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Abstract. The current diagnosis of autism spectrum disorder (ASD) is
very challenging due to the complex symptoms of this disease. Basically,
this process is based on purely behavioral observations, which makes it
a subjective method that could lead to incorrect diagnoses. To address
the problem in question, in this study we propose an approach for the
automatic diagnosis of autism based on Multilevel Discrete Wavelet De-
composition (MDWD) and Support Vector Machines (SVM). First, we use
resting-state functional magnetic resonance imaging (rs-fMRI) from the
Autism Brain Imaging Data Exchange I dataset. From these images, we
extract time series of regions of interest defined by a brain atlas. Then, we
apply MDWD to these time series and the resulting subseries are used for
the construction of functional connectivity (FC) matrices. Finally, the FC
feature vector serves as input to the SVM classifier. Our proposed method
is evaluated on 175 rs-fMRI sequences. The results show that using MDWD
to analyze signals provides a significant improvement in classifier perfor-
mance. Our best model achieves an accuracy and F1-score of 72.5% and
63.8%, respectively.
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1 Introduction

Autism spectrum disorder (ASD) is a complex and highly heterogeneous
neurodevelopmental disorder characterized by deficits in communication and
social interaction, restricted activities and interests, and repetitive and stereo-
typed behavior patterns [1], [2], [3]. According to the World Health Organization,
one in 100 children in the world has ASD.

Currently, the gold standard for the diagnosis of autism consists of a behav-
ioral assessment that is supported by tools such as Autism Diagnostic Interview-
Revised (ADI-R) [4] and Autism Diagnostic Observation Schedule-2 (ADOS-2)
[5]. However, this procedure is subjective and susceptible to inaccuracies, as it
depends largely on the specialist’s experience and interpretation of the results
obtained. In addition, the presence of psychiatric comorbidities in individuals
with autism (e.g., depressive disorders, bipolar disorders, anxiety disorders or
schizophrenia) can disguise or alter some symptoms [6], [7], which increases
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the complexity of detection. In this way, diagnosis is a long and slow process,
lacking neurobiological biomarkers [8], which may delay early intervention. In
fact, accurate and early detection of ASD is fundamental to implement adequate
treatments to improve the patient’s condition and quality of life [9].

Recently, machine learning and deep learning methods trained on structural
and functional imaging modalities have become attractive for the diagnosis
of psychiatric disorders [10], [11], [12], [13]. Precisely, these studies are shown
to be promising candidates that attempt to accelerate, improve and reduce
subjectivity in the diagnostic process of autism. Within the different types of neu-
roimaging data, resting-state functional magnetic resonance imaging (rs-fMRI)
is increasingly used and is of particular interest to researchers. This modality is a
noninvasive technique that measures brain activity through changes in the blood
oxygen level-dependent (BOLD) signal when the subject is in a resting state. In
particular, rs-fMRI allows the study of functional connectivity, which examines
the temporal correlation between BOLD signals from different brain regions.
This concept is a valuable tool, as previous studies have reported alterations
associated with autism that manifest as reductions or increases in functional
connectivity [14].

For the study of rs-fMRI signals in ASD diagnosis, researchers have adopted
different approaches, including deep learning (DL). DL algorithms can automat-
ically extract features from the raw data through various levels of abstraction.
Due to the multilayer representation of the information contained in the input
data, where each successive layer extracts increasingly complex features, these
methods have achieved revolutionary results [15], [16]. For this reason, in recent
years, DL has been widely used in different fields of science. However, these
models are seen as “black box” approaches due to the lack of interpretability,
which derives from the inherent complexity in their processes. In this way, a
uninterpretable model prevents the extraction of relevant knowledge from the
relationships learned by the model itself. Thus, the analysis of data in differ-
ent frequency bands, which could reveal information of interest, would not be
evident by using DL. Precisely because of this problem, we prefer Multilevel
Discrete Wavelet Decomposition (MDWD) over DL, since its multiresolution
analysis provides an interpretable framework that allows understanding how
an unwanted event affects the signal and, subsequently, if required, proposing
strategies for its elimination. MDWD is a powerful time-frequency technique
used in the analysis of non-stationary signals and allows decomposing an input
signal into different levels. Each level contains low and high frequency subseries
or contributions.

