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Abstract. JPEG compression brings artifacts into the compressed im-
age, which not only degrades visual quality but also affects the perfor-
mance of other image processing tasks. Many learning-based compression
artifacts removal methods have been developed to address this issue in
recent years, with remarkable success. However, existing learning-based
methods generally only exploit spatial information and lack exploration
of frequency domain information. Exploring frequency domain informa-
tion is critical because JPEG compression is actually performed in the
frequency domain using the Discrete Cosine Transform (DCT). To effec-
tively leverage information from both the spatial and frequency domains,
we propose a novel Dual-Domain Learning Network for JPEG artifacts
removal (D2LNet). Our approach first transforms the spatial domain
image to the frequency domain by the fast Fourier transform (FFT).
We then introduce two core modules, Amplitude Correction Module
(ACM) and Phase Correction Module (PCM), which facilitate interactive
learning of spatial and frequency domain information. Extensive exper-
imental results performed on color and grayscale images have clearly
demonstrated that our method achieves better results than the previous
state-of-the-art methods. Code will be available at https://github.com/
YeunkSuzy/Dual_Domain_Learning.

Keywords: JPEG Artifacts Removal · Dual-Domain Learning · Fourier
Transform

1 Introduction

JPEG [26], based on the Discrete Cosine Transform (DCT) [2], is one of the most
widely used image compression algorithms due to its extremely high compression
ratio. In JPEG, the image is divided into 8 × 8 blocks and each block is encoded
separately. The DCT is then applied to each block, followed by quantization and
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entropy coding. After these steps, we can obtain a good quality of the coded
images with a small size. However, this comes with the loss of information,
and complex artifacts inevitably appear in the compressed images. This image
degradation not only causes visual discomfort, but also affects the performance
of other image processing tasks, such as object detection, image super-resolution,
and so on.

Fig. 1. Visual comparisons. The left side of the image is the JPEG compressed image
and the right side is the image that has been reconstructed by our method.

In order to reduce the impact of JPEG compression artifacts, many methods
have been proposed. Before deep learning was widely used in computer vision
tasks, most methods solved the problem by designing a specific filter [10,23], but
they were usually limited to solving specific artifacts. In recent years, with the
rapid development of deep learning, JPEG artifacts removal methods based on
convolutional neural networks (CNNs) [31,5,7,19,16,39,28,4,14] have prevailed
and achieved better performance. However, most of the existing CNN-based
methods primarily exploit the spatial information and neglect the distinguished
frequency information. As we all know, JPEG compression actually occurs in
the frequency domain by the DCT. Thus, exploring the effective solutions for
the JPEG artifacts removal in the frequency domain is necessary.

In this paper, we explore the manifestation of JPEG compression artifacts
in the frequency domain. We can transform the spatial domain image to the
frequency domain by the fast Fourier transform (see Fig 2 (a)). Then, we re-
store the phase spectrum and amplitude spectrum separately and reconstruct
the image by applying the inverse fast Fourier transform [32]. From Fig 2 (b),
we can see that: (1) the Fourier phase spectrum preserves important visual struc-
tures, while the amplitude spectrum contains low-level features. (2) After JPEG
compression, the Fourier phase spectrum loses some high-frequency information,
while the Fourier amplitude spectrum becomes slightly blurred.

Based on the above observation, we propose a novel Dual-Domain Learning
Network (D2LNet) for JPEG artifacts removal. We address JPEG artifacts re-
moval by jointly exploring the information in the spatial and frequency domains.
In order to utilize the information in both frequency domain and spatial domain
effectively, we propose two core modules, namely Amplitude Correction Module
(ACM) and Phase Correction Module (PCM), which are composed of multiple
Amplitude Correction Blocks (ACB) and Phase Correction Blocks (PCB), re-
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Fig. 2. Fourier transform and Fourier reconstructions. From (b), we can see that: (1)
the Fourier phase spectrum preserves the important visual structures, while the am-
plitude spectrum contains low-level features. (2) After JPEG compression, the Fourier
phase spectrum loses some high-frequency information, while the Fourier amplitude
spectrum becomes slightly blurred.

spectively. Specifically, the ACM restores the amplitude spectrum of degraded
images to remove JPEG artifacts, and the PCM restores the phase spectrum
information to refine the high-frequency information. The qualitative and quan-
titative experimental results on the benchmarks show that the proposed method
is effective compared to state-of-the-art methods.

