
EasyChair Preprint
№ 13400

Variable Speed Limit Control for Highway
scenarios a Multi-Agent Reinforcement Learning
Based Appraoch

Bálint Kővári, István Knáb and Tamás Bécsi

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 21, 2024



Variable Speed Limit Control for Highway
scenarios a Multi-Agent Reinforcement Learning

based approach
1st Bálint Kővári
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Abstract—Modern road networks are critical in developing
transportation infrastructures from the aspect of sustainability,
thanks to the rapid increase in road users. The demand for mo-
bility makes the existing infrastructure more crowded, boosting
greenhouse gas emissions and delays in everyday commuting.
Expanding the road network is only possible in some cases and
is also not feasible, but Intelligent Transportation Systems (ITS)
can enhance the efficiency of the existing transportation network.
From a management point of view, a proven algorithm is Variable
Speed Limit Control, which regulates the state of certain sectors
by spatially distributing traffic in the form of dynamically varying
speed limits. Combining this with a state-of-the-art predictive
solution can make a big difference to performance. For the
design of speed limits, this paper proposes an approach where
deep reinforcement learning with the smallest industrial share
not only resolves moving jams that arise during congested traffic
situations, but also prevents them, thereby avoiding cumulative
error from transients, all by abandoning physical equations and
identified models.

Index Terms—Reinforcement Learning, shockwave, traffic con-
trol, variable speed limit

Fig. 1. Global CO2 emission [1]

I. INTRODUCTION

In the context of freeways, situations often occur, particu-
larly during periods of heavy congestion, where the inability
to effectively regulate the flow of traffic results in disruptions
to the smooth movement of vehicles. Analogous to principles
found in fluid dynamics, certain laws of physics must be
adhered to. One such fundamental principle is the continuity
theorem [2], which asserts that the cumulative rate of incoming
vehicles across all lanes in the subsequent segment must be
equal to the rate of outgoing vehicles across the entire cross-
section of the present cell. This principle can be mathemati-
cally represented by the following equation:

n∑
i=1

Qini =

m∑
j=1

Qoutj , (1)

where n is the number of lanes on the next road segment and
m means the amount of traffic lanes on the actual cell.

Active bottlenecks, which can arise due to factors such as
construction, highway onramps, closed lanes due to accidents,
or sections where high-speed roads intersect with urban
transportation, have the potential to push a traffic network to
its physical limits. In such cases, even a minor adjustment
can lead to significant fluctuations in the speed profiles of
individual vehicles, owing to the additional delays caused by
reaction times. In the macroscopic planning of traffic control,
the primary objective is to minimize changes in acceleration
and prevent strongly correlated transients. This effect is
particularly pronounced in highway settings compared to
urban traffic situations due to the higher default maximum
speed, resulting in a wider range of selectable speeds for
vehicle movement. The reaction time of a single vehicle can
be described by the following formula:

τ =

n∑
i=1

τi, (2)



where τ marks the reaction time of the actual vehicle and n is
the size of the column, which has effect on the investigated ve-
hicle. The integration of autonomous vehicles (V2V - Vehicle

Fig. 2. Continuity in traffic flow application [2]

to Vehicle and V2I - Vehicle to Infrastructure communication)
[3] has the potential to address the aforementioned challenges
by providing additional environmental information and the
current state of a greater number of traffic participants. This is
made possible through the utilization of sensors equipped on
each vehicle and their fusion [4]. Consequently, this integration
can lead to a more deterministic traffic behavior, as highlighted
in [5].

However, it is important to recognize that human limitations
extend to both the vehicles themselves and the surrounding
spatial objects. Due to the aforementioned reaction times, there
is a need to align vehicle speeds with the maximum achievable
velocity that ensures accident-free conditions. By doing so, the
impact of deceleration is limited to only a small number of
vehicles, allowing for local resolution through a reduction in
the following distance via marginal adjustments.