Thus, in this work we propose a classification framework based on MDWD
and Support Vector Machines (SVM). Initially, MDWD is applied to the time
series extracted using a 200-region brain atlas. Then, the resulting subseries
or coefficients are used in the feature extraction stage, which is based on the
construction of a functional connectivity matrix. Finally, the SVM classifier is
trained with the acquired FC features. In this way, the main objective of the study
is to test how the analysis using MDWD affects the performance of the model for
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ASD diagnosis. Accordingly, for all experiments, we used 175 rs-fMRI sequences
from the Autism Brain Imaging Data Exchange I dataset, which groups images
from multiple international sites.

2 Previous related work

Previous studies have explored the use of the wavelet transform on rs-fMRI
to improve ASD classification. For example, in [17] they take advantage of the
temporal dynamics features present in scalogram images, which are constructed
from Continuous Wavelet Transform (CWT). In the next stage, these images serve
as input to 4 pre-trained deep learning frameworks for feature extraction. Finally,
the extracted vectors are input to two different classifiers, SVM and K-Nearest
Neighbors, reaching an accuracy of up to 85.9%. On the other hand, [13] extracts
wavelet coherence maps from the time series of socio-executive resting-state
networks. Subsequently, the maps are used to obtain a metric called time of in-
phase coherence, which describes in-phase and coherent patterns (synchronicity)
between pairs of networks. Precisely, this metric is used to train three classifiers
based on SVM and Linear Discriminant Analysis, where they obtain an accuracy
of up to 86.7%. Likewise, [18] introduces a multiclass classification oriented to
the diagnosis of ASD subtypes. For this purpose, they determine dynamic FC
between brain regions using a novel coherence metric. This metric quantifies the
global variability of coherence on specific low-frequency scales of BOLD signals.
In this way, they develop a classification algorithm based on convolutional
neural networks and wavelet coherence maps of the pairwise regions. Thus, this
configuration yields an average accuracy of 88.6%.

A point to highlight is that all the mentioned works are mainly based on
continuous wavelet transforms (CWTs). However, unlike them, we use MDWD,
since this methodology provides a minimally redundant representation of a
signal. Therefore, the computational resources invested in the calculation and
storage of its coefficients are significantly lower than the algorithms based on
CWTs. Likewise, MDWD can capture the most important characteristics in a
subset of coefficients much smaller than the original signal. This means that
this method tends to concentrate the signals in a few large coefficients, while
the noise is usually represented by several low magnitude coefficients. This
allows the use of easy-to-implement techniques (e.g. statistical thresholding) to
eliminate noise-associated components. Moreover, the coefficients obtained by
MDWD tend to become decorrelated as the level of resolution increases [19].
Precisely, the decorrelated data are relevant in machine learning (ML) because it
is desired that each coefficient provides unique information to the model. Thus,
having many correlated coefficients can reduce the generalization and predictive
ability of the ML model, since they would provide the same information of a
common underlying pattern.
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3 Materials and methods

3.1 Dataset and preprocessing

In our experiments we used rs-fMRI sequences available from the Autism
Brain Imaging Data Exchange I (ABIDE I) [20]. ABIDE I is a consortium involving
17 international sites and shares neuroimaging data from 539 subjects with ASD
and 573 typical development. Each of these 1112 samples consists of rs-fMRI and
structural MRI data, and phenotypic information. In order to avoid confounding
due to exogenous variables related to acquisition technologies and the sample
population, for this study we considered data from only one site: NYU. This
corresponds to 75 patients with ASD and 100 typical development.

In an effort to reduce the effects of unwanted artifacts and other noise, all
175 images were preprocessed using Configurable Pipeline for the Analysis of
Connectomes (CPAC). CPAC is a strategy provided by the Preprocessed Connec-
tomes Project (PCP) [21] and involves the following steps: slice time correction,
motion realignment, intensity normalization, nuisance signal removal and band
pass filtering (0.01 - 0.1 Hz). Furthermore, because the preprocessed data corre-
spond to 4-dimensional sequences, 3 spatial and 1 temporal dimensions, it may
be inefficient to analyze each voxel of the image. Instead, we divided the brain
into 200 regions of interest (ROIs) defined by the Craddock 200 atlas (CC200). In
this way, the time series of all voxels within each ROI are extracted and averaged,
thus obtaining a single time series per ROI.