2 Related Work

2.1 JPEG Artifacts Removal

JPEG compression can be represented by a formula:

Y = D(X̂;QF ), (1)

where X̂ and Y denote the original uncompressed image and the compressed im-
age respectively, and D stands for the compression algorithm, and QF represents
the quality factor determined and used for adjusting the degree of compression.
Removing unwanted image artifacts which might appear on the compressed im-
age Y is what we want to do. Hopefully, the restored image has a much-improved
image quality, as close to X̂ as possible; that is,

X = N (Y) ≈ X̂, (2)



4 G. Yang et al.

where N means the neural network on Y to reconstruct or restore a very high-
quality image X that is close to the ground-truth image X̂.

Significant progress has recently been made in reducing JPEG artifacts through
the application of deep convolutional neural networks. ARCNN [7] is a relatively
shallow network that first uses CNN to solve this problem. RED-Net [21] designs
a deep encoding-decoding structure to exploit the rich dependencies of deep fea-
tures. RNAN [37] incorporates both local and non-local attention mechanisms
into its learning process, thereby enhancing its ability to represent complex re-
lationships within images. This approach has demonstrated promising results in
various image restoration tasks, such as image denoising, reducing compression
artifacts, and improving image super-resolution. FBCNN [16] is a flexible blind
CNN which can predict the adjustable quality factor to control the trade-off
between artifacts removal and details preservation. Some GAN-based JPEG ar-
tifacts reduction works [12,13] also have good performance because they are able
to produce more realistic details than MSE or SSIM [30] based networks.

2.2 Spatial-Frequency Interaction

There are several frequency domain learning methods [9,22,20,6,18,15] have
achieved good results in different tasks such as image classification. For JPEG
artifacts removal, learning in the frequency domain is critical because the JPEG
compression is actually performed in the frequency domain using the DCT.
MWCNN [19] uses wavelet to expand the receptive field to achieve image restora-
tion. D3 [29] introduces a DCT domain prior to facilitating the JPEG artifacts
removal. DWCNN [36] also removes the JPEG artifacts in the DCT domain.
The DCT is a special case of the FFT, and the FFT can produce an accurate
representation of the frequency domain. Although there is currently no existing
work that utilizes FFT to remove JPEG artifacts, it is worth exploring the use
of FFT for this purpose.

3 Method

In this section, we begin by presenting the fundamental characteristics of the
Fourier transform, which hold significant relevance in comprehending our re-
search. Subsequently, we provide a comprehensive elaboration on the proposed
model and its corresponding loss function.

3.1 Fourier Transform

The Fourier transform operation, denoted by F , allows us to convert an image X
from the spatial domain to the frequency domain. In our work, we independently
apply the Fourier transform to each channel of the image.

For a given image X with dimensions H×W , where H represents the height
and W represents the width, the Fourier transform F(X)(u, v) at frequency



Dual-Domain Learning For JPEG Artifacts Removal 5

Fig. 3. The architecture of our network, which consists of two main modules: the Am-
plitude Correction Module (ACM) and the Phase Correction Module (PCM). Specifi-
cally, the ACM restores the amplitude spectrum of degraded images to remove JPEG
artifacts, and the PCM restores the phase spectrum information to refine the high-
frequency information.

domain coordinates u and v is computed according to the following equation:

F(X)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

X(h,w)e−j2π( h
H u+ w

W v), (3)

It is noteworthy that the Fourier transform can be efficiently implemented using
the Fast Fourier Transform (FFT) algorithm.

