
EasyChair Preprint
№ 10595

Recommending Code Reviews Leveraging Code
Changes with Structured Information Retrieval

Ohiduzzaman Shuvo, Parvez Mahbub and
Mohammad Masudur Rahman

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 19, 2023



Recommending Code Reviews Leveraging Code
Changes with Structured Information Retrieval

Abstract—Review comments are one of the main building
blocks of modern code reviews. Manually writing code review
comments could be time-consuming and technically challeng-
ing. Recently, an information retrieval (IR) based approach
has been proposed to automatically recommend relevant code
review comments for method-level code changes. However, this
technique overlooks the structured items (e.g., class name, library
information) from the source code and is applicable only for
method-level changes. In this paper, we propose a novel technique
for relevant review comments recommendation – RevCom – that
leverages various code-level changes using structured information
retrieval. RevCom uses different structured items from source
code and can recommend relevant reviews for all types of changes
(e.g., method-level and non-method-level). Our evaluation using
three performance metrics show that RevCom outperforms both
IR-based and DL-based baselines by up to 49.45% and 23.57%
margins in BLEU score in recommending review comments.
We find that RevCom can recommend review comments with
an average BLEU score of ≈ 26.63%. According to Google’s
AutoML Translation documentation, such a BLEU score indicates
that the review comments can capture the original intent of
the reviewers. All these findings suggest that RevCom can
recommend relevant code reviews and has the potential to reduce
the cognitive effort of human code reviewers.

Index Terms—Software Engineering, Code Reviews, Code
Changes, Structured Information Retrieval

I. INTRODUCTION

Code review is one of the popular quality assurance
practices in software development and maintenance. It has
been widely adopted in open-source and commercial software
projects [1, 2]. During code reviews, developers first submit
changed code to their peers (a.k.a. reviewers). The reviewers
then manually examine the changed code and provide feedback
in the form of code review comments. Then the code is revised
based on the review comments across multiple iterations and is
made ready for integration into the main code base [3]. Besides
finding fine-grained defects (e.g., logical errors), code review
helps improve the readability [2, 4, 5], maintainability [4], and
design quality [6] of the source code.

Modern code review (MCR) has been reported to be ben-
eficial for software maintenance [7, 8]. However, performing
the review is still a challenging task, which requires signifi-
cant time and cognitive effort. MCR involves examining the
source code from different aspects such as logic, functionality,
complexity, code style, and documentation [9]. Due to the
size and complexity of modern software projects, the number
of review requests is also high [10, 11]. A code submitter
might need to wait for 15 – 64 hours before receiving any
code review [12], which could hurt their productivity. Thus,
an automated recommendation of meaningful code review

comments could benefit both a code submitter and a code
reviewer. Recommended reviews can help the reviewer write
better review comments with reduced effort while shortening
the wait time for the code submitter [13].

Several existing approaches [9, 14–16] recommend or gen-
erate code review comments using deep neural (DL) networks.
Earlier works [14, 15] use Long Short-Term Memory (LSTM)
networks with an attention mechanism [17] to recommend
code review comments. Later approaches [9, 16] employ
more sophisticated architecture such as Text-To-Text Transfer
Transformer (T5) [18] to generate code review comments.
However, they require specialized computing resources (e.g.,
16 × 40GB GPU [18]), which could hurt their scalability. They
also might require long training time (e.g., 12 days [18]).

Recent studies [19–22] suggest that simpler approaches,
such as information retrieval (IR), can perform better than
complex deep learning models with less computational time
and resources. Hong et al. [13] propose an IR-based approach
that leverages method-level similarity in recommending code
review comments. Although their approach outperforms deep
learning models, it could be limited in several aspects. First,
they use the Bag of Words (BoW) model [23] that represents
source code as token vectors ignoring code structures and se-
mantics. Source code contains both structured (e.g., methods,
library information) and unstructured items (e.g., code com-
ments). Second, they report their findings for only Java-based
projects, which might not generalize to other programming
languages. Finally, their approach to recommending review
comments was evaluated only using method-level informa-
tion in the source code. However, method bodies might not
cover all the changes that require code reviews. Thus, the
existing approaches might not perform well in recommending
reviews for the code changes outside of a method body (see
listing 1, 2). According to Li et al. [9], structured information
such as diff contains all types of changes in the source code
and thus can help better understand the semantics of any code
changes. However, the work of Hong et al. [13] overlooks this
structured information and recommends reviews only for the
changes in the method.

In this paper, we propose a novel technique, namely –
RevCom, that recommends relevant review comments lever-
aging various code-level changes with structured information
retrieval. Our work is inspired by the work of Hong et al. [13]
that relies on method-level similarity and the Bag of Words
model to recommend code reviews. However, unlike the earlier
work, RevCom leverages the structured information from all
types of code changes and thus can recommend code reviews



for both method-level and non-method-level changes.
We evaluate our proposed approach with ≈ 56K changed

code and comment pairs from eight (four Python + four Java)
projects. We use three different metrics – BLEU score [24],
perfect prediction, and semantic similarity [25] to evaluate
the performance of RevCom. We find that RevCom can
recommend review comments with an average BLEU score
of ≈ 26.63%. According to Google’s AutoML Translation
documentation1, such a BLEU score indicates that the review
comments can capture the original intent of the reviewers
with some grammatical errors. We also find that structured
information plays a significant role in our approach. Fur-
thermore, a comparison with two state-of-the-art techniques
– CommentFinder [13] and CodeReviewer [9] show that
RevCom outperforms them in all three metrics. In particular,
our approach is lightweight compared to DL-based techniques
and can recommend reviews for both method-level and non-
method-level changes where the existing IR-based technique
falls short.

We thus make the following contributions in this paper.
• A novel, IR-based approach – RevCom that can recom-

mend relevant code review comments leveraging various
structured information from the changed code.

• Extensive experiments demonstrating the effectiveness
of RevCom against two state-of-the-art techniques –
CommentFinder [13] and CodeReviewer [9]. We also
assess the role of different structured information (e.g.,
diff, library information, and file path) in our proposed
approach.

• A benchmark dataset containing ≈ 56K pairs of
⟨code change, comment⟩ collected from eight popular
Java-based and Python-based projects. We also release
our dataset2 and replication package for third-party reuse.

II. MOTIVATING EXAMPLE

To demonstrate the capability of our approach – RevCom,
let us consider the example in Listing 1. The code snippet is
taken from elastic/elasticsearch Java repository3. The example
shows a class-level change. According to the review comment
in line 8, the reviewer suggests changing the privacy of
variable key (see line 6) from public to private. We see that
RevCom recommends exactly the same comment that the
reviewer suggests (a.k.a. ground truth). RevCom retrieves the
suggested review comment from a similar pull request from
the same repository. Reviewers often provide similar types of
review comments for similar code changes [13]. Our approach
can exploit structured information from those changes and can
recommend exact review comments occasionally.

Listing 2 shows another example containing a library-level
change. The code snippet is from ansible/ansible Python
repository4. We see that even though the recommended Com-

1https://bit.ly/3wGpCIx
2https://bit.ly/3NdmNHY
3https://bit.ly/3H7jvCt
4https://bit.ly/3QTO6H4

ment from RevCom does not exactly match the ground truth,
both of them express the same semantic information.

