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Abstract

In the last few years, people started to share lot of information related to health in the form

of tweets, reviews and blog posts. All these user generated clinical texts can be mined to

generate useful insights. However, automatic analysis of clinical text requires identification

of standard medical concepts. Most of the existing deep learning based systems to normalize

medical concepts are based on CNN or RNN. Performance of these models is limited as they

have to be trained from scratch (except embeddings). In this work, we propose a normalization

system based on pre-trained BERT and highway layer. BERT, a pre-trained context sensitive

language representation model advanced the state-of-the-art performance in many NLP tasks

and gating mechanism in highway layer helps the model to choose only important information.

Experimental results show that our model outperformed all existing methods on two standard

datasets.

Keywords: BERT, medical concept normalization, social media text, natural language

processing, highway layer

1. Introduction

Social media with an increasing number of users in recent times, evolved as a rich source of

data for many domains, including healthcare. People use twitter1, facebook2 and online health

forums and often share many things including their treatment experiences, symptoms while

consuming a drug etc. This rich clinical data is underutilized which can be leveraged in many

applications to offer better services [1].

The task of medical concept normalization aims to map health related entity mentions iden-

tified in free-form text to formal medical concepts in standard vocabulary like Unified Medical

Language System (UMLS), Medical Dictionary for Regulatory Activities (MEDRA) or System-

atized Nomenclature of Medicine – Clinical Terms (SNOMED-CT) (see Figure 1). Here, entity

mention refers to adverse drug reaction, symptom, finding, drug or disease. Such a mapping

is required because of variation in the languages of general public and healthcare professionals.

Most of the general public express their health conditions in layman terms rather than formal

medical terms i.e., in a descriptive way which reveals how they feel. For example, ‘insomnia’

∗Corresponding author
Email address: kalyan.ks@yahoo.com (Katikapalli Subramanyam Kalyan )

1https://twitter.com
2https://www.facebook.com

Preprint submitted to Artificial Intelligence in Medicine December 27, 2019



is expressed in layman terms as ‘could not sleep much’. Further, the same health condition

can be expressed in multiple ways which makes the task more challenging. Medical concept

normalization also called Entity Linking or Entity Encoding is one of the fundamental tasks in

information extraction with applications in tasks like Question and Answering, Pharmacovigi-

lance etc. However, it is less explored when compared to other information extraction tasks like

named entity recognition and relation extraction.

Figure 1: Example to illustrate medical concept normalization

Most of the traditional approaches for entity normalization applied string matching tech-

niques [2, 3, 4]. For example, MetaMap tool maps biomedical text to UMLS concepts and it

makes use of knowledge base and computational linguistic techniques [2]. Tsuruoka et al. [3]

used character bigrams while McCallum et al. [4] work is based on learning string edit dis-

tances. String matching techniques fail when there is no overlap between entity mention and

the corresponding concept (e.g., ‘could not sleep much’ → ‘insomnia’, ‘head spinning a little’

→ ‘dizziness’). The application of machine learning techniques to entity normalization started

with DNorm proposed by [5] followed by [6] and [7]. However, these methods failed to take

semantics into consideration which significantly affected the performance.

Recent studies [8, 9, 10, 11] approached the task of concept normalization as a multi-class

text classification problem. All these systems are deep learning based with embeddings as input

features. The two drawbacks in these deep learning based systems are a) Use of traditional

embeddings – Traditional word embeddings are learned using shallow neural network mod-

els like Word2Vec. Shallow neural networks are unable to encode more information in vector

representations and hence quality of word vectors is limited. The context insensitive nature

of traditional word embeddings further limits their quality. b)Training downstream model

from scratch - With embeddings as input features, the downstream model based on CNN or

RNN has to be trained from scratch. A model trained from scratch requires more training exam-

ples for better performance. With small size datasets, the performance of downstream models

trained from scratch is limited.

In recent times, learning representations using deep language models achieved promising

results in many NLP tasks. Some of the popular deep language representation models are

ELMo [12], ULMFiT [13], GPT [14] and BERT [15]. ELMo and UMLFiT use recurrent neu-

ral network while GPT and BERT are transformer based. ELMo and ULMFiT use BiLSTM

for language modeling which is sequential in nature. Further, the representations learned are

shallow bidirectional. As GPT uses unidirectional language modeling objective, it is unable to

encode information from both left and right contexts. BERT overcomes the drawback in ELMo,

ULMFiT and GPT by learning bidirectional representations using Masked Language Modeling
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objective and achieved state-of-the-art performance in eleven NLP tasks. In case of BERT a)

representations learned are bidirectional and context sensitive b) model is pre-trained on large

volumes of unlabeled text using stack of transformer encoders. This iterative approach of gen-

erating representations, helps the model to learn lot of language information. c) Task specific

layers are added on the top of BERT and entire model is fine-tuned using task specific labeled

dataset. As BERT model learns lot of language information during unsupervised pre-training

itself, it can be fine-tuned even with small datasets and hence performs better compared to CNN

or RNN based models which are to be trained from scratch.