After performing the Fourier transform on an image X, we can define the
amplitude and frequency components as follows:

A(X)(u, v) =
[
R2(X)(u, v) + I2(X)(u, v)

] 1
2 , (4)

P(X)(u, v) = arctan

[
I(X)(u, v)

R(X)(u, v)

]
. (5)

Here, R(X) and I(X) represent the real and imaginary parts of the Fourier trans-
form of image X. The components A(X) and P(X) correspond to the amplitude
and phase of the image, respectively.

In general, the phase component of an image captures its fundamental struc-
ture and semantic information, while the amplitude component represents low-
level details such as style. In the context of JPEG compression, the spatial
structure of the image is compromised, and high-frequency information is sig-
nificantly lost during the compression process. As a result, both the phase and
amplitude suffer varying degrees of degradation.
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Consequently, restoration in the frequency domain offers the advantage of
separating the restoration of spatial structure and high-frequency information.
Additionally, leveraging the spectral convolution theorem, image processing in
the frequency domain inherently provides a global receptive field. This charac-
teristic facilitates the capture of global information in the image.

3.2 Network Framework

Our network architecture, depicted in Figure 3, consists of two main modules: the
amplitude correction module and the phase correction module, which yield two
outputs, Xout1 and Xout2 respectively. The purpose of the amplitude correction
module is to mitigate the effects of JPEG compression, while the phase correction
module focuses on restoring the fundamental image details, bringing them closer
to the ground truth image. To define an input image Xin, we initially apply
convolution to project it into the feature space. The resulting feature map is then
passed through the amplitude correction module, resulting in the reconstructed
feature map. Subsequently, we employ SAM [33] to derive Xout1 and Xamp,
where Xamp is the output of the phase correction module. By replacing the
amplitude of Xin with that of Xout1, we obtain Xinv. We concatenate Xinv and
Xamp, transmitting them to the phase correction module for further refining
the high-frequency details of the image. Finally, we obtain the output Xout2

through channel modulation. This restoration approach effectively separates the
reduction of JPEG blocking artifacts from the restoration of image details.
Amplitude Correction Module. As shown in Fig 3, the amplitude correc-
tion module comprises n amplitude correction blocks, which aim to alleviate the
influence of JPEG blocking artifacts by rectifying the amplitude. Various am-
plitude reconstruction units establish direct connections, known as skip links,
between the lower and upper layers of the network, thereby preserving essential
details. Each amplitude correction unit is composed of two branches, enabling
both spatial and frequency domain learning. These branches interact in a dual
domain manner, leveraging the spatial convolution’s local characteristics and
the frequency domain’s global features. Specifically, given the feature FXi, the
amplitude correction unit can be defined as follows:

Fspa = Conv(FXi), (6)
A(FXi),P(FXi) = F(FXi), (7)

Ffre = F−1(Conv(A(FXi)),P(FXi)), (8)
Fdif = Fspa − Ffre, (9)
Fout = SA(Fdif ) · Fspa + Ffre. (10)

Here, conv(.) denotes a sequence of convolutional operations followed by recti-
fied linear units (ReLU). The Fourier transform and inverse Fourier transform
are represented by F(.) and F−1(.), respectively. The term SA(.) denotes the
spatial attention mechanism [27]. In this process, the input feature FXi is con-
volved to obtain the refined feature Fspa. Additionally, the amplitude and phase
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components, A(FXi) and P(FXi), are obtained by applying Fourier transform
to FXi. While keeping the phase constant, the amplitude features are recon-
structed, resulting in Ffre through inverse Fourier transform. To facilitate dual
domain interaction, we subtract Ffre from Fspa, apply spatial attention to ob-
tain significant weights, and finally combine the weighted fusion of Fspa and
Ffre to obtain the output.
Phase Correction Module. Upon passing through the Amplitude Correction
Module (ACM), Xin yields the outputs Xamp and Xout1 through the Supervised
Attention Module (SAM) [33]. The phase of Xamp is then substituted with the
phase of Xin, resulting in Xinv. Subsequently, Xinv and Xamp are concatenated
along the channel dimension and transmitted to the Phase Correction Module.