A. Related Work

Variable Speed Limit Control (VSLC) is a method used
to optimize the speed limits of specific segments within a
network, taking into account the examination of both static
and dynamic objects and their environmental effects on traffic
flow, as explored in [6].

The fundamental concept behind this engineering solution is
to proactively regulate the decision-making space available to
vehicles, aiming to prevent the formation of traffic congestion.
By minimizing the length of standing vehicle queues, the oc-
currence and propagation of shock waves can be reduced. This
approach is particularly valuable in heavily congested areas
and their surrounding environment, as it contributes to the
reduction of fuel consumption and emissions, as highlighted
in the studies by [7] and [8].

The algorithm operates by assigning certain road sections
with the ability to independently regulate speed limits, aiming
to influence the outflow of the active segment. The determi-
nation of the inflow into the subsequent cell is governed by
the continuity law, as discussed in [9].

To describe specific road sections, similar physical indi-
cators are employed, drawing parallels to concepts found in
hydrodynamics. In accordance with the SPECIALIST article
by [10], [2], states of congestion evolution and resolution are

characterized using metrics such as mean speed and density
within the cells under consideration.

Based on the analysis, it has been determined that the
aforementioned values will be utilized to describe the current
system under examination, which will be further defined in
the subsequent explanation of the state representation.

The SPECIALIST algorithm, mentioned earlier, operates
using four phases and six states to characterize the prevailing
traffic conditions. On the other hand, the MCS algorithm, as
discussed in [6], is currently implemented on Swedish and
Dutch highways and makes decisions based solely on the mean
speed. If the mean speed falls below 45 km/h, it imposes
additional restrictions on inflow sections.

However, a key issue with these algorithms is their reliance
on reacting to existing traffic conflicts without incorporating
any predictive capabilities. They fail to identify the phase in
which preventive measures should be taken. In contrast, the
proposed solution aims to proactively address congestion by
leveraging data-driven decision-making. By looking ahead
and taking anticipatory actions, this approach not only
resolves congestion but also mitigates its evolution.

II. ENVIRONMENT

A. Examined road section

Fig. 3. Examined road section

Due to the absence of trajectory planning in the task,
where vehicles follow predefined routes and randomization
is implemented on the lanes they are generated on, a macro-
scopic model is deemed sufficient for constructing an environ-
ment suitable for applying a Reinforcement Learning-based
controller. Unlike the microscopic model, which focuses on
individual vehicles, the macroscopic model operates at the
level of traffic flow as the basic unit. To facilitate this, the
simulation is implemented in SUMO (Simulation of Urban
MObility) [11], an open-source simulator that provides the
necessary measurement values to describe the flow.

As depicted in Figure 3, the environment consists of a two-
lane straight highway section with 100-meter-long edges. At
the bottleneck location, a closed lane is modeled, extending
over a 200-meter-long section. By setting up the network, the
road sections are separated from each other, allowing them
to be treated as distinct entities and utilized as agents in
subsequent applications.

B. Physical limitations

In order to accurately model the conditions of a real
traffic network, several factors needed to be considered. These



include permitted lane changes, the minimal time interval for
decision-making, speed limits, and the flow of vehicles.

To account for permitted lane changes, the SUMO network
configuration file allows for specifying the rules regarding lane
changing behavior. Additionally, a minimal time interval of
10 seconds was selected on each road segment to represent
the legal decision-making timeframe. This was implemented
as a state machine, with the choice between idle and active
states determined by monitoring the overflow of a counter.
The timing modes of microcontroller units, such as the ”Clear
Timer on Compare Match,” were utilized for this purpose [12].

Speed limits in the simulation can only be displayed on
real traffic signs to enable drivers to easily adhere to them.
To ensure realistic transitions, speed changes were limited to
a maximum of 10 km/h, resulting in the selection of velocity
stairs with this value as the increment. The range of allowed
speed limits was carefully considered, taking into account
the impact of cross-sectional narrowings. For instance, if the
number of lanes was halved, the allowed speed would need
to be doubled. The chosen upper limit for speed was the
Hungarian maximal value of 130 km/h, which is widely used
in many European countries. The lower limit was determined
empirically as 30 km/h, serving as a reasonable threshold.