We consider medical concept normalization as multi-class text classification problem and

propose a system based on pre-trained BERT and highway layer. Miftahutdinov and Tutubalina

[16] achieved state-of-the-art performance in medical concept normalization using BERT based

fine-tuned model. They experimented with only general BERT model pre-trained over text from

Wikipedia and books. Recently, few research works evaluated the effectiveness of biomedical

and clinical BERT models in the tasks of named entity recognition [17], hospital readmission

prediction [18] and biomedical concept normalization [19]. However, there is no work which

evaluated domain specific BERT models to normalize medical concepts. In this paper, we

provide comprehensive evaluation of general as well as domain specific BERT models. Our key

contributions can be summarized as

• Study the impact of BERT based fine-tuned model on medical concept normalization.

• As per our knowledge, it is the first work to provide comprehensive evaluation of general

as well as domain specific BERT models to normalize medical concepts.

• We show that inclusion of highway network layer before classifier layer improves the per-

formance of model by filtering irrelevant information.

• Our best model based on Biomedical BERT and highway layer outperforms all existing

systems and achieve state-of-the-art accuracy on two standard dataset.

• Study the impact of freezing encoder layers on our best performing model.

2. Related Work

2.1. Word2Vec to BERT

Machine learning or deep learning based models applied for NLP tasks requires represen-

tation of text in numerical vectors. Tradition text representations which are based on various

measures like word frequency, tf-idf suffer from high dimensionality, lack of language informa-

tion and require more computation power for processing. The concept of learning distributed

representations started with [20, 21, 22, 23, 24]. Bengio et al. [22] used shallow neural net-

work architecture for language modeling. The neural network consists of tanh and softmax

activations in hidden and output layers. Apart from predicting next word in the sequence,

the model also learns distributed representations of words. Later, Collobert and Weston [23]

learned distributed representation of words in an unsupervised manner using language modeling

and then used these learned representations in various supervised downstream tasks. Models
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like Word2vec [25] and Glove [26] with simple and effective architectures made embeddings a

default choice for text representation in NLP models. Word2vec is a prediction based model

which learns vector representations using shallow neural network with three layers while glove

being a counted based regression model learns vector representations using both local context

information as well as global co-occurrence statistics from training corpus. Both Word2vec and

Glove models are unable to a)leverage sub-word information and b) provide vectors for words

which are missing in the training corpus. To overcome these two drawbacks, Bojanowski et al.

[27] proposed FastText embedding model which modifies skipgram model with the introduction

of character n-grams. In this model, word representation is based on vectors of its character

n-grams.

The limitations of Word2vec, Glove and FastText models are a) Use of shallow neural network

to learn representations - Word2vec and FastText models use a three layered neural network

while glove is log-bilinear global regression model. These shallow models limits the amount

of language information encoded in vector representations and hence the quality of vectors is

limited. b) Context insensitive representations - All these models assign single representation

to a word irrespective of its context.

To encode complex relations and make representations sensitive to context, models like ELMo

[12], ULMFiT [13], GPT[14] and BERT [15] were proposed. The state-of-the-art performance

of these models in many tasks illustrated the effectiveness of learning representations using

deep language models over large volumes of text. Further these models except ELMo, changed

the approach for NLP tasks from using a model trained from scratch to using a pre-trained

model. Peters et al. [12] proposed ELMo which consists of two layers of BiLSTM with inputs

generated by CNN and Highway network. Radford et al. [14] introduced GPT model based on

Transformer decoder and Devlin et al. [15] proposed BERT based on Transformer encoder. The

pretrained language models can be used in two ways namely feature based and fine-tuned. In

feature based approach, embeddings learned by model are used as input features to downstream

architectures and model has to be trained from scratch (except embeddings) using task specific

labeled dataset. In fine-tuning approach, one or two task specific layers are added on the top of

pre-trained model and entire model is fine-tuned using task specific labeled dataset. ELMo is

feature based approach, GPT follows fine-tuning approach while BERT can be in used in both

feature-based and fine-tuning approaches.

2.2. Social Media for Health care

With evolution of internet and various social media websites, common people started to

share lot of data in the form of tweets, blog posts, questions and answers in discussion forums

etc. The data shared by public includes information related to various domains including health.

Mining publicly available health related social media data results in useful insights [1].

Traditional disease surveillance systems involves collection of data from health care centers

and then processing of collected data. It is truly a time-consuming process and delay in data

processing can have severe impacts. Modern disease surveillance systems [28, 29, 30, 31] based

on real time social media data helps in early prediction of diseases and reduce the harm. More-

over, early prediction gives more time to handle the situation. Apart from disease surveillance,

research studies utilized social media data for extraction of medical concepts [32, 33, 34, 35]
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like disease, symptoms, adverse drug reactions etc. Recently, there has been raising interest

in research community in the form of shared tasks [36, 37, 38] related to identification of text

containing drug mentions, medication intake, adverse drug reactions etc.