3.2 Multilevel Discrete Wavelet Decomposition

Multilevel Discrete Wavelet Decomposition (MDWD) is a versatile method
used in the analysis of non-stationary signals, which allows extracting time-
frequency characteristics from time series. MDWD decomposes a signal into low
and high frequency subseries level by level. Therefore, to obtain the subseries
of the (i+1)-th level, MDWD implements two fundamental steps: extraction of
intermediate sequences and down-sampling.

Extraction of intermediate sequences. The sequences Al
i+1 and Ah

i+1 are gen-
erated by convolving the low-frequency subband of the i-th level (Xl

i ) with a
low-pass filter L = [l0, l1, ..., lK−1] and a high-pass filter H = [h0, h1, ..., hK−1].
Thus, in (1) and (2) the n-th element of Al

i+1 and Ah
i+1 is computed. Additionally,

the special case Xl
0 refers to the input time series (X).

Al
i+1[n] =

K−1

∑
k=0

Xl
i [k] · L[n − k] (1)

Ah
i+1[n] =

K−1

∑
k=0

Xl
i [k] · H[n − k] (2)
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Down-sampling. The low-frequency Xl
i+1 and high-frequency Xh

i+1 subseries
are obtained by applying a decimation function to the Al

i+1 and Ah
i+1 sequences,

respectively. This process is described by (3) and (4), where ↓ 2(·) is the operator
that performs down-sampling by a factor of 2.

Xl
i+1 =↓ 2(Al

i+1) (3)

Xh
i+1 =↓ 2(Ah

i+1) (4)

The result of MDWD is a set S = [Xh
1 , Xh

2 , ..., Xh
j , Xl

j ] of j + 1 subseries, where
j is the number of levels into which the time series is decomposed. Precisely,
the levels used represent the signal viewed at different scales. Finally, in this
work we select two decomposition levels (j = 2) and use Daubechies 2 to define
the coefficients of the L and H filters. Furthermore, for each subject we obtain
200 subseries in the first level and 400 subseries in the second level (200 low
frequency and 200 high frequency).

3.3 Feature extraction

In this work, we use two levels for the MDWD. As a result, 3 independent
functional connectivity matrices are generated for each subject: one for the first
level and two for the second level of the MDWD representation of the signal.
The FC matrices are of size N x N (N = 200) and are constructed by calculating
Pearson’s correlation coefficients for each pair of time subseries. The resulting
matrices are symmetric and contain coefficients ranging from 1 (two highly cor-
related time subseries) to -1 (two anti-correlated time subseries). Subsequently,
the elements of the upper diagonal of the FC matrices are discarded, as they are
repeated with those of the lower diagonal. Finally, the retained data are reduced
to a one-dimensional feature vector of length L, given by L = 0.5N(N − 1). In the
same way, the feature extraction process is presented in Figure 1.

3.4 Support Vector Machine Classifier

Support Vector Machines (SVM) are a set of supervised machine learning
algorithms [22]. SVM develops the classification task by finding a hyperplane
that optimally separates the data into two classes. This process is performed with
the help of support vectors, which are the points in each class that are closest to
the hyperplane and influence its orientation and position. Likewise, when the
problems are complex, the solutions may require nonlinear hyperplanes. In that
case, the original samples of the data set are mapped to a higher dimensional
space by a kernel function so that they are now linearly separable. Therefore, in
this work we consider the radial basis function (RBF) kernel.
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Fig. 1: In the illustration, the successive stages in the top line describe the pro-
posed workflow for ASD classification. The overall process starts from the
preprocessed rs-fMRI data and involves intermediate steps such as time series
extraction, MDWD and feature extraction. Finally, the obtained vectors serve as
input to the SVM classifier. Also, the MDWD process is presented in detail at
the bottom, which decomposes the input signal into two levels.

