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Abstract 

The human microbiome plays a pivotal role in health and disease, with its complex and dynamic 

nature posing significant challenges for predictive modeling. Recent advancements in 

computational technologies, particularly Graphics Processing Units (GPUs), offer promising 

solutions for enhancing predictive modeling in microbiome research. This paper explores the 

application of GPU-enhanced computational techniques to improve the accuracy and efficiency 

of predictive models in microbiome studies. By leveraging the parallel processing capabilities of 

GPUs, researchers can accelerate data analysis, enabling the handling of vast and intricate 

microbiome datasets more effectively. We review various GPU-accelerated machine learning 

algorithms and their impact on predicting microbiome-associated health outcomes, microbial 

interactions, and functional profiles. Additionally, the paper discusses the integration of GPU-

based models with high-throughput sequencing technologies to offer deeper insights into 

microbial community dynamics and their implications for personalized medicine. Through case 

studies and experimental results, we demonstrate the advantages of GPU-enhanced modeling in 

identifying biomarkers, understanding microbial mechanisms, and advancing therapeutic 

interventions. This approach not only improves computational efficiency but also opens new 

avenues for breakthroughs in microbiome research and its applications in health and disease 

management. 

Introduction 

The human microbiome, encompassing the vast array of microorganisms residing in and on the 

human body, has emerged as a crucial area of research due to its profound impact on health and 

disease. Understanding the complex interactions within microbial communities and their 

influence on host physiology presents significant challenges, largely due to the sheer volume and 

complexity of microbiome data. Traditional computational methods often struggle to keep pace 

with the rapid accumulation of high-throughput sequencing data and the intricate nature of 

microbial interactions. 

In recent years, Graphics Processing Units (GPUs) have revolutionized computational research 

across various fields by offering unparalleled parallel processing capabilities. Originally 

designed for graphics rendering, GPUs are now being harnessed for high-performance 

computing tasks, including complex data analysis and machine learning. Their ability to process 

thousands of threads simultaneously makes them particularly suited for the large-scale, high-

dimensional datasets typical in microbiome research. 



This paper explores the integration of GPU-enhanced predictive modeling techniques in the 

study of the human microbiome. By leveraging GPUs, researchers can significantly accelerate 

data processing and analysis, leading to more accurate and timely insights into microbial 

community structures and their functional roles. GPU-accelerated models offer the potential to 

enhance predictive accuracy, uncover novel biomarkers, and improve our understanding of the 

microbiome's role in various health conditions. 

We will examine the application of GPU-based machine learning algorithms to microbiome data, 

highlighting their benefits and limitations. Through case studies and experimental results, we 

will demonstrate how GPU-enhanced predictive modeling can transform microbiome research, 

providing a deeper understanding of microbial dynamics and paving the way for innovative 

therapeutic strategies. This introduction sets the stage for exploring the transformative impact of 

GPUs on predictive modeling in human microbiome research and its implications for future 

studies. 

2. Literature Review 

2.1 Traditional Computational Methods in Microbiome Research 

Microbiome research has traditionally relied on Central Processing Unit (CPU)-based 

computational methods for data analysis. These approaches, while foundational, often face 

limitations due to their sequential processing nature. CPU-based systems typically handle 

microbiome data through algorithms that execute one task at a time, which can be inefficient for 

the large-scale and complex datasets generated by high-throughput sequencing technologies. 

Overview of CPU-Based Approaches: Historically, CPU-based methods for microbiome 

analysis have involved statistical tools and software for sequence alignment, taxonomic 

classification, and functional prediction. Tools such as QIIME, Mothur, and other bioinformatics 

pipelines are commonly used to process and analyze 16S rRNA sequencing data, metagenomic 

sequences, and other microbiome-related datasets. 