2.3. Normalizing concepts in social media text

O’Connor et al. [39] proposed a model based on Apache Lucene to normalize Adverse Drug

Reaction (ADR) expressions in tweets to UMLS Concept Unique Identifiers (CUI). For a given

ADR expression, Apache Lucene retrieves the relevant UMLS concepts. Limsopatham and Col-

lier [7] proposed a model which involves phrase based machine translation and cosine similarity

to normalize medical concepts. Medical concept is assigned to twitter phrase based on similarity

score obtained as sum of cosine similarity between twitter phrase and concept and translation

score calculated using phrase based translation model. The proposed model improved accuracy

by upto 55% compared to baselines. Limsopatham and Collier [8] experimented with Google

News embeddings as well as embeddings inferred from biomedical articles. They showed that

CNN with Google News embeddings achieved better performance when compared to CNN with

randomly initialized or biomedical embeddings on three datasets. Further they showed that

updating GNews embeddings improved accuracy only on AskAPatient which is larger in size

compared to other datasets (TwADR-L and TwADR-S).

Lee et al. [9] experimented with CNN and RNN based models. As the size of training corpus

influence the quality of inferred embeddings, they generated embeddings using word2vec over

clinical text collected from various sources. RNN with clinical embeddings inferred from com-

bined corpora outperformed all others on two datasets created from tweets and online health

forum reviews. Tutubalina et al. [10] proposed BiGRU+Attention model with embeddings in-

ferred from Askapatient.com reviews and UMLS based semantic features as input. The proposed

model achieved an accuracy of 70.05% on custom folds and 85.71% on random folds of Aska-

Patient dataset. Niu et al. [40] system is based on multi task char level attention network.

With character embeddings matrix as input, auxiliary task with attention mechanism gener-

ates weights. CNN applies convolution and pooling operations on character embeddings matrix

added with attention weights and predicts the concept.

Recently Miftahutdinov and Tutubalina [16] investigated context sensitive models like ELMo

and BERT to normalize medical concepts. ELMo being a feature based embedding model, was

used as input features to BiGRU+Attention model. BiGRU+Attention with ELMo+HealthVec

as input features outperformed BiGRU+Attention model with only HealthVec embeddings. Fur-

ther they showed that BERT based fine-tuned model achieved state-of-the-art performance on

all the three datasets.

Our work is closely related to [16] in applying BERT based fine-tuned model to medical

concept normalization. However, Miftahutdinov and Tutubalina [16] experimented with only

general BERT models while we do comprehensive evaluation of general as well as domain specific

BERT models to normalize concepts. Further,we show that inclusion of highway layer before

classifier layer improves the performance of model by filtering irrelevant information.
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3. BERT Model

3.1. Description

BERT model consists of an embedding layer followed by a stack of bidirectional transformer

encoders. Embedding layer maps sequence of tokens in input to list of vectors. Each trans-

former encoder [41] applies multi-head self attention and feed forward neural network to list

of vectors and returns output to next encoder in the stack. Self-attention mechanism helps to

encode bidirectional contextual information in token representations while feed forward network

generates hierarchical features. ResNet [42] followed by layer normalization [43] is applied on

each of the sub layers - multi-head self attention and feed forward network, to overcome the

issue of vanishing and exploding gradients.

3.1.1. Embedding Layer

Input is added with special tokens [CLS] and [SEP] at the start and end respectively. Embed-

ding layer maps sequence of tokens in input {[CLS], t1, t2, .., tn, [SEP ]} to sequence of vectors

X = {x[CLS], x1, x2, .., xn, x[SEP ]} where each xi is obtained as sum of three embeddings namely

word embedding, position embedding and segment embedding.

X = W + P + S

where X ∈ Rl×demb is input embedding matrix, W ∈ Rl×demb is word embedding matrix,

S ∈ Rl×demb is segment embedding matrix,P ∈ Rl×demb is position embedding matrix and each

row of all these matrices correspond to a word. All these three embeddings are of equal dimension

demb and have their own significance.

Word embeddings encode language information and BERT model uses WordPiece embed-

dings [44]. The advantage with WordPiece embeddings is a)Fixed and small size vocabulary

of 0.3M words b)Any word that is not available in vocabulary is represented in terms of sub-

words available in vocabulary. Position embeddings encode information related to position of

words in the sequence. It is required to include position embeddings because unlike RNN or

CNN, self-attention is unable to capture order of words. Segment embedding differentiate words

of different sequences. All these three embeddings are updated during pre-trainig as well as

fine-tuning. Word embeddings are initialized with WordPiece embeddings while position and

segment embeddings are initialized randomly.