Another crucial aspect was determining the flow of vehicles
in the network. To create an environment that reflects real-
world traffic conditions, a controlless traffic scenario was used
as a baseline for comparison. The flow rate was set to the lower
threshold of a shock wave, as described in the SPECIALIST
model (1500 vehicles/hour/lane) [6].

III. REINFORCEMENT LEARNING

Reinforcement Learning (RL) is a data-driven algorithm
that uses experience to make decisions based on rewards
or penalties. RL involves an Agent interacting with an
Environment, where the Agent receives feedback in the form
of the current state and a reward. By combining trial-and-error
learning with optimal behavior, RL enables the Agent to
learn a policy for making decisions in specific environmental
conditions. This is achieved through Q-learning [13], which
assigns a quality value (Q-value) to state-action pairs based
on a finite horizon of actions. In our case, the RL model
is trained by determining the weights and biases of a
neural network, offering computational efficiency compared
to a lookup-table approach. This allows for real-time
solving of complex problems without exponential increases
in computational demand. The Q-value of an action is
influenced by previous rewards, weighted by a discount factor
(gamma), and the learning rate (alpha). The Bellman equation
is used to derive the Q-value, ensuring optimal behavior. The
extent of discounting and learning rate greatly impacts the
performance of the RL model. This update equation is further
described in the epsilon-greedy policy, which determines
the exploration-exploitation trade-off. Please note that the
specific form of the update equation is not provided in the text.

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s, a′)−Q(s, a)) (3)

where r means the reward and the Q(s, a) is the computed
action quality, that is compared to the estimated quality
indicator (Qpred), which comes from a prediction based on
choosing random samples from the teaching data and results
the mean-squared error to compute loss.

LMSE =
1

n

n∑
i=1

(Qpred −Q(s, a))2 (4)

RL algorithms require training data obtained from random
actions and their evaluation to differentiate positive and
negative experiences. The ϵ-greedy policy is used to balance
exploration and exploitation. By comparing a decreasing
scalar value ϵ to a random value between 0 and 1, the agent
determines whether to take random exploratory actions or
choose the currently perceived optimal actions. This policy
is crucial when the agent lacks prior experiences and aims
to gather information while gradually focusing on exploiting
the best opportunities. Learning is an iterative process, where

Fig. 4. Reinforcement Learning in use

the experiences are stored in a buffer in form of (s, a, r, s
′
)

and as above mentioned some data will randomly choosen in
order to calculate stochastic gradient descent [14].
As shown on “Fig. 4”, the training loop is implemented as the
above mentioned SUMO environment which communicates
with the python gym environment through the TraCI interface,
and the agent is a Deep Q Network, which has densities
and velocities of certain road segments as input and has a 3



element vector as output, containing 10 km/h increase and
decrease of enabled velocity and as third action let the current
state active also in the next training episode.

While there have been RL algorithms implemented for
onramp traffic control using variable speed limits on specific
sections of the network, the performance of these algorithms
depends heavily on how the state vector and reward are
defined. Even with a fixed output space, the selection of
appropriate abstractions and representations is crucial. One
example of controlling onramps using RL is described in the
work by [15], where three density parameters were utilized as
input variables for the algorithm.

It is important to note that the success of RL algorithms
in onramp traffic control relies on carefully designing the
state representation and reward system, taking into account the
specific dynamics and objectives of the traffic system under
consideration.