1 Code Change:
2 @@ -50,7 +52,7 @@
3 public static class Bucket extends

InternalMultiBucketAggregation.InternalBucket
implements Histogram.Bucket {

4

5 - final long key;
6 + public final long key;
7 -------------------------------------------
8 Ground Truth: "Could you explain why this needs to

be public now? I think we should try to keep
this package private if possible".

9

10 Recommended Comment: "Could you explain why this
needs to be public now? I think we should try to
keep this package private if possible."

Listing 1. Example of class-level code change

Unfortunately, the state-of-the-art IR-based technique –
CommentFinder [13] could be limited for these change sce-
narios. First, in Listing 1, the change is related to a class-
level variable which is declared outside of a method. Second,
in Listing 2, this change is related to library information
which is also not a part of any method. On the other hand,
since our approach captures various code-level changes, it
can recommend code reviews for both method-level and non-
method-level changes.

1 Code Change:
2 @@ -0,0 +1,125 @@
3 +#!/usr/bin/python
4 +from __future__ import absolute_import, division,

print_function
5 +from ansible.module_utils.aws.core import

AnsibleAWSModule
6 + from ansible.module_utils.ec2 import (

camel_dict_to_snake_dict,
7 ec2_argument_spec)
8 ----------------------------------------------
9 Ground Truth: "These imports aren’t needed but you

will need ‘camel_dict_to_snake_dict‘ from ‘
ansible.module_utils.ec2‘"

10

11 Recommended Comment: "Sorry, use ‘
camel_dict_to_snake_dict‘ from ‘ansible.
module_utils.ec2‘"

Listing 2. Example of library-level code change

III. BACKGROUND

In this section, we describe the important concepts that will
be required to follow the rest of the paper.

A. Modern Code Review

In MCR, a code author submits a changed code to im-
plement new features or fix bugs in the old version. Let us
denote the original and updated codes as C0 and C1. Once
the changed code (D : C0 → C1) is ready for review, the
author creates a pull request with the code review tool (e.g.,
GitHub) and invites peers (a.k.a., reviewers) for the review.
Then, the reviewers inspect the changed code and provide
feedback (i.e., review comments) on the specific parts of it.
Based on these comments, the author submits a new version
of the changed code C2. Note that the review process is not



Fig. 1. An overview of our proposed approach– RevCom

finished yet. The reviewers can further provide feedback on
the changed code C2, and the authors might revise the code
again. This process repeats until the submitted code Cn has
sufficient quality to be integrated into the code repository.
However, manually writing the review comments could require
reviewers’ significant time and cognitive effort. Thus, our
technique automatically recommends review comments which
could reduce the time and effort required for MCR.

B. Word Embedding

Word embedding is a distributed representation of words
in a vector space model where semantically similar words
appear close to each other [26]. An embedding function
E : X → Rd takes an input X in the domain X and produces
its vector representation in a d-dimensional vector space [27].
The vector is distributed in the sense that a single value in the
vector does not convey any meaning; rather, the vector as a
whole represents the semantics of the input word [28]. Word
embedding overcomes many limitations of other vector space
models (VSM), such as the sparse representation problem of
one-hot encoding or the vocabulary mismatch issue of TF-
IDF. Several techniques employ neural networks to learn richer
word representations, such as Word2Vec [29]. It uses fully
connected layers to understand the context surrounding each
word and generates a vector for each word. In our work, we
train a Word2Vec model using GitHub CodeSearchNet [30]
dataset to generate embeddings for our analysis.

IV. APPROACH

In this section, we present our proposed technique, RevCom,
that recommends relevant review comments by leveraging
structured information from the source code. Figure 1 shows

an overview of our technique, which consists of four steps.
We describe the details of each step below.

A. Structured Information Extraction

RevCom uses a structured information retrieval-based ap-
proach to recommend relevant code review comments. Since
IR-based techniques do not require any training phase, it
significantly reduces computational time compared to DL-
based alternatives [13, 21]. RevCom takes a diff and corre-
sponding source code document as input (Step a, Figure 1).
A diff hunk is a sequence of code that represents the code
changes between two versions of the same source file [15]. It
follows a structured format containing the number of changed
lines (denoted by @...@), added lines (denoted by +), deleted
lines (denoted by −), and other contextual information (e.g.,
surrounding lines of added and deleted lines) from the source
code (see Listing 1, 2). We extract added lines, deleted lines
and contextual information from the diff as changed code
fragment for the corresponding review comments. In our
dataset, the changed code has a median of 14 lines.

Rahman et al. [31] suggest that experience with structured
information from source code (e.g., library information) could
help code reviewers write better review comments. Although a
diff could contain the changed library information, unchanged
libraries from the source code can provide additional contexts
(e.g., existing dependencies), which could be valuable for code
reviews. We thus extract the changed and unchanged library
information (e.g., import statement or package name) from the
diff and source code, respectively.

Li et al. [32] uses file path similarity to determine a
reviewer’s expertise and then recommend the relevant code
reviewers. On the other hand, Hong et al. [13] suggests



that similar code segments (e.g., method bodies) are likely
to receive similar code review comments. Inspired by these
works, we hypothesize that similar source files are likely to
receive similar review comments. Thus RevCom also uses file
path information to recommend the relevant review comments.

B. Code Token Vectorization

To facilitate similarity calculation, we represent all changed
code fragments, library information, and file paths in TF-IDF
vector space. To do so, we perform a code tokenization to
break each changed code fragment, import statement, and file
path into a sequence of code tokens. As suggested by Rahman
et al. [33], we remove punctuation characters (except ‘+’ and
‘−’) to ensure that the code tokens are not artificially repet-
itive. After that, we convert the sequence of tokens into the
frequency vector of code tokens using the TfidfVectorizer func-
tion of scikit-learn library (Step b, Figure 1). Since our studied
programming languages are case-sensitive, we neither convert
them to lowercase nor use any normalization technique (e.g.,
lemmatization and stemming) to reduce the inflectional forms.

C. Structured Information Retrieval

Source code contains both structured (e.g., methods, li-
brary information) and unstructured (e.g., code comments)
items. Our approach extracts three structured items from three
different sections of the source file – changed code, file
path, and library information. To leverage all three structured
items, we perform separate searches for each based on their
lexical similarity score. For each single instance (e.g., code
change), we first formulate three different queries using the
structured items. Then we search for similar vectors in the
corpus based on their lexical similarity. To calculate the lexical
similarity between the query and corpus, we use the BM25
similarity score. BM25 is a probabilistic framework which
overcomes several limitations of TF-IDF similarity, such as
term saturation and document length issue [34]. It calculates
the lexical similarity between two documents (e.g., structured
items between two code changes).

We perform a weighted sum of the similarity scores for all
three structured items using Equation 1 (Step c, Figure 1).
To generate an optimized weight for each structured item, we
follow an existing algorithm by Tian et al. [35].

LexSim(Q,T ) =
∑
qϵQ

wq ·BM25(q, Tq) (1)

Here, Q is the set of query instances, T is a single instance
from the corpus, Tq is the same structured item as q from T ,
BM25(q, Tq) is the BM25 similarity between q and Tq , and
wq is the optimized weight for query term q. This weighted
sum approach prioritizes a query term over others, even if
the term is small in size (e.g. library information). Since
context makes certain query terms more important than others,
the weighted sum approach performs better than a simple
arithmetic sum.