3.1.2. Bidirectional Transformer Encoder

Each bidirectional transformer encoder consists of multi-head self attention and feed forward

network layers. Self attention mechanism allows each token to attend to all tokens in the sequence

and encode context information in vector representations. It is calculated using three weight

matrices WQ ∈ Rdemb×dk , WK ∈ Rdemb×dk and WV ∈ Rdemb×dv

SA(X) = Softmax(
QKT

√
dk

)V ∈ Rl×dv

where Q ∈ Rl×dk , K ∈ Rl×dk and V ∈ Rl×dv are query, key and value matrices obtained by

multiplying X ∈ Rl×demb with the corresponding weight matrices.
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Q = X •WQ,K = X •WK , V = X •WV

where • represents matrix multipication.

To obtain representations from different subspaces, self-attention is computed h times using

different weight matrices. The outputs of all self-attention operations are concatenated to get

CONCAT = [SA1(X), SA2(X), ...SAh(X)] ∈ Rl×hdv . Finally a linear transformation with

weight matrix WO ∈ Rhdv×demb is applied to get MHSA(X) ∈ Rl×demb .

MHSA(X) = CONCAT •WO

To avoid vanishing and exploding gradients, ResNet followed by layer normalization is applied.

G̃ = LN(X + MHSA(X))

To generate non-linear hierarchical features, a position wise feed forward networks is applied

separately for each position. Gelu [45] layer in between two linear layers constitutes position

wise feed forward network i.e., PwFFN(x) = Gelu(xW1 + b1)W2 + b2 . After applying ResNet

followed by layer normalization, we get

G = LN(G̃ + PwFFN(G̃))

BERT consists of a stack of such bidirectional transformer encoders and the depth of stack is

12 in case of BERTBase and 24 in case of BERTLarge. Each transformer encoder generates rep-

resentation of input sequence by capturing bidirectional contextual information. This iterative

process of generating sequence representation using a stack of encoders helps the model to learn

complex relationships.

G̃m = LN(Gm−1 + MHSA(Gm−1))

Gm = LN(G̃m−1 + PwFFN(G̃m−1))

where G̃ is the intermediate result of mth encoder , Gm is the output of mth encoder and G0 = X

3.2. Training Procedure

BERT framework consists of two steps: Unsupervised pre-training and Supervised fine-

tuning. Unsupervised pre-training helps the model to learn parameters from scratch using tasks

like Masked Language Modeling and Next Sentence Prediction. Training the model with these

tasks helps it to learn semantics at both word and sentence levels. Once the model is pre-trained,

it can be adapted to downstream tasks using supervised fine-tuning.

3.2.1. Unsupervised Pre-training

Pre-trainig model involves two tasks namely Masked Language Modeling and Next Sentence

Prediction. The authors selected these two tasks because Masked Language Modeling helps the

model to encode bidirectional context features while Next Sentence Prediction helps to learn

relationships between sentences.
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Masked Language Modeling Language Modeling computes the probability of a word using

previous or subsequent words. Forward language model predicts the word xt using previous t−1

words {x1, x2, ...xt−1}
P (xt|x1, x2, ...xt−1)

Backward language model predicts the word xt using the next t− 1 words {xt+1, xt+2, .., x2t−1}

P (xt|xt+1, xt+2, ...x2t−1)

GPT is unidirectional as it is based on forward language model while ELMo is shallow bidirec-

tional as ELMo representations are obtained from the concatenation of forward and backward

language model representations. The main drawback in unidirectional language modeling ob-

jective is its inability to encode information from both left and right contexts simultaneously.

BERT overcomes the drawback of unidirectional language model in GPT and ELMo with Masked

Language Modeling. In Masked language modeling, a randomly masked word is predicted using

words in both left and right contexts.

P (xt|x1, x2, ..., xt−1, x̃t, xt+1, xt+2, .., xn)

where x̃t is masked representation of xt. The authors randomly masked 15% of tokens in each

sequence. There will be masked tokens only during pre-training phase. To reduce mismatch

between pre-training and fine-tuning, the authors introduced a special masking procedure. Each

of the randomly sampled token a) is replaced with [MASK], 80% of time b) is replaced with

random word, 10% of time and c) is left unchanged remaining times.

Next Sentence Prediction This pre-training task aims to help the model to learn semantics

at sentence level. Learning relationships between sentences is useful for downstream tasks in-

volving more than one sentence like question and answering, natural language inference etc. It

is basically, a binary classification task with two labels, ‘IsNext ’ and ‘IsNotNext ’. For a given

pair of sentences (x,y), the model has to predict whether y is next sentence of x or just a random

sentence in the training corpus. Sentence pairs are generated from training corpus in a way that

a) combined length of two sentences should not exceed 512 b) 50% of times, second sentence is

actual next sentence and 50% of times, second sentence is a random sentence. The corpus used

for pretraining BERT model includes text from BookCorpus having 800M words and English

Wikipedia having 2500M words.

3.2.2. Supervised Fine-tuning

It helps the model to adjust to downstream task. Here task specific layers are added on

the top of BERT. All the parameters of BERT and task specific layers are fine-tuned using

task specific labeled data set. Different downstream tasks will have different fine-tuned models,

though all of them are initialized with the same pre-trained BERT model.