The Phase Correction Module comprises n phase correction blocks, aiming
to enhance the high-frequency details of the image by restoring the phase com-
ponent. The implementation methodology of each phase correction block is iden-
tical to that of the amplitude correction block, with the sole distinction being
the preservation of the amplitude and solely addressing the phase component.
Given the outputs Xamp and Xout1 from the SAM, this stage can be defined
by the following process:

A(Xout1),P(Xout1) = F(Xout1), (11)
A(Xin),P(Xin) = F(Xin), (12)

Xinv = F−1(A(Xout1),P(Xin)), (13)
Xout2 = PCM(concat(Xinv,Xamp)). (14)

3.3 Loss Function

Our loss function consists of three components: spatial loss, amplitude loss, and
phase loss, which collectively guide the reconstruction process.

Given the output Xout2 and the ground truth image GT, the spatial loss
Lspa is defined as the L1 distance between the two:

Lspa = ||Xout2 −GT ||1, (15)

To guide the amplitude reconstruction module, we utilize the amplitude loss.
Specifically, for Xout1 and the ground truth image GT, the amplitude loss Lamp
is computed as:

A(Xout1),P(Xout1) = F(Xout1), (16)
A(GT ),P(GT ) = F(GT ), (17)
Lamp = ||A(Xout1)−A(GT )||1. (18)

Similarly, the phase loss is employed to guide the reconstruction of spatial
details in the image. Given Xout2 and the ground truth image GT, the phase
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loss Lpha is computed as follows:

A(Xout2),P(Xout2) = F(Xout2), (19)
A(GT ),P(GT ) = F(GT ), (20)
Lpha = ||P(Xout2)− P(GT )||1. (21)

The total loss L is the weighted sum of each component:

L = Lspa+ α ∗ (Lamp+ Lpha), (22)

Here, α is set to 0.05 based on empirical observations.

Table 1. PSNR/SSIM/PSNR-B results of our method comparaed to other nine meth-
ods in three grayscale datasets, with the best outcomes being highlighted in red.

Dataset QF JPEG ARCNN DNCNN MWCNN DCSC

LIVE1
10 27.77 0.773 25.33 28.96 0.808 28.68 29.19 0.812 28.90 29.69 0.825 29.32 29.34 0.818 29.01
20 30.07 0.851 27.57 31.29 0.873 30.76 31.59 0.880 31.07 32.04 0.889 31.51 31.70 0.883 31.18
30 31.41 0.885 28.92 32.67 0.904 32.14 32.98 0.909 32.34 33.45 0.915 32.80 33.07 0.911 32.43

BSD500
10 27.80 0.768 25.10 29.10 0.804 28.73 29.21 0.809 28.80 29.61 0.820 29.14 29.32 0.813 28.91
20 30.05 0.849 27.22 31.28 0.870 30.55 31.53 0.878 30.79 31.92 0.885 31.15 31.63 0.880 30.92
30 31.37 0.884 28.53 32.67 0.902 31.94 32.90 0.907 31.97 33.30 0.912 32.34 32.99 0.908 32.08

Classic5
10 27.82 0.760 25.21 29.03 0.793 28.76 29.40 0.803 29.13 30.01 0.820 29.59 29.62 0.810 29.30
20 30.12 0.834 27.50 31.15 0.852 30.59 31.63 0.861 31.19 32.16 0.870 31.52 31.81 0.864 31.34
30 31.48 0.867 28.94 32.51 0.881 31.98 32.91 0.886 32.38 33.43 0.893 32.63 33.06 0.888 32.49