• MARL: To ensure the resolution of shock waves through-
out the entire network, it is divided into sections that
can independently take actions. In the implemented pseu-
docode, each agent operates in every training episode
without knowledge of the actions taken by other agents.
Experiences are stored in a buffer for learning. It is impor-
tant to note that all agents share the same neural network,
enabling a self-play approach where agents contribute
to environmental changes without explicit cooperation or
competition.
In our case, the agents have a common goal, and their
actions are guided by the same reward function. This
framework allows for an indirect form of cooperative
behavior, where agents optimize their behavior with
single actions, leading to an optimized state for the
entire network. This approach aligns with the concept
of identical payoff in multi-agent games, where agents
share the same reward function [16].
By designing the system in this way, the network does
not need to be aware of which section is the active agent.
This flexibility allows for easy expansion of the model to
incorporate additional sections without affecting the state
representation.

• State: The main metrics of flow description are density
and average speed, which determine how may vehicles
are abiding at the same time in a certain road section,
and provides feedback of the inhibition of the flow.

Fig. 5. State representation

A key distinction between this multi-agent solution and
recently implemented algorithms is the absence of pre-
defined thresholds to activate specific states. In this ap-
proach, the neural network receives a 10-element vector

Algorithm 2: DQN-algorithm [17] extended on MARL
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
θ

Initialize target action-value function Q̂ with weights
θ− = θ

for episode = 1, M do
statet ←reset()
done←FALSE
rewardt ←0
for time step = 1, T do

for agents = 1, A do
With probability ϵ select a random action
otherwise select at = argmaxaQ(s, t)
statet+1, rewardt, done← step(at)
Store transition (st, at, st+1, rt, dt) in D
Sample random minibatch of transitions
(st, at, st+1, rt, dt) from D
st = st+1

end
if d′ = TRUE then

yj =r′j
end
else

yj =r′j + γ ·maxaQ̂(s′t+1, θ̂)
end
Perform a gradient descent step on
(yj −Q(st, aj , θ))

2 with respect to the
network parameters θ

Every C steps reset Q̂ = Q
end

end

consisting of average velocity and density data from
the active agent and its two neighboring cells in both
directions. The decision to include two cells in each
neighboring direction is based on the identification num-
bering scheme shown in Fig. 5 (referring to the figure
in the document). The inclusion of measures from the
section before and after the lane jump ensures that the
neighboring cell is shifted by two positions.

statei =



velocityi−2

densityi−2

.

.

.
velocityi+2

densityi+2


(5)

It is evident that modifying speed limits on the first and
last sections cannot be represented in the same way as the
intermediate nodes. This is because these sections do not
have neighbors on both sides. Additionally, their impact
on the network is not as significant as the sections in the
middle. In the case of the last road section, there is no



cross-sectional change, so the maximum speed that can
be achieved is already the optimal speed at that location.
Therefore, no actuation is necessary to empty that zone.
Similarly, the first section is not suitable for actuation
because the inflow rate is determined by the spawning
of vehicles directly in that area. Hence, these restricted
sections are not considered for actuation during training
and testing. However, their metrics will still be computed
for the purpose of creating the state representation.

• Action: As mentioned earlier, the action space consists
of a three-element vector representing speed increase,
speed decrease, and idle mode. It is essential to enforce
environmental constraints such as minimum actuation
time and predefined maximum speed according to traffic
regulations. These constraints ensure that VSLC is imple-
mented in a manner that prioritizes safety. Without these
constraints, the speed in the bottleneck could exceed the
maximum allowable speed, which contradicts the goal of
controlled regulation.

action =

+10 km/h
0
−10 km/h

 (6)

In order to determine the level of velocity perception, real
traffic situations were used as a baseline. Considering
that the segments are 100 meters long, it is important
to actuate as quickly as possible, similar to human
processing time. To ensure a smooth transition between
speeds, the speed differences will be set at 10 km/h,
as mentioned earlier, for both increasing and decreasing
speed limitations. This value is chosen based on the scale
of speed indicators in personal cars and the commonly
used motorway speed signs. Additionally, a constraint is
implemented to avoid speed limits below 30 km/h in any
section, to prevent the neural network from finding a local
optimum by sacrificing one lane to achieve maximum
speed in the other.