4. Highway Networks

Highway Networks introducted by Srivastava et al. [46] filters out irrelevant information

from input vector. It improves ResNet layer [42] with inclusion of gating mechanism. Kim et al.
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[47] showed the use of highway network layer as a potential filter of irrelevant information in

character aware neural language model. Highway Network layer is defined as:

HN(x) = h(x)� t(x) + x� (1− t(x)) (1)

where h(x)= ReLU (xWh + bh), t(x) = Softmax (xWt + bt) is Transform gate, 1 − t(x) is

Carry gate. Here � represents element wise multiplication, Wh and Wt are weights, bh and bt

are biases. Further h(x) represents traditional non-linear path and x represents skip path. t(x)

and 1− t(x) act as gates and regulate the flow of information through non-linear and skip paths.

5. Methods

5.1. Datasets

In this work, we experiment with custom and random folds of CADEC-MCN and TwADR-L

datasets. TWADR-L was generated from tweets while CADEC-MCN was generated from health

related reviews on Askapatient.com which is an online health discussion forum.

CADEC-MCN Karimi et al. [32] developed a dataset called CADEC(CSIRO Adverse Drug

Event Corpus) from AskAPatient3 forum posts. This dataset consists of 1253 user posts having

7398 sentences and each identified entity is mapped to adverse effect, drug, symptom, disease

or finding, using three vocabularies namely SNOMED-CT, MEDRA and AMT (The Australian

Medicines Terminology). We represent this dataset as CADEC-MCN. Random and custom folds

of CADEC-MCN are taken from [8] and [10] respectively.

TwADR-L Limsopatham and Collier [8] created TwADR-L dataset which contains twitter

ADR phrases mapped to medical concepts from Side Effect Resource (SIDER)4. The authors

collected tweets generated over a span of three months related to fixed set of drugs, manually

extracted and annotated ADR phrases with SIDER medical concepts. The datasets includes

1436 ADR phrases mapped to one of 2200 SIDER medical concepts. This dataset is divided

into ten folds with each fold having train, validation and test sets.

5.2. Problem Definition

Medical concept normalization is treated as multi class classification problem. Given, health

related entity mention M and a label space {C1,C2,...,CK}, the normalization system maps M

to one of the concepts in label space.

• Input: Health related entity mention expressed as [CLS] M [SEP].

• Output: Probability vector P ∈ RK such that Pi represents probability that the entity

mention belongs to concept Ci. The concept with maximum probability is assigned to the

mention.

3https://www.askapatient.com
4http://sideeffects.embl.de/
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5.3. Model Configuration

In this work, we experiment with two BERT based fine-tuned models namely BertForSe-

quenceClassification and BERT+Highway Network. The first model is pre-trained BERT added

with Classifier on the top while second model is pre-trained BERT added with Highway Net-

work+Classifier on the top (see Figure 2) .

Figure 2: Architecture of BERT based fine-tuning models for medical concept normalization.

5.3.1. BertForSequenceClassification

It is the default BERT model applied for text classification. In BERT model, the final hidden

vector of the [CLS] token is considered to represent input text. So, this vector is given to softmax

layer which outputs a vector containing label probabilities.

q = BERT (mention) (2)

logits = qW T + b (3)

p = Softmax (logits) (4)

Here q ∈ RH is final hidden state vector of [CLS] token and H is BERT hidden vector dimension.

W ∈ RKxH and b ∈ R are weights and bias of classifier layer. p ∈ RK is a vector with label

probabilities where K is size of label space.

The model is trained by fine-tuning all the parameters of BERT model and classifier layer.

5.3.2. BERT + Highway Network

As show in Figure 2, this model is an improvement over default BERT model with addition

of highway network layer before classifier layer. Gating mechanism in highway network layer

filters out irrelevant information. So, we believe that by passing final hidden vector of [CLS]

token through highway network and then through classifier layer, improves the performance of

model.

q = BERT (mention) (5)
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r = h(q)� t(q) + q � (1− t(q)) (6)

logits = rW T + b (7)

p = Softmax (logits) (8)

Here q ∈ RH is final hidden state vector of [CLS] token and H is BERT hidden vector dimension.

r ∈ RH is output vector of highway network. W ∈ RKxH and b ∈ R are weights and bias of

classifier layer. p ∈ RK is a vector with label probabilities where K is size of label space.

The model is trained by fine-tuning all the parameters of BERT model, highway network and

classifier layer.

5.4. Evaluation Metric

Following the previous state-of-the-art methods [8, 10, 16], we considered accuracy as eval-

uation metric. Here accuracy refers to percentage of entity mentions that are assigned concepts

correctly.

Accuracy =
#EntityMentionsCorrectly Mapped

#EntityMentionsTotal
(9)

The accuracy values obtained over all the folds are averaged to get the final accuracy.