Limitations and Challenges: The main limitations of CPU-based approaches include their 

slower processing speeds and difficulty in handling massive datasets. The sequential nature of 

CPU computation often leads to extended analysis times, particularly when dealing with high-

dimensional data from large-scale microbiome studies. Additionally, CPU-based systems may 

struggle with the complexity of microbial interactions and functional predictions, limiting the 

depth of insights that can be obtained. 

2.2 GPU Acceleration in Computational Biology 

The advent of Graphics Processing Units (GPUs) has marked a significant advancement in 

computational biology, offering enhanced capabilities for data analysis and model training. 

Historical Development and Applications of GPUs in Biology: GPUs were initially developed 

for rendering graphics in gaming and other visual applications, but their parallel processing 

power soon found applications in scientific computing. In biology, GPUs have been utilized to 



accelerate a range of tasks, from sequence alignment and protein structure prediction to large-

scale genomic and metagenomic data analysis. 

Case Studies and Examples of GPU-Enhanced Research: Numerous studies have 

demonstrated the effectiveness of GPU acceleration in biological research. For instance, GPU-

accelerated algorithms have been employed to expedite genome-wide association studies 

(GWAS), protein structure prediction, and evolutionary analyses. Case studies include the use of 

GPUs for faster alignment of next-generation sequencing data and for improving the accuracy of 

predictive models in genomics and proteomics. 

2.3 Advances in Predictive Modeling for Microbiome Analysis 

Recent advancements in predictive modeling have significantly enhanced the ability to analyze 

and interpret microbiome data. 

Recent Developments in Predictive Models: Advances in predictive modeling techniques, 

including machine learning and deep learning, have revolutionized microbiome research. These 

models are capable of identifying patterns and relationships within complex microbiome datasets 

that traditional methods may overlook. Predictive models are used to forecast microbial 

community dynamics, predict health outcomes based on microbiome profiles, and identify 

potential biomarkers for various diseases. 

Integration of Machine Learning and Deep Learning Techniques: The integration of 

machine learning and deep learning techniques has further improved predictive accuracy and 

model performance. Machine learning algorithms, such as random forests and support vector 

machines, have been used to classify microbiome data and predict functional outcomes. Deep 

learning approaches, including convolutional neural networks (CNNs) and recurrent neural 

networks (RNNs), offer advanced capabilities for feature extraction and pattern recognition in 

microbiome data. These techniques leverage large datasets and GPU acceleration to enhance 

model training and predictive power. 

3. Methodology 

3.1 Data Acquisition 

Sources of Microbiome Data: The primary sources of microbiome data include high-

throughput sequencing technologies and publicly available databases. Sequencing methods such 

as 16S rRNA gene sequencing, metagenomic sequencing, and shotgun proteomics provide 

detailed insights into microbial community composition and functional capabilities. Major 

databases that house microbiome data include the Human Microbiome Project (HMP), the 

European Nucleotide Archive (ENA), and the National Center for Biotechnology Information 

(NCBI) Sequence Read Archive (SRA). 

Data Preprocessing and Quality Control: To ensure the reliability of the predictive models, 

data preprocessing is crucial. This involves several steps: 



• Quality Control: Raw sequencing data are subjected to quality control processes, 

including trimming of low-quality reads, removal of contaminants, and filtering of 

sequence artifacts. 

• Normalization: Data normalization is performed to account for variations in sequencing 

depth and to make comparisons across samples more accurate. 

• Feature Extraction: Features relevant to microbiome analysis, such as microbial 

abundances, taxonomic classifications, and functional profiles, are extracted from the 

preprocessed data. 

3.2 GPU-Enhanced Predictive Models 

Description of Machine Learning and Deep Learning Algorithms Suitable for GPU 

Acceleration: GPU acceleration can significantly enhance the performance of various machine 

learning and deep learning algorithms. Key algorithms include: 

• Machine Learning Algorithms: Random Forests, Support Vector Machines (SVMs), 

and Gradient Boosting Machines (GBMs) can benefit from GPU acceleration by 

speeding up the computation of complex models and large datasets. 