Based on this combined similarity score between query
and corpus, we rank top-N changed code fragments from the

corpus, which have the highest similarities with the query.
Following relevant studies from the literature [13, 15], we use
N = 10 in our experiment. We thus retrieve the top-10 similar
changed code fragments from the corpus.

D. Review Comment Recommendation

Review comments associated with the retrieved changed
code fragments might be relevant for a given changed code
(e.g., query instance). However, the lexical similarity calcu-
lated above (Section IV-C) does not consider the actual order
of code tokens. The order of code tokens in retrieved changed
code fragments could be different from the query changed
code fragment, which could render the similarity measure
spurious. For example, in a function, the order of parameters
such as a, b and b, a are not the same. Therefore, it is important
to consider the order of the tokens to compute the similarity.

We thus use Gestalt Pattern Matching (GPM) to calculate
the textual similarity between the top-N retrieved changed
code fragments and the query changed code fragment follow-
ing an existing study [13]. This similarity measure calculates
the textual similarity between the two documents while pre-
serving the order of the tokens. Given a query changed code
fragment and top-N retrieved changed code fragments, GPM
first searches for the longest common substring (LCS) between
the two changed code fragments. Then it uses the following
equation to calculate their similarity.

GMP (diffQ, diffR) =
2×NC

NQ +NR
(2)

Here, NQ is the number of characters in the query changed
code fragment, NR is the number of characters in the retrieved
changed code fragment, and NC is the number of characters in
the longest common substring. Based on this textual similarity,
we again rank the top-N changed code fragments against the
query instance. Then, we collect the corresponding comments
from these changed code fragments and recommend them as
code review comments for a given changed code. (a.k.a. query
instance).

V. EXPERIMENTAL SETUP

We curate a dataset of ≈ 56K diff and review comment
pairs from eight (four Python and four Java-based) popular
projects. We evaluate the performance of RevCom using
three appropriate metrics from relevant literature – BLEU
score [24], perfect prediction, and semantic similarity [25].
We also compare the performance of RevCom with two
state-of-the-art baselines [9, 13]. In our experiments, we thus
answer the four research questions as follows.

• RQ1: How does RevCom perform in recommending
review comments in terms of different evaluation metrics?

• RQ2: How do different structured information influence
the performance of RevCom?

• RQ3: How do different vectorization techniques influence
the performance of RevCom?

• RQ4: Can RevCom outperform the state-of-the-art IR-
based and DL-based techniques?



TABLE I
STATISTICS OF THE EXPERIMENTAL DATASET

PL Repository #PR #Total
Comments

#Reviewer
Comments

#Filtered
Reviewer

Comments

#Review Comments
for Python /

Java Files
Ansible 48371 59142 43080 31095 16608
Keras 5777 6164 4347 3025 1729
Django 16366 48280 35871 24644 13021

Python

Youtube-dl 4788 8723 6325 4514 4182
Springboot 5500 3979 2598 1786 934
Elasticsearch 61060 69303 47109 22930 9682
Kafka 13062 97402 47109 32864 9437

Java

RxJava 3744 4689 3146 2000 475
Total 297,612 189,585 122,858 56,068

A. Dataset Construction

To conduct our experiments, we curate a dataset of ≈ 56K
diff and review comment pair from GitHub5 using its REST
API. We first collect the top 20 Java and the top 20 Python
repositories based on their star count from GitHub [36, 37].
In order to ensure the quality of our dataset, we then sort
the projects by the number of pull requests and filter out
projects with less than 1500 pull requests. As discussed in
section III-A, pull requests contain the code change for the
review and represent the activity or relevance of a project.
This filtration keeps only the active projects and removes
forked repositories, as the pull requests are not inherited [9].
After this filtration process, we find four Java and four Python
repositories with more than 1500 pull requests. For each
selected project, we create a GitHub API crawler to collect
all the diff, source code, and corresponding reviews. We run
the crawler and collect a total of ≈ 297K comments and other
associated meta-information (e.g., pull request and commit
information) to construct the initial dataset. Note that the
comments we collect in this step include both reviewers’ and
the authors’ comments.

To further ensure the quality of our dataset, we perform
three filtration steps. We find that ≈ 64% comments in our
initial dataset are not code review comments (e.g., submitted
by the pull request authors). Since our goal is to recommend
code review comments, we first carefully exclude the non-
reviewer comments, which results in ≈ 189K review com-
ments in our dataset. Similar to prior studies [15, 38], we
also filter out trivial or short comments (e.g., “nice”, “thank
you”, “LGTM”), which results in ≈ 122K review comments.
Since RevCom leverages various structured information to
recommend relevant review comments, it requires the source
code file to extract the file path or library information. We
thus eliminate the reviews that are related to documentation
or other kinds of source files (e.g., .md or .rst files). Finally,
our dataset contains ≈ 56K review comments, their associated
diff, and source files. The summary statistics of our dataset are
shown in Table I.

Once we complete the filtration and have a refined dataset,

5Accessed: October 12, 2022

we split it into corpus and query. Similar to earlier work [13],
we keep 70% of the instances for corpus and the remaining
as the query. If multiple comments are made against the
same changed code of a diff, we consider these comments as
separate instances. However, to handle the overlapped between
the query and corpus set, we carefully keep the query instances
different from the corpus instances during the dataset split.

B. Embedding Generation

In this work, we adopt Word2Vec [29] – a popular algorithm
to generate word embedding for our experiment. There are
quite a few pre-trained Word2Vec-based word embeddings
available for reuse. However, these word embeddings are
trained on natural language, which might not be able to capture
semantics in the source code [39]. Therefore, we train a
Word2Vec model using GitHub CodeSearchNet [30] dataset
and use the word embedding for our analysis. CodeSearchNet
contains ≈ 6M methods written in popular programming
languages accompanied by natural language documentation.

The Out-of-Vocabulary (OOV) issue is common in code-
related task [40–43] as source code contains not only typical
API methods but also randomly-named tokens such as class
names and variable names. Although word-level embeddings
can represent the semantics of tokens in the source code, the
OOV issue still exists since low-frequency words are discarded
during the training of the Word2Vec model. To mitigate the
OOV issue, we use a RoBERTa tokenizer [44]. This tokenizer
leverages Byte-Pair Encoding (BPE) subword tokenization,
which splits a word into a sequence of frequently occurring
subwords [45]. Since the vocabulary contains all letters and
common subwords, it can address the OOV issue. Moreover,
prior studies also show that BPE also handles large vocabulary
issues, which is a common concern in Natural Language
Processing (NLP) for prediction [13, 46].

C. Evaluation Metrics

To evaluate the performance of our proposed approach, we
use three different metrics – BLEU score [24], perfect predic-
tion, and semantic similarity [25]. These evaluation measures
were also used by the relevant studies [9, 13, 18, 28, 39, 41],
which justify our choice. We report all metric scores in terms
of percentage. We define these metrics as follows.



1) Bi-Lingual Evaluation of Understanding (BLEU):
BLEU score [24] is a widely used textual similarity metric
with significant use in the software engineering context [9, 13,
18, 28, 41, 43]. BLEU score calculates the similarity between
the recommended reviews and the ground truth reviews in
terms of their n-gram precisions as follows.