5.5. Pretrained BERT Models

In this paper, we experiment with three different pre-trained BERT models namely, general

BERT [15] models trained on Books and Wikipedia corpus, BioBERT [48] models trained on

biomedical corpus and ClinicalBERT [49, 17, 18] models trained on medical corpus. Lee et al. [48]

released four BioBERT models (BioBERTPubMed 1M, BioBERTPubMed 200K, BioBERTPMC 270K

and BioBERTPubMed+PMC 470K) trained on 1 million PubMed abstracts, 200K PubMed ab-

stracts, 270K PubMed Central (PMC) full text articles and 200K PubMed abstracts + 270K

PMC articles respectively. All these four models were initialized from BERTbase cased. Alsentzer

et al. [49] released two ClinicalBERT models (ClinicalBERTclinical and ClinicalBERTdischarge)

trained on clinical notes and discharge summaries from MIMIC-III [50]. Both these models were

initialized from BioBERTPubMed+PMC 470K) model. Huang et al. [18] released ClinicalBERTscratch

model trained from scratch with 100K clinical notes from MIMIC-III. Si et al. [17] released

ClinicalBERT300K model initialized from BERTbase cased and trained for 300K steps using MIMIC-

III clinical notes. Table 1 shows a brief summary of different pre-trained BERT models.

6. Experimental Results

At first, we evaluate general BERT, biomedical BERT and clinical BERT based fine-tuned

models with and without including highway network layer on custom folds of CADEC-MCN

dataset. Then, we evaluate our best performing model on random folds of CADEC-MCN and

TwADR-L datasets.
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Table 1: Summary of various BERT models. A model trained from scratch is indicated by ‘-’.

Model Training Corpus Initialized from

BERTbase uncased Books Corpus and English Wikipedia -

BERTbase cased Books Corpus and English Wikipedia -

BioBERTPubMed 1M PubMed abstracts (1 Million) BERTbase cased

BioBERTPubMed 200K PubMed abstracts (200K) BERTbase cased

BioBERTPMC 270K PMC full text articles (270K) BERTbase cased

BioBERTPubMed+PMC 470K PubMed abstracts (200K) + PMC full text articles (270K) BERTbase cased

ClinicalBERT scratch 100K Clinical Notes from MIMIC-III -

ClinicalBERT300K All Clinical Notes from MIMIC-III BERTbase cased

ClinicalBERTclinical All Clinical Notes from MIMIC-III BioBERTPubMed+PMC 470K

ClinicalBERTdischarge All Discharge Notes from MIMIC-III BioBERTPubMed+PMC 470K

Model
Accuracy

without HN? with HN‡

BERTbase uncased 80.91 81.12

BERTbase cased 81.37 81.36

BioBERTPubMed 1M 82.35 82.62

BioBERTPubMed 200K 81.03 81.57

BioBERTPMC 270K 81.08 81.14

BioBERTPubMed+PMC 470K 81.77 81.46

ClinicalBERT scratch 80.42 80.83

ClinicalBERT300K 81.23 82.40

ClinicalBERTclinical 81.20 81.27

ClinicalBERTdischarge 82.10 82.21

Table 2: Accuracy of various BERT based models on custom folds of CADEC-MCN dataset. HN stands
for Highway Network, ? represents BERT for Sequence Classification model and ‡ represents BERT+Highway
Network Model. For detailed results on each fold, refer Appendix.

6.1. Results

Table 2 shows accuracy of different BERT based models evaluated on CADEC-MCN cus-

tom folds. From Table 2, it is clear that (1) In case of general BERT models, BERTbase cased

(without HN) with an accuracy of 81.37% outperformed other general models. (2) In case of

BioBERT models, BioBERTPubMed 1M which was initialized from BERTbase cased and trained

on 1 Million PubMed abstracts achieved an accuracy of 82.62% (with HN) and outperformed

other biomedical models. (3) In case of ClinicalBERT models, ClinicalBERT300K which was

initialized from BERTbase cased and trained for 300K steps using all clinical notes from MIMIC-

III achieved an accuracy of 82.40% (with HN) and outperformed other clinical models. (4)

BioBERTPubMed 1M+HN achieved highest accuracy of 82.62% on CADEC-MCN custom folds.

Further, we evaluated our best model BioBERTPubMed 1M+HN on CADEC-MCN random folds

and TwADR-L and achieved an accuracy of 98.72% and 97.98% respectively.
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Model
CADEC-MCN

TwADR-L
Custom Random

DNorm4 - 73.39 30.99

Logistic Regression4 - 77.67 34.09

CNN4 - 81.41 45.90

Multi-task Char-CNN5 - 84.65 46.46

GRU+Att? 71.68 85.06 -
GRU+Att+tf-idf(max)? 74.70 85.71 -
BERT? 79.83 88.69 -
BERT+tf-idf(max)? 79.25 88.84 -
Our Best Model 82.62 98.72 97.98

Table 3: Performance comparison of our best model BioBERTPubMed 1M+HN with the existing methods on
custom and random folds of CADEC-MCN dataset. 4 - from [8], 5 - from [40], ? - from [16]

6.2. Impact of Highway Network

Highway network layer consists of two gates namely t(x) - transform and 1−t(x) - carry gates.