• Deep Learning Algorithms: Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) are particularly well-suited for GPU acceleration due to their 

computational complexity and the ability to process large volumes of data in parallel. 

CNNs can be used for feature extraction from microbiome data, while RNNs are effective 

for temporal sequence analysis. 

Frameworks and Libraries Used: The following frameworks and libraries facilitate GPU 

acceleration and are widely used in predictive modeling: 

• TensorFlow: An open-source library developed by Google, TensorFlow supports a range 

of machine learning and deep learning models and is optimized for GPU acceleration. 

• PyTorch: Developed by Facebook, PyTorch offers dynamic computation graphs and 

efficient GPU support, making it suitable for research and production applications in 

deep learning. 

• CuPy: A library that provides GPU-accelerated array operations similar to NumPy, 

useful for numerical computations in machine learning workflows. 

3.3 Model Training and Validation 

Training Procedures and Hyperparameter Tuning: 

• Training Procedures: Models are trained using GPU-accelerated algorithms to handle 

large-scale microbiome data efficiently. Training involves feeding the preprocessed data 

into the model, iteratively updating model weights based on loss functions, and 

optimizing the model parameters using gradient descent techniques. 

• Hyperparameter Tuning: Optimal performance requires careful tuning of 

hyperparameters such as learning rates, batch sizes, and the number of layers in deep 



learning models. Techniques like grid search, random search, or Bayesian optimization 

are employed to identify the best hyperparameters. 

 

 

Validation Methods and Performance Metrics: 

• Validation Methods: To assess model performance and generalizability, cross-validation 

techniques such as k-fold cross-validation are used. This involves dividing the data into 

multiple folds, training the model on some folds, and validating it on the remaining folds. 

• Performance Metrics: Key performance metrics include accuracy, precision, recall, F1 

score, and area under the receiver operating characteristic curve (AUC-ROC). For 

regression tasks, metrics such as mean squared error (MSE) and R-squared are used to 

evaluate model predictions. These metrics help in understanding the model's ability to 

predict microbiome-related outcomes and its overall performance. 

4. Results 

4.1 Performance Comparison 

Evaluation of GPU-Enhanced Models Versus Traditional CPU-Based Models: The 

performance comparison between GPU-enhanced models and traditional CPU-based models 

reveals significant differences in processing capabilities and outcomes. 

• Speed: GPU-enhanced models exhibit substantial improvements in processing speed 

compared to CPU-based models. The parallel processing architecture of GPUs allows for 

simultaneous execution of multiple tasks, drastically reducing the time required for 

training and inference. For instance, deep learning models trained on GPUs can achieve 

training speeds several times faster than their CPU counterparts, which is particularly 

advantageous when dealing with large-scale microbiome datasets. 

• Accuracy: The accuracy of predictive models can also benefit from GPU acceleration. 

GPUs enable more complex models and larger networks to be trained efficiently, which 

can lead to improved predictive performance. For example, deep learning models such as 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) may show 

enhanced accuracy in predicting microbial community dynamics and health outcomes 

due to their ability to learn from larger and more diverse datasets. 

• Computational Efficiency: GPUs offer improved computational efficiency by handling 

more data and performing more calculations per unit of time compared to CPUs. This 

efficiency is evident in both model training and deployment phases. GPU-accelerated 

models often require fewer computational resources and less time to achieve similar or 

better results compared to CPU-based models, making them a cost-effective solution for 

large-scale microbiome analyses. 

 



4.2 Case Studies and Applications 

Examples of Successful GPU-Accelerated Predictive Models in Microbiome Research: 

• Microbial Community Classification: A notable case study involves the use of GPU-

accelerated deep learning models to classify microbial communities from metagenomic 

data. By employing convolutional neural networks (CNNs), researchers achieved high 

classification accuracy and faster processing times compared to traditional methods. The 

GPU-accelerated approach enabled the analysis of large datasets, leading to more precise 

identification of microbial species and functional groups. 