BLEU = BP · exp

(
N∑

n=1

wn log(pn)

)
(3)

Here, pn is the ratio between overlapping n-grams (from
both recommended and ground truth reviews) and the total
number of n-grams in the recommended reviews, and wn is the
weight of the n-gram length. Following the existing studies [9,
13, 28], we use N = 4 and wn = 0.25 for all n. The brevity
penalty, BP , penalizes the recommended review comments
that are too small and ensures a moderate length of comments.

2) Perfect Prediction (PP): Perfect prediction measures the
exact match between recommended review comments and
ground truth review comments. Previous studies [13, 16] use
perfect prediction to evaluate the performance of their code
review recommendation approach. In our study, we use four
different top-k candidates (i.e., k=1, 3, 5, 10) for code review
recommendations. For a given changed code fragment, if one
of the k-recommended review comments matches the ground
truth reviews, we consider that our approach achieves the
perfect prediction in the review recommendation.

3) Semantic Similarity (SS): Although the BLEU score is a
widely adopted metric for measuring textual similarity, it omits
the semantic meaning of the text. For instance, the BLEU
score considers “this is good” and “this is nice” as different
3-grams. Haque et al. [25] conduct a human study to identify
which metric captures the perception of human raters the best.
According to them, Sentence-BERT encoder [47] with cosine
similarity has the highest correlation with the human-evaluated
similarity. Therefore, we use stsb-roberta-large6 pre-
trained Sentence-BERT model to generate the embedding for
the input text. We compute the semantic similarity between
the recommended and ground truth reviews as follows.

SemSim(G,R) = cos(sbert(G), sbert(R)) (4)

Here, sbert(X) is the numerical representation from
Sentence-BERT for any input text X , G is the ground truth
review, and R is the recommended review.

D. Baseline for Comparison

We compare the effectiveness of our approach with the state-
of-the-art IR-based technique for code review recommendation
– CommentFinder [13]. To replicate this technique, we use
the replication package provided by the original author [13].
Given a changed method, CommentFinder recommends review
comments based on method-level similarity. On the other hand,
RevCom uses different structured information from the source
code to recommend the relevant review comments. To make

6https://bit.ly/3dR9mxD

a fair comparison between these two techniques, we needed
the changed methods associated with the review comments in
our dataset. Similar to prior study [13], we thus extract the
changed methods from the relevant source file. We found that
≈ 48% of the review comments discuss the changes outside
of a method. Thus, we keep the changed methods field empty
for those comments, resulting in ≈ 52% method-level code
changes in our dataset.

We also compare the effectiveness of RevCom with
the state-of-the-art DL-based technique for code review
generation– CodeReviewer [9]. Given a code diff, CodeRe-
viewer generates review comments relevant to the diff. To
replicate this technique, we use the pre-trained model provided
by the original author [9] and fine-tuned it using our dataset.
We fine-tuned their model on NVIDIA V100 GPUs with 32GB
of memory. We use the same hyper-parameter settings as
provided in their replication package [9]. The average model
training time is one day for the within-project settings and two
days for cross-project settings.

VI. STUDY RESULT

In this section, we discuss the experimental results and
answer our research questions.

Answering RQ1 – Performance of RevCom: Table II
shows the performance of RevCom in terms of BLEU score,
perfect prediction, and semantic similarity. We evaluate its
performance based on four top-k values (k = 1, 3, 5, 10),
where k is the number of recommended review comments for
a given changed code fragment.

From Table II, we see that RevCom achieves an average
BLEU score of 14.84% when the top-k candidate is 1. Inter-
estingly, for the top 10 candidates, the average BLEU score
of the recommended reviews improves up to 26.63%, which
is promising. According to Google’s AutoML Translation
documentation, such a BLEU score indicates that the review
comments can deliver the actual intent of reviewers regarding
the code change while containing minor grammatical issues.

Recommended review comments from RevCom also have
a perfect prediction of 2.39% when the top-k candidate is 1.
This score improves up to 3.39% when the top-k candidate
is 10. Since RevCom recommends the review comments
from the top 10 candidates, the improved perfect prediction
might be explainable. Furthermore, we see that recommended
review comments from RevCom have an average semantic
similarity of 31.03% when the top-k candidate is 1. This
score improves up to 46.24% when the best among the top-
10 recommended reviews is considered. Such a high semantic
similarity score indicates that recommended review comments
from Revcom have a major semantic overlap with the actual
review comments from the reviewer. All these statistics are
highly promising and demonstrate the potential of our ap-
proach in recommending relevant code review comments.

While our approach performs well for the within-project
setting, we also evaluate the performance of RevCom in a
cross-project setting. In the cross-project setting, we use the
instances from three Java projects and three Python projects



TABLE II
PERFORMANCE OF REVCOM

PL Repo Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python

Ansible 17.19 3.23 32.3 24.37 4.52 40.94 26.72 4.71 43.68 29.22 4.78 46.77
Keras 14.19 3.47 28.22 20.4 4.62 37.25 23.24 4.82 40.79 26.54 5.2 44.51
Django 12.57 1.11 31.01 18.93 1.48 39.89 21.49 1.66 43.02 24.49 1.95 46.6
Youtube-dl 11.11 1.23 29.18 17.79 2.23 37.9 20.34 2.31 41.12 23.22 2.39 44.47

Java

RxJava 14.25 2.8 30.67 21.94 2.8 41.6 24.29 2.8 43.81 26.62 3.5 47.79
Kafka 15.32 1.55 33.75 22.01 2.22 42.31 24.55 2.51 45.19 27.64 2.79 48.56
Elasticsearch 13.86 1.11 31.43 20.29 1.48 40.33 22.58 1.51 43.51 25.21 1.55 46.84
Springboot 20.21 4.63 31.65 25.8 4.98 36.68 27.79 4.98 41.31 30.08 4.98 44.38
Average (%) 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

TABLE III
PERFORMANCE OF REVCOM IN CROSS-PROJECT SETTINGS

PL Dataset Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python Cross-project 8.05 0.01 25.79 11.70 0.01 33.24 13.77 0.01 36.71 16.49 0.02 40.57
Java Cross-project 8.56 0.00 25.95 14.14 0.03 35.15 16.71 0.03 38.62 19.55 0.03 42.42

Average (%) 8.30 0.003 25.87 12.92 0.004 34.19 15.24 0.01 37.67 18.02 0.01 41.49

as the corpus and the remaining two projects for evaluation.
To avoid any bias in this project selection, we apply a cross-
validation approach and report the average performance for
four different cross-validation results. From Table III, we see
that even though the performance of RevCom decreases in the
cross-project setting, it is still promising, especially in terms
of the semantic similarity metric. For the top 1 candidate,
RevCom achieves an average BLEU score of 8.30%, which
is ≈ 44% lower than the within-project setting. According to
existing literature [28, 48], a performance drop in the cross-
project setting is expected. However, we see interesting results
in the case of the semantic similarity score. That is, for the top
1 candidate, recommended review comments from RevCom
achieve a semantic similarity score of 25.87% in the cross-
project setting. Even though it is ≈ 17% lower than the
within-project setting, this drop is not as significant as the
BLEU score. Such findings indicate that recommended review
comments from RevCom might express similar information
but with different words in the cross-project setting.