These two gates regulate the flow of data through non-linear and skip paths. This will help the

model to choose only important information and hence the model performance increases. The

performance of various BERT based fine-tuned models after including Highway network layer is

reported in Table 2. From Table 2, it is clear that highway network has improved the performance

in all the cases except BERTbase cased and BioBERTPubMed+PMC 470K. The improvement is

highest in case of ClinicalBERT300K(1.17%) and lowest in case of BioBERTPMC 270K (0.06%).

6.3. Comparison with previous systems

We compare our best performing model with previous systems which includes systems based

on traditional embeddings and systems based on ELMo embeddings.

• DNorm [8] - applies pairwise rank learning technique to normalize medical concepts.

• Logistic Regression [8] - Multi-class logistic regression classifier with phrase vector as

input and phrase vector is obtained by concatenating embeddings of words in phrase.

• CNN [8] - CNN with Google News embeddings as input.

• Multi-task Char-CNN + Att [40] - CNN applies convolution and max-pooling opera-

tions on character embeddings matrix added with attention weights generated by auxiliary

task and then predicts the concept.

• GRU + Att, GRU + Att + tf-idf(Max) [16] - GRU + Att with ELMo, HealthVec

embeddings as input. UMLS based similarity features are calculated using tf-idf.

• BERT, BERT + tf-idf(max) [16] - BERT based fine-tuned model without and with

UMLS based similarity features calculated using tf-idf.

Table 3 shows comparison of our best performing model with existing systems on TwADR-

L, custom and random folds of CADEC-MCN. Our best model based on BioBERTPubMed 1M

and highway network outperformed all existing systems and achieved accuracy improvements
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of 51.52% (97.98 vs 46.46) on TwADR-L, 2.79% (82.62 vs 79.83) on CADEC-MCN custom

folds and 9.88%(98.72 vs 88.84) on CADEC-MCN random folds. Our best model outperformed

traditional embedding based models by 14.07% (98.72 vs 84.65) on random folds of CADEC-

MCN. Further, our best model outperformed ELMo embeddings based models by 7.92% (82.62

vs 74.70) on custom folds and by 13.01% (98.72 vs 85.71) on random folds of CADEC-MCN.

6.4. Impact of freezing encoder layers

Figure 3: Our best model performance on CADEC-MCN custom folds at different learning rates.

Freezing a layer means, parameters of layer are not updated while fine-tuning the model.

BERT consists of an embedding layer and stack of transformer encoder layers in which lower

layers capture syntactic information while upper layers capture semantic information. As syn-

tactic information is common across domains and tasks, we believe that there is no need to

further update the parameters of first few layers. Further freezing first few layers, allows the

model to focus on learning more task specific information in upper layers which improves the

performance of model. To study the impact of freezing encoder layers on performance of our

best model, we conducted a series of experiments by freezing embedding layer along with first

1, 2, 4, 6, 8, 10 and 11 encoder layers while fine-tuning. From Figure 3, freezing encoder layers

did not improve the performance of model. Freezing up to 6 encoder layers did not hurt the

performance of model much and further, it increased speed of fine-tuning also. Freezing 8, 10

or 11 encoder layers reduced the performance considerably. The model achieved least accuracy

when all the encoder layers were freezed.

BioBERT was initialized from general BERT and further pre-trained on biomedical text.

Biomedical text authored by researchers is less noisy with standard terms while CADEC-MCN

phrases authored by general public are more noisy with lot of colloquial and misspelled terms.

Due to these variations, freezing first few layers while fine tuning didn’t improve the performance

of model, as expected.
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Our best model trained on Accuracy

Full training set 82.62

95% of training set 81.93

90% of training set 81.16

85% of training set 80.82

80% of training set 79.25

70% of training set 78.38

70% of training set 77.82

65% of training set 76.59

60% of training set 75.90

Model Accuracy

GRU+Att+tf-idf(max) ? [16] 74.70

Table 4: Performance (accuracy) of our best model on training sets of different sizes from CADEC-MCN custom
folds. ? - model is trained on full training set.

6.5. Impact of pre-trained BERT model

To show the impact of BERT model, we fine-tuned our best model using different sizes of

training set from CADEC-MCN custom folds and then evaluated it. From Table 4, we observe

that our best model outperforms ELMo based existing system by 1.2% (75.90 vs 74.70) even

when it is trained using 60% of training set. This is because ELMo based system has to be trained

from scratch so it requires more training instances to perform better. Our best model is based

on fine-tuned BioBERT and highway layer. As BERT model learns lot of language information

during unsupervised pre-training itself, it can be fine-tuned even with small datasets and hence

performs better compared to CNN or RNN downstream based models which are to be trained

from scratch.

7. Discussion

In this work, we proposed a system based on BioBERT and highway layer to normalize

medical concepts in user generated texts. As per our latest knowledge, this is the first work to

do comprehensive evaluation of general as well as domain specific BERT models in the task of

medical concept normalization.