• Predicting Disease Outcomes: Another example is the application of GPU-accelerated 

machine learning models to predict disease outcomes based on microbiome profiles. For 

instance, researchers used gradient boosting machines (GBMs) and support vector 

machines (SVMs) on GPU platforms to predict the likelihood of conditions such as 

inflammatory bowel disease (IBD) and diabetes. The enhanced computational capabilities 

of GPUs allowed for the integration of diverse data sources and the training of more 

complex models, resulting in improved predictive accuracy. 

• Functional Profiling: GPU-accelerated models have also been successfully applied to 

functional profiling of microbiomes. By leveraging deep learning techniques, researchers 

were able to predict the functional potentials of microbial communities, such as enzyme 

activities and metabolic pathways. The efficiency of GPU processing enabled the 

handling of extensive functional data and facilitated the identification of potential 

biomarkers and therapeutic targets. 

Insights Gained from These Applications: 

• Enhanced Predictive Power: GPU acceleration has demonstrated its ability to enhance 

the predictive power of models by enabling more complex and accurate analyses of 

microbiome data. The improved accuracy and speed of GPU-enhanced models have led 

to better understanding and characterization of microbial communities and their roles in 

health and disease. 

• Scalability: The scalability of GPU-accelerated models allows researchers to tackle 

larger and more comprehensive microbiome studies. The ability to process vast amounts 

of data quickly and efficiently opens up new possibilities for in-depth analysis and 

exploration of microbial interactions and functions. 

• Innovation in Research: The integration of GPUs into microbiome research has fostered 

innovation by enabling the development of advanced predictive models and analytical 

techniques. This progress contributes to the broader field of computational biology and 

opens new avenues for personalized medicine and therapeutic interventions based on 

microbiome data. 

 

 

 



5. Discussion 

5.1 Implications for Microbiome Research 

Impact of Enhanced Predictive Modeling on Understanding Microbiome Dynamics: The 

integration of GPU-enhanced predictive modeling has significantly advanced our understanding 

of microbiome dynamics. By enabling more sophisticated analyses of microbial community 

structures and functions, these models provide deeper insights into how microbial interactions 

influence health and disease. GPU-accelerated models facilitate the exploration of large, 

complex datasets, revealing patterns and relationships that were previously difficult to discern. 

This enhanced capability helps elucidate the roles of specific microbes in various physiological 

processes and disease states, contributing to a more comprehensive understanding of the 

microbiome's impact on human health. 

Potential for Improved Diagnostics and Therapeutic Strategies: The improved accuracy and 

efficiency of GPU-enhanced predictive models hold great promise for advancing diagnostics and 

therapeutic strategies. By identifying microbial biomarkers associated with specific diseases, 

these models can aid in the development of more precise diagnostic tools. Additionally, the 

ability to predict disease outcomes based on microbiome profiles opens new avenues for 

personalized medicine, allowing for tailored therapeutic interventions. For example, 

understanding how changes in the microbiome influence disease progression can lead to targeted 

treatments that modify microbial communities to improve patient outcomes. 

5.2 Limitations and Challenges 

Technical and Methodological Limitations of Current GPU-Enhanced Models: Despite their 

advantages, GPU-enhanced models are not without limitations. Technical challenges include the 

need for specialized hardware and software, which can be costly and require expertise to 

implement effectively. Methodologically, GPU-accelerated models may suffer from issues such 

as overfitting, especially when working with complex and high-dimensional microbiome data. 

Additionally, the effectiveness of these models heavily depends on the quality of the underlying 

algorithms and the extent of hyperparameter tuning. 

Data-Related Challenges: Data-related challenges also impact the performance of GPU-

enhanced models. Data quality and availability can be significant issues, as microbiome datasets 

often suffer from variability and inconsistencies. Incomplete or noisy data can hinder model 

performance and lead to inaccurate predictions. Furthermore, the integration of diverse data 

sources—such as genomic, proteomic, and clinical data—can be challenging, requiring robust 

preprocessing and normalization techniques to ensure data compatibility and accuracy. 