To verify this case, we manually compare 100 randomly
sampled recommended reviews from RevCom (cross-project
setting) with the ground truth reviews. The first and second
authors annotate each pair as one of similar, partially similar
and dissimilar categories. We also perform an agreement anal-
ysis and find an almost perfect agreement (0.95 kappa value)
between the two annotators. Then, the first and second authors
sit together and resolve the disagreement through discussions.
We find that 16% of review pairs are semantically similar,
while 37% are partially similar. Thus, 53% of recommended
reviews from RevCom discuss the same changes with different
phrases, which might cause the BLEU score to be low. For
instance, for a particular code change, RevCom recommends
– “We would like to avoid wildcard import in the code
base.”, whereas the ground truth is “Please don’t use star
imports.”. Although the recommended review comment and
ground truth review comment suggest the same change, they

have a semantic similarity of 0.51 and their BLEU score is
only 0.16. Such a phenomenon might explain the low BLEU
score and comparatively high semantic similarity score for the
cross-project setting of RevCom.

Summary of RQ1: RevCom can recommend reviews that
can express the intent of the reviewers regarding the code
change. It also shows promising results in terms of three
evaluation metrics. Interestingly, it maintains a promising
semantic similarity score even in the cross-project setting.

Answering RQ2 – Role of structured information in
RevCom: In this experiment, we analyze the impact of struc-
tured information from source code on review comment rec-
ommendations. First, we evaluate the performance of RevCom
with each of three structured items – changed code fragment,
library information and file path. We then combine these
structured items and evaluate the performance of RevCom.
Such an experiment helps us understand the contribution of
individual structured items toward RevCom.

We first use only the file path as input for RevCom. From
Table IV, we see that the average BLEU score, perfect pre-
diction and semantic similarity of RevCom reduce by 24.80%,
70.29%, and 13.27%, respectively, when the top-k candidate
is 1. The performance of RevCom also drops when the top
3, 5, and 10 results are analyzed. Since the file path only
contains the name and path of the source file rather than any
code change, the low performance of RevCom with the file
path might be explainable.

We further evaluate the performance of RevCom using only
the library information as input. From Table IV, we see that
the average BLEU score, perfect prediction, and semantic
similarity of RevCom reduce by 15.90%, 49.79%, and 2.15%,
respectively, while recommending reviews from the top 1
candidate. We also observe a performance drop of RevCom
when the top 3, 5, and 10 candidates are used for review
recommendations. Interestingly, library information improves



TABLE IV
ROLE OF STRUCTURED INFORMATION IN REVCOM

Approach Structured
Information

Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

RevCom

file 11.16 0.71 28.70 17.87 1.18 37.32 20.86 1.46 40.74 24.34 1.93 43.96
library 12.48 1.2 30.36 19.43 1.76 38.04 22.21 2.20 41.05 25.49 2.80 44.94
changed code 13.96 2.10 30.41 20.75 2.66 38.85 23.27 2.80 41.72 26.36 3.18 46.05
all (%) 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24

TABLE V
ROLE OF DIFFERENT VECTORIZATION IN REVCOM

PL Approach Vectorization
Technique

Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

Python

RevCom

TF-IDF 13.77 2.26 30.18 20.37 3.21 39.01 22.95 3.38 42.15 25.87 3.58 45.59
word2vec + Cosine 14.28 2.44 30.98 20.95 3.45 40.27 23.92 3.58 43.17 26.89 3.88 47.83
Improvement (%) 3.70 7.96 2.65 2.85 7.48 3.23 4.23 5.92 2.42 3.94 8.38 4.91

Java
TF-IDF 15.91 2.52 31.88 22.51 2.87 40.23 24.81 2.95 43.46 27.39 3.21 46.89
word2vec + Cosine 16.52 2.76 32.89 23.38 3.12 41.59 25.89 3.19 44.63 28.15 3.46 48.96
Improvement (%) 3.83 9.52 3.17 3.86 8.71 3.38 4.35 8.14 2.69 2.77 7.79 4.41

the performance by 11.83%, 69.01%, and 5.78% compared to
file paths in terms of BLEU score, perfect prediction, and
semantic similarity, respectively, when the top-k candidate
is 1. Library information comprises import statements that
capture important code tokens (e.g., class names, library
names) relevant to a source file, whereas the file path contains
only the name and path of the file. Thus library information
might contain more salient information, and hence, the higher
performance might be explainable.

Finally, we evaluate the performance of RevCom using
changed code fragments from diff as input. From Table IV,
we see that the average BLEU score, perfect prediction,
and semantic similarity of RevCom reduce only by 5.92%,
12.13%, and 2.01%, respectively, for the top-1 candidate
in the review recommendation. We also observe a similar
performance drop of RevCom when the top 3, 5, and 10
candidates are used for recommendation. Interestingly, the
metrics score from only using changed code fragments is
significantly closer to RevCom than that of only file path
or library information. Li et al. [9] show that diff can help
better understand the structure of the code changes. It also
contains more information about the changed code than file
path or library information. Therefore, a performance close
to RevCom by using only changed code fragments from diff
might be explainable.

In summary, we see different amounts of performance
drops in RevCom while evaluating separately with file paths,
library information or changed code fragments. However, our
approach performs best when all the structured items are
combined.

Summary of RQ2: Structured items have a major contri-
bution to the performance RevCom. Among them, changed
code from diff contributes the most to the performance of
RevCom. Furthermore, they are most effective when all
three items are used together.

Answering RQ3 – Role of different vectorization tech-
niques in RevCom: In this experiment, we analyze the

impact of different vectorization techniques in recommending
review comments. In particular, we evaluate the performance
of RevCom with two vectorization techniques – TF-IDF and
word embedding. To generate the word embedding, we use a
popular technique named Word2Vec [29].

From Table V, in the context of Python-based projects, we
see that the word embedding improves the average BLEU
score, perfect prediction, and semantic similarity of RevCom
by 3.70%, 7.96%, and 2.65%, respectively, when the top-k
candidate is 1. We also observe performance improvement
when the top 3, 5, and 10 candidates are used for review
comment recommendations. Similarly, for Java-based projects,
word embedding improves the performance of RevCom by
3.83%, 9.52%, and 3.17% in terms of BLEU score, perfect
prediction, and semantic similarity, respectively, when the top-
k candidate is 1. The performance of RevCom also improves
when the top 3, 5, and 10 candidates are analyzed for re-
view recommendations. According to the existing study [15],
word embedding can capture the semantics in the changed
code effectively. We also use subword tokenization [45] to
overcome the OOV issues of word embedding. Thus, the
performance improvement of RevCom with word embedding
might be explainable.

However, word embedding-based vectorization requires 5X
time compared to TF-IDF vectorizer to calculate the similarity
between the query vectors and corpus vectors. That is, in terms
of cost-benefit analysis, word embedding-based vectorization
might not be a feasible choice. Since the goal of RevCom is to
reduce the time and effort for both reviewers and the changed
code submitter, we keep the TF-IDF vectorizer as the default
vectorization technique in RevCom, given the above analysis.
Still and all, as demonstrated above, our approach has the po-
tential to perform even better with more sophisticated vectors.

Summary of RQ3: Word embedding-based vectorization
can improve the performance of RevCom. However, it
requires 5X time compared to the TF-IDF vectorizer, which
makes it an infeasible choice for our approach.