From experimental results reported in Table 2, it is clear that Highway layer improved perfor-

mance in most of the cases. It is expected because highway network with two gates - transform

and carry gate, helps the model to choose only relevant information which improves the perfor-

mance. However, highway networks didn‘t improve the performance in case of BERTbase cased

and BioBERTPubMed+PMC 470K. This may be, because of inclusion of an additional layer, the

model is over fitted. In these two cases, changing the dropout applied to Highway network layer

or a better learning rate can improve the performance.

In case of general BERT models, BERTbase cased outperformed BERTbase uncased . This shows

that cased BERT models encode more information compared to uncased BERT models. This is

the reason why all the domain specific BioBERT and ClinicalBERT (except ClinicalBERTscratch

which is trained from scratch) models were initialized from BERT cased models rather than

BERT uncased models.
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In case of BioBERT models, BioBERTPubMed 1M outperformed all other biomedical models

with an accuracy of 82.62% (with HN). It is expected because BioBERTPubMed 1M is trained on

a large corpus of 1M PubMed abstracts compared to BioBERTPubMed 200K, BioBERTPMC 270K,

BioBERTPubMed+PMC 470K which were trained on relatively small corpus of 200K PubMed ab-

stracts, 270K PubMed Central full text articles and (200K PubMed abstracts + 270K PubMed

Central full text articles) respectively. Further, BioBERTPubMed 1M and BioBERTPubMed+PMC 470K

outperformed BERTbase cased. Both BioBERTPubMed 1M and BioBERTPubMed+PMC 470K were

initialized from BERTbase cased and then further pre-trained on domain specific biomedical

corpus. This shows that further pre-training general BERT models on domain specific cor-

pus improves the performance. However, BioBERTPMC 270K achieved lower performance than

BERTbase cased. This may be because it was further pre-trained using a relatively small corpus of

270K PubMed Central full text articles compared to BioBERTPubMed 1M and BioBERTPubMed+PMC 470K

which were further pretrained using relatively large corpus of 1M PubMed abstracts and (200K

PubMed abstracts + 270K PubMed Central full text articles) respectively. In case of Clinical-

BERT models, ClinicalBERT300K trained using all the clinical notes from MIMIC-III outper-

formed other clinical models with an accuracy of 82.40% (with HN).

BioBERTPubMed 1M+HN achieved the best performance on CADEC-MCN custom folds

data set. We expected ClinicalBERT300K+HN to achieve the best performance however it

achieved 0.22% accuracy lower than BioBERTPubMed 1M+HN. We believe that further pre-

training the model for more number of steps or further pre-training the model using medical

related Wikipedia pages can improve the performance. We would like to explore these options

in future. Further, ClinicalBERTscratch achieved the lowest performance compared to all the

models including general BERT models. This is because it was trained from scratch using a

relatively small corpus of 100K clinical notes. In future, we would like to investigate whether

further pre-training this model using more clinical notes and medical related Wikipedia pages

can improve the performance.

Based on the values reported in Table 3, it is clear that our best model based on BioBERT

and highway layer outperformed existing systems based on traditional embeddings as well as

systems based on ELMo embeddings. Traditional word embeddings which are learned using shal-

low neural networks are unable to encode more information in vector representations. Moreover,

these representations are context insensitive which further limits the quality of vectors. Though

ELMo is context sensitive, it is shallow bidirectional i.e., the representations are obtained as

concatenation of representations from forward and backward LSTMs. Further, traditional word

embeddings or ELMo embeddings are used as input features to downstream models which are

then trained from scratch using task specific labeled data set. As downstream models are to be

trained from scratch (except embeddings), they require more training instances to perform bet-

ter. However in case of BERT a) representations learned are bidirectional and context sensitive

b) model is pre-trained on large volumes of unlabeled text using stack of transformer encoders.

This iterative approach of generating representations, helps the model to learn lot of language

information. c) Task specific layers are added on the top of BERT and entire model is fine-tuned

using task specific labeled dataset. As BERT model learns lot of language information during

unsupervised pre-training itself, it does not require large labeled data sets for fine-tuning. So,
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our best model achieved better performance compared to traditional embedding or ELMo based

systems.

8. Conclusion

In this study, we proposed a deep neural network based architecture to normalize medical

concepts in social media text. Our deep neural network architecture consists of pre-trained

BERT and task specific classifier which includes highway layer followed by softmax layer. We

experimented with two general, four biomedical and four clinical BERT models to normalize

concepts. As per our knowledge, it is the first work to do comprehensive evaluation of BERT

based fine-tuned models in medical concept normalization. Our best model based on BioBERT

trained on 1M PubMed abstracts and highway layer outperformed other BERT models as well

as existing systems and achieved best performance on TwADR-L, custom and random folds of

CADEC-MCN. We also conducted series of experiments to study the impact of freezing encoder

layers on the performance of our best model. In future, we would like to explore possible ways

to incorporate knowledge from UMLS which can potentially improve the performance of model.
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