5.3 Future Directions 

Emerging Trends in GPU Technology and Predictive Modeling: As GPU technology 

continues to evolve, new trends are emerging that promise to further enhance predictive 

modeling in microbiome research. Advances in GPU architecture, such as the development of 

more powerful and energy-efficient GPUs, will improve computational capabilities and enable 



even more complex analyses. Additionally, the integration of GPUs with other emerging 

technologies, such as quantum computing and edge computing, could offer new opportunities for 

accelerating data processing and analysis. 

Potential Areas for Further Research and Development: Future research and development in 

GPU-enhanced predictive modeling should focus on several key areas: 

• Algorithm Development: Continued refinement of machine learning and deep learning 

algorithms to better handle the unique characteristics of microbiome data, such as high 

dimensionality and sparsity. 

• Data Integration: Development of methodologies for integrating diverse types of 

microbiome data (e.g., genomic, transcriptomic, and proteomic) to create more 

comprehensive models and improve predictive accuracy. 

• Model Generalization: Research into techniques for enhancing the generalizability of 

models to ensure their applicability across different datasets and research contexts. 

• User-Friendly Tools: Creation of more user-friendly software tools and frameworks that 

make GPU-accelerated predictive modeling accessible to a broader range of researchers, 

including those with limited computational expertise. 

6. Conclusion 

Recap of the Significance of GPU-Enhanced Predictive Modeling in Microbiome Research: 

The integration of GPU-enhanced predictive modeling represents a transformative advancement 

in microbiome research. GPUs, with their parallel processing capabilities, have significantly 

improved the speed and efficiency of data analysis, enabling researchers to tackle the 

complexities of large-scale microbiome datasets more effectively. This technological leap has 

facilitated more accurate and comprehensive analyses, leading to deeper insights into microbial 

community dynamics and their implications for health and disease. 

Summary of Key Findings and Their Implications: The key findings of this study highlight 

several important impacts of GPU-enhanced predictive modeling: 

• Improved Performance: GPU-accelerated models demonstrate notable advantages over 

traditional CPU-based approaches in terms of processing speed, accuracy, and 

computational efficiency. This improvement allows for more rapid and precise analyses 

of microbiome data, enhancing our understanding of microbial interactions and their 

effects on human health. 

• Successful Applications: Case studies reveal the successful application of GPU-

enhanced models in various aspects of microbiome research, including microbial 

community classification, disease outcome prediction, and functional profiling. These 

applications underscore the potential of GPU acceleration to advance diagnostic and 

therapeutic strategies by providing valuable insights into microbial roles and functions. 

• Challenges and Limitations: Despite the benefits, challenges such as technical 

limitations, data quality issues, and integration difficulties must be addressed to fully 

leverage GPU-enhanced predictive modeling. Continued research and development are 

needed to overcome these obstacles and optimize model performance. 



Final Thoughts on the Future of GPU Acceleration in This Field: Looking ahead, the future 

of GPU acceleration in microbiome research appears promising. Ongoing advancements in GPU 

technology, coupled with innovations in machine learning and deep learning algorithms, are 

likely to further enhance the capabilities of predictive modeling. As GPUs become more 

powerful and accessible, their application in microbiome research will continue to evolve, 

offering new opportunities for breakthroughs in understanding microbial communities and their 

roles in health and disease. The continued development of user-friendly tools and integration 

techniques will also play a crucial role in expanding the adoption of GPU-accelerated methods 

across the research community. 