TABLE VI
PERFORMANCE COMPARISON WITH THE BASELINES

Approach Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

CommentFinder 9.93 1.77 26.12 17.25 1.77 37.24 20.08 1.87 39.77 22.85 2.17 43.05
RevCom 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24
Improvement (%) 49.45 35.03 18.80 24.29 71.75 6.36 18.92 68.98 7.62 16.54 56.22 7.41
Code Reviewer 13.95 2.17 29.87 17.35 2.66 35.86 19.97 3.01 39.35 22.94 3.26 43.18
RevCom 14.84 2.39 31.03 21.44 3.04 39.61 23.88 3.16 42.80 26.63 3.39 46.24
Improvement (%) 6.38 10.14 3.88 23.57 14.29 10.46 19.58 4.98 8.77 16.09 3.99 7.09

TABLE VII
PERFORMANCE COMPARISON WITH THE BASELINES IN CROSS-PROJECT SETTINGS

Approach Top-1 Top-3 Top-5 Top-10
BLEU PP SS BLEU PP SS BLEU PP SS BLEU PP SS

CommentFinder 6.11 0.00 24.43 12.72 0.00 33.07 14.88 0.00 36.3 17.86 0.00 40.74
RevCom 8.30 0.00 25.87 12.92 0.00 34.19 15.24 0.01 37.67 18.02 0.01 41.49
Improvement (%) 35.84 0.00 5.89 1.57 0.00 3.39 2.42 0.00 3.77 0.90 0.00 1.84
Code Reviewer 10.76 0.01 29.62 12.86 0.01 34.11 14.19 0.02 36.77 16.46 0.03 40.68
RevCom 8.33 0.00 25.87 12.92 0.00 34.19 15.24 0.01 37.67 18.02 0.01 41.49
Improvement (%) 0.00 0.00 0.00 0.47 0.00 0.23 7.40 0.00 2.45 9.48 0.00 1.99

Answering RQ4 – Comparison with the existing base-
lines: In this research question, we compare RevCom with
existing techniques from the literature and investigate whether
RevCom can outperform them in terms of various evaluation
metrics. To the best of our knowledge, CommenFinder [13] is
the only IR-based technique to recommend review comments,
whereas CodeReviewer [9] is the state-of-the-art DL-based
technique to generate review comments. We thus compare
RevCom with two baselines CommentFinder and CodeRe-
viewer in our experiment.

Table VI shows the comparison between RevCom and
two baselines in terms of BLEU score, perfect prediction,
and semantic similarity. We find that RevCom outperforms
CommentFinder in BLEU score, perfect prediction and se-
mantic similarity with 16.54% – 49.45%, 35.03% – 71.75%
and 6.36% – 18.80% margins, respectively, when top 1, 3,
5, and 10 candidates are used for review comment recom-
mendation. According to Shapiro-Wilk test [49], the metrics
score obtained from each technique is normally distributed.
We thus perform paired Student’s t-test [50] to understand the
performance difference between any two techniques. Accord-
ing to this test, RevCom performs significantly higher than
CommentFinder, i.e., p-value= 5.17e−06 < 0.05, Cohen’s d
= 0.93 (large) for all three metrics. The dataset for evaluating
the baseline contains ≈ 48% non-method-level changes (see
Section V-D). Since RevCom leverages different structured
information from the diff, library, and file path information, the
improved performance of our approach might be explainable.

Furthermore, From Table VI, we see that RevCom out-
performs the DL-based baseline – CodeReviewer in BLEU
score, perfect prediction and semantic similarity with 6.38%
– 23.57%, 3.99% – 14.29% and 3.88% – 10.46% margins
respectively when top 1, 3, 5, and 10 candidates are used for
review comment recommendation. According to Student’s t-
test, the performance of RevCom is also significantly higher

than CodeReviewer, i.e., p-value= 0.001 < 0.05, Cohen’s
d = 0.64 (medium) for all three metrics. Thus our findings
further confirm the finding of Hong et al. [13] that IR-based
techniques perform better than DL-based techniques for code
review recommendation.

Although existing studies do not evaluate the performance
of our selected baseline techniques in a cross-project setting,
we compare RevCom with the baselines using a cross-project
setting. In this cross-project setting, we use the instances from
three Java-based projects as the corpus and the remaining one
for evaluation. To avoid any bias in this project selection,
we apply a cross-validation approach and report the aver-
age performance for eight different cross-validation results.
From Table VII, we see that the performance of RevCom,
CommentFinder and CodeReviewer drops significantly in the
cross-project setting. However, RevCom outperforms Com-
menFinder in BLEU score and semantic similarity with 0.90%
– 35.84% and 1.84% – 5.89% margins, respectively, when
top 1, 3, 5, and 10 candidates are used for review comment
recommendation. On the other hand, RevCom also outper-
forms CodeReviewer in BLEU score and semantic similarity
with 0.47% – 9.48% and 0.23% – 2.45% margins, respec-
tively, when top 3, 5, and 10 candidates are used for review
comment recommendation. However, we see no improvement
in RevCom over CodeReviewer when the top-1 candidates
are used for review comment recommendations. According
to statistical tests, the performance of RevCom is also sta-
tistically significant compared to the baseline techniques. For
CommentFinder, p = 0.007 < 0.05 and Cohen’s d = 0.31
(small), where for CodeReviewer, p = 0.02 < 0.05 and
Cohen’s d = 0.21 (small).

Although the performance of RevCom and baselines drops
in the cross-project setting, RevCom still shows better perfor-
mance than the baselines in terms of two similarity metrics.
Thus, our idea of leveraging structured information has high



potential in recommending relevant code review comments.

Summary of RQ4: RevCom outperforms the IR-based and
DL-based baselines by up to 49.45% and 23.57% margins
in BLEU score respectively in within-project settings. In
cross-project settings, it also outperforms both baselines
by up to 35.84% and 9.48% margins in the BLEU score.

VII. RELATED WORK

Review comments are one of the main building blocks
of modern code reviews (MCR). Prior studies found that
review comments are beneficial for finding software defects
or designing impactful changes in the source code [1, 51–
53]. Existing studies on automated code review focus on code
review generation and code review recommendation.

Review Generation: Several existing approaches [9, 16]
use neural machine translation (NMT) to generate code re-
view comments. Tufano et al. [16] pre-trained a Transformer
model [54] for automating the code review activities. How-
ever, they did not integrate the changed code into the pre-
trained model. Furthermore, their pre-training data is not
directly related to code reviews. Recently, Li et al. [9] pro-
pose CodeReviewer– a pre-train encoder-decoder transformer
model to automate different code review activities. Unlike the
previous work, CodeReviewer is pre-trained on a large code
review dataset, consisting of diff hunks and review comments.
Although existing approaches show the potential of generating
code reviews using NMT, they require specialized computing
resources (e.g., 16 × 40GB GPU [18]) and long computing
time (e.g., 12 days of training time [18]), which might not
always be available. Different from these approaches, we
propose an IR-based approach to recommend relevant code
reviews for any code change using structured information re-
trieval. We consider CodeReviewer as a baseline and compare
it with RevCom using experiments. Please consult Section VI–
RQ4 for a detailed comparison between the two techniques.