• Reward: When defining the reward function, it is im-
portant to focus on the achievable task at hand. In this
case, the task is to minimize waiting time and maximize
the average speed that can be realistically achieved.
Therefore, the reward function should be designed to
incentivize actions that lead to reduced waiting time and
increased average speed on the road network.

R =
vavg
1 + w

, (7)

The initial implementation of the reward function did
not yield satisfactory results as the network converged
to a local optimum where the outer lane was stopped to
achieve maximum speed in the inner lane. To address
this issue, the weights between the two variables in the
reward function were reconsidered. The denominator was
squared to increase its influence on the result, and a
lower bound for speed limitations was implemented. The
revised reward function is as follows:

R =
vavg

(1 + w)2
, (8)

where summarized latency on the network is described
with w, and the average speed of vehicles on the whole
network is represented with vavg . Through a quick di-
mension, analysis is definable, that the output dimension
is [ms3 ], which equals the metrics of the above-mentioned
third derivative of displacement by time, that equals
the change in acceleration which is above defined as
realizable goal parameter.

• Network architecture: Considering the nature of the
task, it would be appropriate to use a convolutional
neural network, because from the point of view of im-
plementation, a sliding window-type problem must be
implemented. Nevertheless, the model was applied to an
MLP network, which contains fully connected layers, in
the size 10 - 64 - 16 - 3 to try, if it can solve the problem.

IV. RESULTS

A. Computation of emission

As shown in “Fig. 6, 7, 8”, the metrics has improved an
order of magnitude compared to uncontrolled speed limits. The
correlation between the individual trends ( marginal, maximal
3% discrepancy) is due to the fact that each emission was
calculated using the same model in SUMO ( HBEFA v2.1 )
[18] along the following equation, only assuming the the scalar
multipliers:

E = c0 + c1va+ c2va
2 + c3v + c4v

2 + c5v
3, (9)

where E is the emission in [mg
s ] and ci values are constants

depending on the target emission and vehicle type.
Data was collected from the entire network and plotted to gain
a comprehensive understanding of the long-term trend. The
significant decrease observed in the data can be attributed to
reduced travel time, which has an indirect impact on emissions
calculations.

B. Comparison

The model demonstrates a significant reduction in green-
house gas emissions, ranging from 24% to 28%. This reduction
is particularly crucial in highway and suburban environments,
where air pollution is a major concern. By minimizing time
spent in reactive traffic and reducing standstill situations, the
model contributes to creating a more vibrant and environmen-
tally friendly city.

TABLE I
PERFORMANCE

Emissions in 10 Episodes of test
HC [kg] CO2 [kg] NOx [kg]

Fix speed limit 0.048359 302.90999 0.12805
RL model 0.0365435 220.047116 0.09402

Emission reduction [%] 24,43 27,36 26,58



Fig. 6. CO2 Fig. 7. NOx

Fig. 8. HC

V. CONCLUSION

The demonstrated success of Multi-Agent Reinforcement
Learning (MARL) in solving the traffic control problem shows
the potential for further improvements using more complex
architectures, such as convolutional neural networks. This type
of software support can play a significant role in reducing
air pollution in densely populated and high-traffic areas by
classifying vehicles and controlling their access to certain
zones.

Future research will involve comparing the MARL approach
with existing threshold algorithms to determine its effective-
ness in highway decision-making and evaluate the significance
of not only resolution but also prevention, which is one of the
main benefits of machine learning algorithms, thus underlining
the relevance of this field of research. It will also explore other
network architectures to further enhance performance. One
important aspect is defining the domain of the Variable Speed
Limit Control (VSLC) area and filtering out non-performance
factors to minimize sensor requirements while maintaining
performance and safety [19], the need for which increases with
the volume of traffic [20].

Additional research directions include implementing cross-
sectional narrowings and studying the impact of optimal dis-
tances between onramps or constructions in the environment.
These investigations will contribute to a more comprehensive
understanding of the potential applications and benefits of
MARL in traffic control.
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