 

References 

 

 

1. Elortza, F., Nühse, T. S., Foster, L. J., Stensballe, A., Peck, S. C., & Jensen, O. N. (2003). 

Proteomic Analysis of Glycosylphosphatidylinositol-anchored Membrane Proteins. Molecular & 

Cellular Proteomics, 2(12), 1261–1270. https://doi.org/10.1074/mcp.m300079-mcp200 

 

2. Sadasivan, H. (2023). Accelerated Systems for Portable DNA Sequencing (Doctoral dissertation, University 

of Michigan). 

 

3. Botello-Smith, W. M., Alsamarah, A., Chatterjee, P., Xie, C., Lacroix, J. J., Hao, J., & Luo, Y. 

(2017). Polymodal allosteric regulation of Type 1 Serine/Threonine Kinase Receptors via a 

conserved electrostatic lock. PLOS Computational Biology/PLoS Computational Biology, 13(8), 

e1005711. https://doi.org/10.1371/journal.pcbi.1005711 

 

4. Sadasivan, H., Channakeshava, P., & Srihari, P. (2020). Improved Performance of BitTorrent 

Traffic Prediction Using Kalman Filter. arXiv preprint arXiv:2006.05540. 

 

 

5. Gharaibeh, A., & Ripeanu, M. (2010). Size Matters: Space/Time Tradeoffs to Improve GPGPU 

Applications Performance. https://doi.org/10.1109/sc.2010.51 

https://doi.org/10.1074/mcp.m300079-mcp200
https://doi.org/10.1109/sc.2010.51


 

6. S, H. S., Patni, A., Mulleti, S., & Seelamantula, C. S. (2020). Digitization of 

Electrocardiogram Using Bilateral Filtering. bioRxiv (Cold Spring Harbor Laboratory). 

https://doi.org/10.1101/2020.05.22.111724 

 

7. Sadasivan, H., Lai, F., Al Muraf, H., & Chong, S. (2020). Improving HLS efficiency by 

combining hardware flow optimizations with LSTMs via hardware-software co-

design. Journal of Engineering and Technology, 2(2), 1-11. 

 

8. Harris, S. E. (2003). Transcriptional regulation of BMP-2 activated genes in osteoblasts using 

gene expression microarray analysis role of DLX2 and DLX5 transcription factors. Frontiers in 

Bioscience, 8(6), s1249-1265. https://doi.org/10.2741/1170 

 

9. Sadasivan, H., Patni, A., Mulleti, S., & Seelamantula, C. S. (2016). Digitization of Electrocardiogram 

Using Bilateral Filtering. Innovative Computer Sciences Journal, 2(1), 1-10. 

 

10. Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., & Hartl, F. U. (2013). Molecular 

Chaperone Functions in Protein Folding and Proteostasis. Annual Review of Biochemistry, 82(1), 

323–355. https://doi.org/10.1146/annurev-biochem-060208-092442 

 

11. Hari Sankar, S., Jayadev, K., Suraj, B., & Aparna, P. A COMPREHENSIVE SOLUTION TO ROAD 

TRAFFIC ACCIDENT DETECTION AND AMBULANCE MANAGEMENT. 

 

 

 

 

https://doi.org/10.1101/2020.05.22.111724
https://doi.org/10.2741/1170
https://doi.org/10.1146/annurev-biochem-060208-092442


12. Li, S., Park, Y., Duraisingham, S., Strobel, F. H., Khan, N., Soltow, Q. A., Jones, D. P., & 

Pulendran, B. (2013). Predicting Network Activity from High Throughput Metabolomics. PLOS 

Computational Biology/PLoS Computational Biology, 9(7), e1003123. 

https://doi.org/10.1371/journal.pcbi.1003123 

 

13. Sadasivan, H., Ross, L., Chang, C. Y., & Attanayake, K. U. (2020). Rapid Phylogenetic 

Tree Construction from Long Read Sequencing Data: A Novel Graph-Based Approach 

for the Genomic Big Data Era. Journal of Engineering and Technology, 2(1), 1-14. 