Review Recommendation: Prior approaches use both deep
learning and information retrieval (IR) based techniques to rec-
ommend relevant review comments for a given code change.
Gupta and Sundaresan [14] propose the LSTM-based model
DeepMem, which recommends review comments based on
existing code reviews and code changes. Siow et al. [15] em-
ploys an attention-based deep neural network that captures the
semantics from both source code and reviews to recommend
relevant review comments. They represent the semantics in
the source code and review comments using multi-level word
embedding. They show that their technique can mitigate the
out-of-vocabulary problem [40, 41, 43]. Recently, Hong et al.
[13] propose an IR-based technique – CommentFinder, which
recommends the review comments based on the method-level
similarity. However, their approach overlooks the structured
information in code change and recommends reviews only
for the method-level change. Their work serves as our base-
line, and we compare our work with theirs experimentally
(Table VI, RQ4). Unlike the prior approach, our technique,
RevCom, leverages various code-level changes (i.e., both

method and non-method-level changes) and performs struc-
tured information retrieval to recommend relevant code review
comments, which makes our work novel.

VIII. THREATS TO VALIDITY

Threats to internal validity relate to experimental errors
and biases [35]. Replication of the existing baseline technique
could pose a threat. However, we use the replication package
provided by the original author of CommentFinder [13] and
CodeReviewer [9]. Thus, threats related to replication might
be mitigated.

The quality of the dataset and the change granularity could
impact the result of RevCom. However, we follow an existing
work [55] to perform rigorous data cleaning and filtering (e.g.,
removal of author comments) to mitigate the noise in the
dataset. Furthermore, to capture various changes in the source
code, RevCom leverages different structured information and
can recommend relevant code reviews for both method-level
and non-method-level changes. Thus, threats related to datasets
and change granularity might be mitigated.

Finally, the threat to external validity relates to the
generalizability of our work [56]. To mitigate this threat, we
evaluate RevCom using the code changes from both Java-
based and Python-based projects. As we see from Table II and
III, the performance of RevCom does not vary significantly
between Python-based and Java-based projects. Furthermore,
we evaluate the performance using both within-project and
cross-project settings. Thus threat to external validity might
be mitigated.

IX. CONCLUSION AND FUTURE WORKS

Review comments play a significant role in modern code
reviews. Manually writing code review comments requires
significant time and effort. A recent study proposes an au-
tomated IR-based approach to recommend relevant reviews
based on method similarity. However, their approach overlooks
the structured information in the code change and recommends
the reviews only for the method-level changes. In this paper,
we propose RevCom, a novel technique that uses structured
information retrieval to recommend relevant review comments.
Our technique leverages different structured information and
can recommend relevant reviews for both method-level and
non-method-level changes. We evaluate our technique using
eight (four Python + four Java) projects and three popular
metrics (i.e., BLEU score, perfect prediction, and semantic
similarity), where our technique outperforms both IR-based
and DL-based baselines by up to 49.45% and 23.57% margins
in BLEU score respectively.

In future, we will investigate how to encode different struc-
tured information from source code in a more compact and
efficient format. The idea is to keep the approach lightweight
while capturing high-quality embeddings representing the se-
mantics of code changes.



REFERENCES

[1] A. Bacchelli and C. Bird, “Expectations, outcomes, and
challenges of modern code review,” in 2013 35th ICSE
(ICSE). IEEE, 2013, pp. 712–721.

[2] M. Beller, A. Bacchelli, A. Zaidman, and E. Juergens,
“Modern code reviews in open-source projects: Which
problems do they fix?” in Proceedings of the 11th work-
ing conference on MSR, 2014, pp. 202–211.

[3] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and
J. Czerwonka, “Code reviewing in the trenches: Chal-
lenges and best practices,” IEEE Software, vol. 35, no. 4,
pp. 34–42, 2017.

[4] C. Sadowski, E. Söderberg, L. Church, M. Sipko, and
A. Bacchelli, “Modern code review: a case study at
google,” in Proceedings of the 40th ICSE: Software
Engineering in Practice, 2018, pp. 181–190.

[5] P. Thongtanunam, S. McIntosh, A. E. Hassan, and
H. Iida, “Investigating code review practices in defective
files: An empirical study of the qt system,” in 2015
IEEE/ACM 12th Working Conference on MSR. IEEE,
2015, pp. 168–179.

[6] R. Morales, S. McIntosh, and F. Khomh, “Do code
review practices impact design quality? a case study
of the qt, vtk, and itk projects,” in 2015 IEEE 22nd
international conference on software analysis, evolution,
and reengineering (SANER). IEEE, 2015, pp. 171–180.

[7] V. Balachandran, “Reducing human effort and improving
quality in peer code reviews using automatic static anal-
ysis and reviewer recommendation,” in 2013 35th- ICSE.
IEEE, 2013, pp. 931–940.

[8] C. Hannebauer, M. Patalas, S. Stünkel, and V. Gruhn,
“Automatically recommending code reviewers based on
their expertise: An empirical comparison,” in Proceed-
ings of the 31st IEEE/ACM ASE, 2016, pp. 99–110.

[9] Z. Li, S. Lu, D. Guo, N. Duan, S. Jannu, G. Jenks,
D. Majumder, J. Green, A. Svyatkovskiy, S. Fu et al.,
“Automating code review activities by large-scale pre-
training,” in Proceedings of the 30th ACM ESEC/FSE,
2022, pp. 1035–1047.

[10] X. Yang, R. G. Kula, N. Yoshida, and H. Iida, “Mining
the modern code review repositories: A dataset of people,
process and product,” in Proceedings of the 13th MSR,
2016, pp. 460–463.

[11] P. C. Rigby and C. Bird, “Convergent contemporary
software peer review practices,” in Proceedings of the
2013 9th ESEC/FSE, 2013, pp. 202–212.

[12] Y. Hong, C. K. Tantithamthavorn, and P. P. Thongta-
nunam, “Where should i look at? recommending lines
that reviewers should pay attention to,” in 2022 IEEE
SANER. IEEE, 2022, pp. 1034–1045.

[13] Y. Hong, C. Tantithamthavorn, P. Thongtanunam, and
A. Aleti, “Commentfinder: a simpler, faster, more ac-
curate code review comments recommendation,” in Pro-
ceedings of the 30th ACM ESEC/FSE, 2022, pp. 507–
519.

[14] A. Gupta and N. Sundaresan, “Intelligent code reviews
using deep learning,” in Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’18) Deep Learning Day,
2018.

[15] J. K. Siow, C. Gao, L. Fan, S. Chen, and Y. Liu, “Core:
Automating review recommendation for code changes,”
in 2020 IEEE 27th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE,
2020, pp. 284–295.

[16] R. Tufano, S. Masiero, A. Mastropaolo, L. Pascarella,
D. Poshyvanyk, and G. Bavota, “Using pre-trained mod-
els to boost code review automation,” arXiv preprint
arXiv:2201.06850, 2022.

[17] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,”
arXiv preprint arXiv:1409.0473, 2014.

[18] Y. Wang, W. Wang, S. Joty, and S. C. Hoi,
“Codet5: Identifier-aware unified pre-trained encoder-
decoder models for code understanding and generation,”
in Proc.2021 EMNLP, 2021, pp. 8696–8708.

[19] W. Fu and T. Menzies, “Easy over hard: A case study
on deep learning,” in Proceedings of the 2017 11th
ESEC/FSE, 2017, pp. 49–60.

[20] V. J. Hellendoorn and P. Devanbu, “Are deep neural
networks the best choice for modeling source code?” in
Proceedings of the 2017 11th ESEC/FSE, 2017, pp. 763–
773.

[21] Z. Liu, X. Xia, A. E. Hassan, D. Lo, Z. Xing,
and X. Wang, “Neural-machine-translation-based commit
message generation: how far are we?” in Proceedings of
the 33rd ACM/IEEE-ASE, 2018, pp. 373–384.