3.5 Performance assessment

For the evaluation of the model we used 5-fold cross validation. Conse-
quently, the data set is divided into 5 folds of the same size, i.e., each containing
35 subjects: 15 with ASD and 20 with typical development (TD). In this way,
during the evaluation, a single fold is retained to serve as validation data, and
the remaining 4 folds are used as training data. This process is repeated 5 times
and each fold is used exactly once to evaluate the model. Similarly, the grid-
search method is implemented to find the hyperparameters with which the
model achieves the best performance. Therefore, the hyperparameters used for
this process correspond to C and gamma with their values being established by
random search within the intervals [10−2, 10] and [10−5, 10], respectively. The
search is performed at each fold using only the training data and 10-fold cross
validation.

Likewise, 5 metrics are used to measure classifier performance: accuracy (A),
precision (P), F1-score (F1), recall (R) and specificity (S). These measures are
calculated following the equations (5)-(9), where TP represents the true positives
(patients correctly classified with ASD), TN the true negatives (patients correctly
classified as TD or without ASD), FP the false positives (patients incorrectly
classified with ASD), and FN the false negatives (patients incorrectly classified
as TD).

A =
TP + TN

TP + TN + FP + FN
(5)

P =
TP

TP + FP
(6)
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R =
TP

TP + FN
(7)

F1 = 2
(

PR
P + R

)
(8)

S =
TN

TN + FP
(9)

Accuracy measures the ability of a classifier to correctly identify all samples,
regardless of whether they are positive or negative. Precision corresponds to the
ratio of the number of positive samples correctly predicted to the total number
of positive samples predicted. Recall or sensitivity represents the portion of ASD
patients correctly classified as ASD. F1-score is the harmonic mean of precision
and recall. Therefore, this measure considers the impact of false positives and
false negatives on the classifier. Thus, the higher the precision and recall, the
higher the F1-score. Specificity measures the ability of the classifier to correctly
determine TD patients.

4 Results

In this work, we want to assess whether the discrimination of ASD from fMRI
data has relevant information at different frequency bands. For this reason, we
compare the behavior of the model when using or not using the MDWD block.
Specifically, for the case where MDWD is added, we explore two options. The
first option consists of using data from all decomposition levels. This involves
training three different SVM classifiers and then implementing voting classifier
(majority voting). The second option considers only the data associated with
the low frequency subband of the last level (Xl

2). Therefore, Table 1 shows the
results of our experiments, where the highest values obtained in each measure
are highlighted in bold. We can observe that, for all measurements, the best
performances are obtained when using MDWD. This suggests the importance of
applying such an algorithm as a method of time series analysis. Also, adding
MDWD to our pipeline yields an improvement of up to 5.1% in terms of accuracy.
Similarly, the classifier trained with all levels (All) achieves a precision of up to
79.6%. On the other hand, evaluating the performance differences between using
and not using MDWD, we find that improvements range from 2.7% to 12.1%.
Finally, we consider that the best model is the one that uses the data associated
with Xl

2, since it has the best results in terms of accuracy, F1-score and recall.

5 Conclusions

In this study, we proposed an approach based on Multilevel Discrete Wavelet
Decomposition and SVM for ASD classification. We used 175 rs-fMRI sequences
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Table 1: Results obtained in terms of different performance measures when using
and not using MDWD.

MDWD Levels
Measures

A P F1 R S

No - 0.674 0.691 0.536 0.439 0.850

Yes
All 0.708 0.796 0.580 0.466 0.890

Xl
2 0.725 0.747 0.638 0.560 0.850

from the ABIDE I dataset and evaluated the model by 5-fold cross valida-
tion. Experimental results evidence a significant improvement in different per-
formance measures when applying MDWD on time series. Moreover, in our
work, the best performing model was the one that considered only the low
frequency subband of the last decomposition level. This suggests that analyz-
ing the signal in different frequency bands may unveil relevant information
that improves classification performance. Similarly, our approach may be of
particular interest for frameworks that rely on traditional machine learning
algorithms, as in many occasions the performance of these methods is lim-
ited by the complexity of the raw data. The implemented code is available at
https://github.com/WilliamCancino/wavelet-autism-classification.git
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