Dataset QF RNAN RDN QGAC FBCNN Ours

LIVE1
10 29.63 0.824 29.13 29.70 0.825 29.37 29.51 0.825 29.13 29.75 0.827 29.40 30.08 0.840 30.06
20 32.03 0.888 31.12 32.10 0.889 31.29 31.83 0.888 31.25 32.13 0.889 31.57 32.47 0.898 32.42
30 33.45 0.915 32.22 33.54 0.916 32.62 33.20 0.914 32.47 33.54 0.916 32.83 33.91 0.924 33.85

BSD500
10 29.08 0.805 28.48 29.24 0.808 28.71 29.46 0.821 28.97 29.67 0.821 29.22 29.61 0.810 29.53
20 31.25 0.875 30.27 31.48 0.879 30.45 31.73 0.884 30.93 32.00 0.885 31.19 32.04 0.890 31.67
30 32.70 0.907 31.33 32.83 0.908 31.60 33.07 0.912 32.04 33.37 0.913 32.39 33.41 0.916 32.97

Classic5
10 29.96 0.819 29.42 30.03 0.819 29.59 29.84 0.812 29.43 30.12 0.822 29.80 31.18 0.838 31.11
20 32.11 0.869 31.26 32.19 0.870 31.53 31.98 0.869 31.37 32.31 0.872 31.74 33.41 0.886 33.27
30 33.38 0.892 32.35 33.46 0.893 32.59 33.22 0.892 32.42 33.54 0.894 32.78 34.71 0.907 34.49

4 Experiments

4.1 Experimental Datasets and Implementation Details

In our experiments, we employ DIV2K [1] and Flickr2K [25] as our training
data. During training, we randomly crop 256 × 256 patches from the images. In
addition, we have compressed them with JPEG with different quality factors Q
= 10, 20 and 30. To optimize the parameters of D2LNet, we adopt the Adam
optimizer [17] with β1 = 0.9 and β2 = 0.999. We train our model on one NVIDIA
GeForce GTX 3060 GPU by using PyTorch.
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During testing, we evaluate the performance of our model on Classic5 [34],
LIVE1 [24], and the test set of BSDS500 [3] for grayscale images. For color
images, we do not use the Classic5 but the ICB [8] instead. We use PSNR, SSIM
(structural similarity) [30], and PSNR-B (specially designed for JPEG artifacts
removal) to quantitatively assess the performance of our JPEG artifacts removal
model.

4.2 Results

To evaluate the effectiveness of our model, we conducted experiments on both
grayscale and color images. We use the Y channel of YCbCr space for grayscale
image comparison, and the RGB channels for color image comparison.
Grayscale JPEG Image Restoration. We first evaluate the effect of our
model on the Y-channel JPEG compressed images. For benchmarking purposes,
we chose ARCNN [7], DNCNN [35], MWCNN [19], DCSC [11], RNAN [37],
RDN [38], QGAC [8], and the powerful FBCNN [16] as reference methods. Ta-
ble 1 presents the comparison results, with the superior outcomes highlighted
in red. Our method consistently achieved the best performance across multiple
datasets, as evaluated using three assessment metrics. This observation under-
scores the considerable potential of incorporating frequency domain information
in JPEG restoration.
Color JPEG Image Restoration. To further showcase the efficacy of our
model, we conducted restoration experiments on color datasets. Considering
the increased complexity of color image restoration, we selected QGAC [8] and
FBCNN [16] methods for comparison. As shown in Table 4.2, the results clearly
demonstrate the superiority of our approach in color image restoration, rein-
forcing the robustness of our model and the significance of frequency domain
information.

Table 2. PSNR/SSIM/PSNR-B results of different methods on the three color
datasets, with the best outcomes being highlighted in red.

