. The cluster
has 256 GB of DDR4 memory, and the program was compiled
with NVCC (CUDA 11.7, driver version 515.65) SM version
80, and GCC 11.2 with the O3 flag. To ensure an equitable
evaluation, all baseline measurements were also taken on the
same hardware platform using comparable compilation flags.

We conducted experiments on problem sizes where 5 ≤
N ≤ 300 and 5 ≤ T ≤ 300. We handle the pairwise
and triplet costs with double precision (64 bits). For small
problems where N,T ≤ 50, we generated five different cost
instances and reported the average performance to prevent
bias. However, for large problems (N,T ≥ 50), only one
instance was generated.

B. Evaluation Criteria

To evaluate the algorithm’s performance on the simulated
data from our cost generator, we computed the Incorrect
Trajectory Count Percentage (ITCP) and Mismatch Error Per-
centage (MMEP) scores [20]. These scores measure the error
between the original trajectories and the algorithm’s solutions.
We defined an incorrect trajectory as one with at least one
incorrect assignment. The ITCP score computes the percentage
of incorrect trajectories out of the total number of trajectories.
The MMEP score computes the percentage of total mismatch
errors (MME) in all trajectories over all the assignments. Since
the total number of assignments in MTT N × (T −1), we can
compute the MMEP score as MMEP =

∑
MME

N×(T−1) × 100.
Both the ITCP and MMEP measures are essential in evalu-

ating the quality of a solution. While MMEP is more focused
on the assignment level, ITCP provides an overall sense of the
quality of trajectories. A solution with a high MMEP but a low
ITCP score can still be a good solution. For example, if two
trajectories are close together, leading to multiple mismatched
assignments, the MMEP score would be high, but the ITCP
score would be low as only two trajectories are incorrect
overall. Conversely, if all trajectories are close together, at
least one error is reported in each trajectory and not many
errors overall, the ITCP score would be high and the MMEP
score would be low.

Fig. 5. Effect of Gating on MMAP and ITCP scores

We use time speedups to report the performance of our
solution. Speedup is defined as the ratio of the runtime of
our solution to the baseline when using same computational
environment. Following the norms in the HPC literature, we
use geometric mean of the speedups to report aggregate
performance benefit.

C. Results

The first part of our solution included filtering the triplet
costs based on gating and constant velocity assumption. The
filtering, if done too aggressively may result in a poorer quality
of solution. For these experiments, we simulated filtered and
unfiltered costs. For filtering with gating, we considered the
relaxation factor ϵ = 5. To remove other variations, we run
both problems for 100 Dual Ascent iterations. Fig. 5 shows
the impact of gating. The MMEP score usually increases after
gating, the effect is smaller for large problems. This figure
establishes that gating has minimal impact on the quality of
the solution.

The second part of our results shows the significant im-
provement in LAP solution times. The plots had to be drawn
on a log scale since the speedups were so high. We only
show results for large problems as smaller problems take
insignificant time for both cases. We achieve a maximum time
speedup of 1001× and a geometric mean speedup of 708.84×
across problem sizes ranging from [50, 50] to [300, 300].

The third part of our results shows a significant improve-
ment in the cost transfer part of the dual ascent algorithm. This
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Fig. 6. Speedups with block LAP (GeoMean: 708×)

Fig. 7. Speedups with compressed cost distribution (GeoMean: 24.7×)

plot is also drawn on a log scale. Since the solution employed
reduces the computational complexity of cost transfer, we see
increasing speedup with increasing problem sizes. The overall
geometric mean speedup from this solution is 24.72× across
problem sizes ranging from [50, 50] to [300, 300].

Finaly, we present the overall performance improvements in
the dual ascent algorithm for the same number of iterations.
We establish that the quality of the solutions is not deteriorated
by these optimizations.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we carefully analyzed the GPU-accelerated
dual ascent algorithm for the multi-dimensional assignment
problem and significantly improved its performance. We used
insights from the MTT problem structure, GPU parallelization
literature, and compressed representations to develop a high-
performing solution. We achieved a geometric mean speedup
of 5.89× on the overall runtime of the GPU-accelerated dual
ascent algorithm. We performed a thorough computational
analysis of the GPU-accelerated dual ascent algorithm and
found that almost 85% of the run time is consumed by solving
the X-LAPs and cost distribution. For reducing the X-LAP
solution times, we developed a fast block LAP implementation
that does not require CPU-GPU synchronizations. This block

Fig. 8. Overall time speedups (GeoMean: 5.86×)

LAP solver gives a geometric mean speedup of 708× over
[6]. For reducing the computational complexity of the cost
distribution function, we used gating and filtered almost 85%
of triplet costs (Ycosts). We used MMEP and ITCP evaluation
metrics to establish that the filtering does not significantly
deteriorate the solution quality. Post filtering, we used a
CSRCOO data structure from the sparse matrix literature
to efficiently implement the cost distribution function. This
resulted in a geometric mean speedup of 24.7×. Overall these
two contributions reduced the total time by a factor of 5.8.

The current performance is bounded by the Amdahl’s law
[21]. Since we only improved the performance of functions
that take 85% of total time, the overall performance im-
provement would be bounded by 100

15+δ . Here, δ is the overall
speedup in functions that take 85% of the time. Hence, further
work should be focused towards improving the performance of
the remaining tasks (which took 15% of total time). i.e., solve
Y-LSAP and dual update, see Fig. 2. The memory footprint
of the Ycosts is still very high at O(N3T ), so it should be
avoided to fully store the matrix. Since [5] showed that the
dual ascent algorithm for MAP is easily scaleable with good
characteristics, we can easily increase the size of this problem
and achieve even more speedups.

Finally, all the pairwise and triplet scores considered in this
paper are deterministic. Some mainstream tracking algorithms
like [22] and [23] use probabilistic methods to find expected
matching scores. It would be interesting to fuse these scoring
techniques into our framework and examine the quality of the
resulting solution.
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