[22] T. Menzies, S. Majumder, N. Balaji, K. Brey, and W. Fu,
“500+ times faster than deep learning:(a case study
exploring faster methods for text mining stackoverflow),”
in 2018 IEEE/ACM 15th MSR. IEEE, 2018, pp. 554–
563.

[23] W. A. Qader, M. M. Ameen, and B. I. Ahmed, “An
overview of bag of words; importance, implementation,
applications, and challenges,” in 2019 International En-
gineering Conference (IEC). IEEE, 2019, pp. 200–204.

[24] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
in Proc.40th ACL, 2002, pp. 311–318.

[25] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan,
“Semantic similarity metrics for evaluating source code
summarization,” 2022 IEEE/ACM 26th ICPC, 2022.

[26] R. Moser, W. Pedrycz, and G. Succi, “A comparative
analysis of the efficiency of change metrics and static
code attributes for defect prediction,” in Proceedings of
the 30th ICSE, 2008, pp. 181–190.

[27] J. Cambronero, H. Li, S. Kim, K. Sen, and S. Chandra,
“When deep learning met code search,” in Proceedings of
the 2019 27th ACM Joint Meeting on European Software
Engineering Conference, 2019, pp. 964–974.

[28] P. Mahbub, O. Shuvo, and M. M. Rahman, “Explaining



software bugs leveraging code structures in neural ma-
chine translation,” 2023.

[29] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado,
and J. Dean, “Distributed representations of words and
phrases and their compositionality,” Advances in neural
information processing systems, vol. 26, 2013.

[30] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and
M. Brockschmidt, “Codesearchnet challenge: Evaluat-
ing the state of semantic code search,” arXiv preprint
arXiv:1909.09436, 2019.

[31] M. M. Rahman, C. K. Roy, and R. G. Kula, “Predict-
ing usefulness of code review comments using textual
features and developer experience,” in 2017 IEEE/ACM
14th MSR. IEEE, 2017, pp. 215–226.

[32] R. Li, P. Liang, and P. Avgeriou, “Code reviewer rec-
ommendation for architecture violations: An exploratory
study,” arXiv preprint arXiv:2303.18058, 2023.

[33] M. Rahman, D. Palani, and P. C. Rigby, “Natural soft-
ware revisited,” in 2019 IEEE/ACM 41st ICSE. IEEE,
2019, pp. 37–48.

[34] S. Robertson, H. Zaragoza et al., “The probabilistic
relevance framework: Bm25 and beyond,” Foundations
and Trends® in Information Retrieval, vol. 3, no. 4, pp.
333–389, 2009.

[35] Y. Tian, D. Lo, and J. Lawall, “Automated construction
of a software-specific word similarity database,” in 2014
Software Evolution Week-IEEE Conference on Software
Maintenance, Reengineering, and Reverse Engineering
(CSMR-WCRE). IEEE, 2014, pp. 44–53.

[36] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton,
“Suggesting accurate method and class names,” in Pro-
ceedings of the 2015 10th ESEC/FSE, 2015, pp. 38–49.

[37] M. Allamanis, H. Peng, and C. Sutton, “A convolutional
attention network for extreme summarization of source
code,” in ICML. PMLR, 2016, pp. 2091–2100.

[38] R. Tufano, L. Pascarella, M. Tufano, D. Poshyvanyk, and
G. Bavota, “Towards automating code review activities,”
in 2021 IEEE/ACM 43rd ICSE. IEEE, 2021, pp. 163–
174.

[39] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang,
M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring
the limits of transfer learning with a unified text-to-text
transformer,” JMLR, vol. 21, pp. 1–67, 2020.

[40] J. Li, Y. Wang, M. R. Lyu, and I. King, “Code comple-
tion with neural attention and pointer networks,” arXiv
preprint arXiv:1711.09573, 2017.

[41] S. Xu, Y. Yao, F. Xu, T. Gu, H. Tong, and J. Lu, “Commit
message generation for source code changes,” in IJCAI,
2019.

[42] A. Svyatkovskiy, Y. Zhao, S. Fu, and N. Sundaresan,
“Pythia: Ai-assisted code completion system,” in Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, 2019,
pp. 2727–2735.

[43] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code
comment generation,” in 2018 IEEE/ACM 26th Interna-

tional Conference on Program Comprehension (ICPC).
IEEE, 2018, pp. 200–20 010.

[44] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen,
O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov,
“Roberta: A robustly optimized bert pretraining ap-
proach,” arXiv preprint arXiv:1907.11692, 2019.

[45] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv
preprint arXiv:1508.07909, 2015.

[46] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and
A. Janes, “Big code!= big vocabulary: Open-vocabulary
models for source code,” in 2020 IEEE/ACM 42nd ICSE.
IEEE, 2020, pp. 1073–1085.

[47] N. Reimers, I. Gurevych, N. Reimers, I. Gurevych,
N. Thakur, N. Reimers, J. Daxenberger, I. Gurevych,
N. Reimers, I. Gurevych et al., “Sentence-bert: Sentence
embeddings using siamese bert-networks,” in Proc.2019
EMNLP. ACL, 2019, pp. 671–688.

[48] W. Tao, Y. Wang, E. Shi, L. Du, S. Han, H. Zhang,
D. Zhang, and W. Zhang, “On the evaluation of commit
message generation models: an experimental study,” in
2021 IEEE International Conference on Software Main-
tenance and Evolution (ICSME). IEEE, 2021, pp. 126–
136.

[49] S. S. Shapiro, M. B. Wilk, and H. J. Chen, “A com-
parative study of various tests for normality,” Journal of
the American statistical association, vol. 63, no. 324, pp.
1343–1372, 1968.

[50] R. C. Blair and J. J. Higgins, “Comparison of the power
of the paired samples t test to that of wilcoxon’s signed-
ranks test under various population shapes.” Psycholog-
ical Bulletin, vol. 97, no. 1, p. 119, 1985.

[51] C. Y. Chong, P. Thongtanunam, and C. Tantithamthavorn,
“Assessing the students’ understanding and their mistakes
in code review checklists: an experience report of 1,791
code review checklist questions from 394 students,” in
2021 IEEE/ACM 43rd ICSE-SEET. IEEE, 2021, pp.
20–29.

[52] M. V. Mäntylä and C. Lassenius, “What types of de-
fects are really discovered in code reviews?” IEEE TSE,
vol. 35, no. 3, pp. 430–448, 2008.

[53] A. Uchôa, C. Barbosa, D. Coutinho, W. Oizumi, W. K.
Assunçao, S. R. Vergilio, J. A. Pereira, A. Oliveira,
and A. Garcia, “Predicting design impactful changes in
modern code review: A large-scale empirical study,” in
2021 IEEE/ACM 18th MSR. IEEE, 2021, pp. 471–482.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” NeurIPS, vol. 30, 2017.

[55] M. Tufano, J. Pantiuchina, C. Watson, G. Bavota, and
D. Poshyvanyk, “On learning meaningful code changes
via neural machine translation,” in 2019 IEEE/ACM 41st
ICSE. IEEE, 2019, pp. 25–36.

[56] M. M. Rahman, C. K. Roy, and D. Lo, “Automatic
query reformulation for code search using crowdsourced
knowledge,” EMSE, vol. 24, no. 4, pp. 1869–1924, 2019.