Dataset QF JPEG QGAC FBCNN Ours

LIVE1
10 25.69 0.743 24.20 27.62 0.804 27.43 27.77 0.803 27.51 27.82 0.805 27.80
20 28.06 0.826 26.49 29.88 0.868 29.56 30.11 0.868 29.70 30.14 0.871 30.11
30 29.37 0.861 27.84 31.17 0.896 30.77 31.43 0.897 30.92 31.49 0.899 31.33

BSD500
10 25.84 0.741 24.13 27.74 0.802 27.47 27.85 0.799 27.52 27.66 0.778 27.61
20 28.21 0.827 26.37 30.01 0.869 29.53 30.14 0.867 29.56 30.15 0.869 29.75
30 29.57 0.865 27.72 31.33 0.898 30.70 31.45 0.897 30.72 31.52 0.897 30.97

ICB
10 29.44 0.757 28.53 32.06 0.816 32.04 32.18 0.815 32.15 33.02 0.829 32.97
20 32.01 0.806 31.11 34.13 0.843 34.10 34.38 0.844 34.34 34.57 0.847 34.49
30 33.95 0.831 32.35 35.07 0.857 35.02 35.41 0.857 35.35 35.55 0.856 35.44
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Fig. 4. Visual comparisons of JPEG image “BSD: 3096” with QF = 10.

4.3 Ablation Studies

To provide additional insights into the functionality of our proposed module,
we performed ablation experiments on three color image datasets with a quan-
tization factor of Q10. The ablation experiments were designed to evaluate the
impact of the Amplitude Correction Block and the Phase Correction Block. Two
groups of experiments were conducted, wherein we replaced these units with res-
blocks having similar parameter settings. This allowed us to assess the effects of
eliminating the amplitude reconstruction and phase reconstruction functionali-
ties.
Amplitude Correction Block. The Amplitude Correction Block primarily fo-
cuses on the image’s amplitude, aiming to mitigate the effects of JPEG compres-
sion and alleviate block artifacts. In the first set of experiments, we substituted
the amplitude reconstruction unit with a resblock, as indicated in the first row of
the Table 3. It is evident from the results that various metrics exhibit a certain
degree of decline, providing evidence that processing the amplitude effectively
restores the compression-induced degradation in the image.
Phase Correction Block. The Phase Correction Block is designed to restore
fine details in the image, bringing the texture edges closer to the ground truth.
In the second set of experiments, we substituted the phase reconstruction unit
with a resblock, as presented in the second row of the Table 3. Upon remov-
ing the phase reconstruction unit, the evaluation metrics exhibited a decrease
across all three datasets. This observation underscores the significance of phase
information in the image restoration task.

Table 3. The results of the ablation experiments conducted on the three datasets.

CONFIG ACB PCB
BSD500 LIVE1 ICB

PSNR SSIM PSNR-B PSNR SSIM PSNR-B PSNR SSIM PSNR-B
(I) # ! 27.54 0.776 27.49 27.72 0.801 27.69 31.74 0.813 31.73
(II) ! # 27.47 0.773 27.44 27.71 0.799 27.63 31.75 0.813 31.74
Ours ! ! 27.66 0.778 27.61 27.82 0.805 27.80 33.02 0.829 32.97
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5 Conclusions

In this paper, we propose a Dual-Domain Learning Network for JPEG artifacts
removal (D2LNet). In contrast to previous JPEG artifacts removal methods
performed directly in the spatial domain, we combined the information from
the frequency domain. The Amplitude Correction Module (ACM) and Phase
Correction Module (PCM) have effectively achieved information interaction be-
tween the spatial and frequency domains. Extensive experiments on the grayscale
JPEG images and the color JPEG images demonstrate the effectiveness and gen-
eralizability of our proposed D2LNet. Nevertheless, our approach is sensitive to
the quality factor (QF), which is clearly a drawback. We should delve into the re-
search on utilizing frequency domain information to achieve flexible blind JPEG
artifacts removal.

Acknowledgements This work is supported by National MCF Energy R&D
Program of China (Grant No: 2018YFE0302100).
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