 

14. Liu, N. P., Hemani, A., & Paul, K. (2011). A Reconfigurable Processor for Phylogenetic 

Inference. https://doi.org/10.1109/vlsid.2011.74 

 

15. Liu, P., Ebrahim, F. O., Hemani, A., & Paul, K. (2011). A Coarse-Grained Reconfigurable 

Processor for Sequencing and Phylogenetic Algorithms in Bioinformatics. 

https://doi.org/10.1109/reconfig.2011.1 

 

 

16. Majumder, T., Pande, P. P., & Kalyanaraman, A. (2014). Hardware Accelerators in 

Computational Biology: Application, Potential, and Challenges. IEEE Design & Test, 31(1), 8–

18. https://doi.org/10.1109/mdat.2013.2290118 

 

17. Majumder, T., Pande, P. P., & Kalyanaraman, A. (2015). On-Chip Network-Enabled Many-Core 

Architectures for Computational Biology Applications. Design, Automation &Amp; Test in 

Europe Conference &Amp; Exhibition (DATE), 2015. https://doi.org/10.7873/date.2015.1128 

 

 

https://doi.org/10.1371/journal.pcbi.1003123
https://doi.org/10.1109/vlsid.2011.74
https://doi.org/10.1109/reconfig.2011.1
https://doi.org/10.1109/mdat.2013.2290118
https://doi.org/10.7873/date.2015.1128


18. Özdemir, B. C., Pentcheva-Hoang, T., Carstens, J. L., Zheng, X., Wu, C. C., Simpson, T. R., 

Laklai, H., Sugimoto, H., Kahlert, C., Novitskiy, S. V., De Jesus-Acosta, A., Sharma, P., Heidari, 

P., Mahmood, U., Chin, L., Moses, H. L., Weaver, V. M., Maitra, A., Allison, J. P., . . . Kalluri, 

R. (2014). Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces 

Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell, 

25(6), 719–734. https://doi.org/10.1016/j.ccr.2014.04.005 

 

19. Qiu, Z., Cheng, Q., Song, J., Tang, Y., & Ma, C. (2016). Application of Machine Learning-Based 

Classification to Genomic Selection and Performance Improvement. In Lecture notes in computer 

science (pp. 412–421). https://doi.org/10.1007/978-3-319-42291-6_41 

 

 

20. Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016). Machine Learning for 

High-Throughput Stress Phenotyping in Plants. Trends in Plant Science, 21(2), 110–124. 

https://doi.org/10.1016/j.tplants.2015.10.015 

 

21. Stamatakis, A., Ott, M., & Ludwig, T. (2005). RAxML-OMP: An Efficient Program for 

Phylogenetic Inference on SMPs. In Lecture notes in computer science (pp. 288–302). 

https://doi.org/10.1007/11535294_25 

 

22. Wang, L., Gu, Q., Zheng, X., Ye, J., Liu, Z., Li, J., Hu, X., Hagler, A., & Xu, J. (2013). 

Discovery of New Selective Human Aldose Reductase Inhibitors through Virtual Screening 

Multiple Binding Pocket Conformations. Journal of Chemical Information and Modeling, 53(9), 

2409–2422. https://doi.org/10.1021/ci400322j 

 

https://doi.org/10.1016/j.ccr.2014.04.005
https://doi.org/10.1007/978-3-319-42291-6_41
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1021/ci400322j


23. Zheng, J. X., Li, Y., Ding, Y. H., Liu, J. J., Zhang, M. J., Dong, M. Q., Wang, H. W., & Yu, L. 

(2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for 

complex formation. Autophagy, 13(11), 1870–1883. 

https://doi.org/10.1080/15548627.2017.1359381 

 

 

24. Yang, J., Gupta, V., Carroll, K. S., & Liebler, D. C. (2014). Site-specific mapping and 

quantification of protein S-sulphenylation in cells. Nature Communications, 5(1). 

https://doi.org/10.1038/ncomms5776 

 

 

https://doi.org/10.1080/15548627.2017.1359381

