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Abstract—Laser additive manufacturing (LAM) demands 

robust real-time monitoring to identify defects and ensure product 

quality. Traditional methods, mainly reliant on coaxial cameras, 

lacks placement flexibility. Further complexities arise from the 

inherent variability in melt pool geometries and the high 

computational demands of image processing, hindering effective 

real-time monitoring. This research proposes a novel technique to 

directly infer melt pool visual characteristics in LAM by 

synergizing acoustic signal features with robotic tool-center-point 

(TCP) motion data. Acoustic monitoring has shown great promise 

in tasks typically reliant on vision sensors. In addition, the 

dynamics of the LAM process and defect occurrences are spatially 

dependent, primarily due to heat accumulation. By combining 

acoustic signals with spatial data from robot TCP motion, our 

method tracks melt pool variations with an R2 score above 0.7. An 

ablation study demonstrated that the proposed method 

outperforms the acoustic-only models. The findings suggest that 

the integration of a simple microphone sensor with robot motion 

information emerges as a flexible, cost-effective alternative for 

capturing dynamic melt pool behavior. It presents new prospects 

for closed-loop control in the LAM process. 

Keywords—laser additive manufacturing; real-time process 
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I. INTRODUCTION  

 Laser additive manufacturing (LAM) has revolutionized the 
production of complex metallic components for aerospace, 
automotive, marine and offshore industries [1]–[4]. Laser-
directed energy deposition (LDED), a category of LAM, 
leverages on a focused laser beam to fuse metallic powder or 
wire onto a substrate, building parts layer by layer. Despite its 
versatility, LDED faces critical challenges in ensuring 
consistent quality and process stability [5]–[7]. The stochastic 
emergence of defects such as porosities and cracks caused by 
factors like heat accumulation and gas entrapment can severely 
compromise the mechanical integrity of the printed parts. As a 
result, early detection and correction of such abnormalities is 
critical to avoiding build failures and ensuring the quality of as-
built product.  

To capture LDED process dynamics, the state-of-the-art in 
in-situ monitoring relies heavily on vision sensors, such as a 
coaxial visible spectrum camera. Melt pool visual characteristics 
(e.g., width, length, contour and size) can be utilized to assess 
the process stability. Such characteristics are frequently used as 
feedback information to adjust process parameters in a closed-
loop manner to maintain quality consistency and microstructure 
homogeneity [8], [9]. The melt pool visual characteristics can 
also be used to classify lack-of-fusion (LoF) pores using 
supervised machine learning (ML) models [10]. However, 
coaxial cameras are normally embedded in the processing head 
and are not easily add onto existing LDED systems. To acquire 
robust and reliable melt pool images, additional near infrared 
(NIR) optical filters are necessary for visible light spectrum 
cameras. Real-time acquisition and processing of high-
resolution melt pool images can be challenging in practice due 
to the high computational demands. On the other hand, as a 
supplement method, acoustic emission signals captured by a 
simple microphone can provide useful yet low-dimensional data 
insight into the laser-material interactions. Acoustic monitoring 
has demonstrated potential in in-situ monitoring and defect 
identification in LAM process [11], [12]. Liu et al. [13] proposed 
an approach that fuses acoustic and thermal data to infer melt 
pool morphology in the laser powder bed fusion (LPBF) 
process. Our previous work introduced a multisensor fusion-
based digital twin (MFDT) framework [14]–[17], which 
extracted key features from visual, acoustic, and thermal data for 
localized quality prediction. The MFDT revealed that fusing 
data from different sensors improves defect detection accuracy 
and makes in-situ monitoring more reliable. 

While prior research focused on multimodal sensor fusion, 
an inexpensive approach using a simple microphone sensor to 
control the process has yet to be achieved. To this end, this 
research introduces a novel approach using acoustic signal 
combined with spatial information from robot TCP motion to 
directly infer the key coaxial melt pool visual feature – melt pool 
width (MPW). MPW is the most widely used feature for closed-
loop control applications in LDED. The proposed pipeline 
enables inference of real-time MPW with R2 score greater than 
0.7 using only the acoustic signal and position, velocity data as 
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the input. The proposed technique outperformed the baseline 
model which uses only acoustic signals in an ablation study. Our 
work indicates the feasibility of utilizing a flexible and low-cost 
microphone sensor to characterize melt pool morphological 
dynamics. We believe it can contribute to further advancements 
in LAM closed-loop process control. 

II.  METHDOLOGY  

In this section, the proposed framework for acoustic-based 
inference of melt pool characteristics is outlined, the data 
collection from robotic LAM system is introduced, and the 
proposed feature extraction, cross-modality correlation analysis 
and ML models are illustrated. 

A. Proposed framework 

The proposed data processing and melt pool inferencing 
framework is shown in Fig. 1. The proposed framework is 
designed to leverage both acoustic signal and robot motion data 
to infer the melt pool width (MPW). Capturing this synergy 
begins with the real-time acquisition of acoustic signals via a 
microphone sensor, collecting acoustic emissions from the laser-
material interactions. From these signals, a comprehensive set 
of 83 acoustic features encompassing temporal, spectral, and 
cepstral data are extracted, offering a broad spectrum analysis. 
Simultaneously, robot tool-centre-point (TCP) motion is 
extracted in real-time from the KUKA robot controller through 
the Robot Operating System (ROS). This includes real-time 
coordinates (x, y, z) and velocity metrics, essential for providing 
a spatial context to the acoustic signals. This data enables a 
better interpretation that correlates to the dynamic melt pool 
characteristics. Ground truth validation is provided by visual 
monitoring of the melt pool, facilitated by a coaxial visible 
spectrum camera. Key visual characteristics of the melt pool, 
such as MPW, are extracted using image processing techniques 
via OpenCV. These characteristics serve as the ground truth for 
ML regression model training. 

In the inferencing stage, the extracted acoustic features and 
the TCP motion data are synthesized through ML algorithms. 
This cross-modality fusion forms the basis for the predictive 

model that estimates MPW, aiming to minimize the reliance on 
direct visual observation. 

B. System Setups and Dataset Collections 

The experimental setup, illustrated in Fig.2, features a dual-
robot hybrid additive-subtractive manufacturing system. For the 
LDED process (Fig. 2(b)), a six-axis robotic arm carried a 
coaxial powder-blowing nozzle to deposit material onto the 
substrate held by a two-axis positioner [18]. The microphone 
was placed near the laser nozzle to capture the acoustic signature 
of the LDED process sound, with noise cancellation techniques 
previously addressed in [11]. Detailed analyses of the LDED 
sound composition and feature extraction of acoustic signals are 
discussed in our previous work [12]. Additionally, a coaxial 
CCD camera equipped with a near-infrared (NIR) bandpass 
filter ranging from 720 to 1100 nm was used to monitor the melt 
pool morphologies.  

 Synchronization of visual and acoustic data streams was 
achieved via an in-house developed ROS-based software 
platform. The details of multi-sensor data synchronization and 
the subsequent feature extraction are elaborated in our 
preliminary works [15], [16]. The collected multimodal dataset 
includes time-aligned acoustic emissions, robot TCP motion 
data (comprising coordinates and velocity), and the coaxial melt 
pool images. This multimodal dataset was created by fabricating 
different single bead walls with MS C300 powder and varying 
process parameters, as seen in Table 1. Further details on 
experimental procedures were reported in previous work [15], 
[16]. 

TABLE I.  LDED PROCESS PARAMETERS USED FOR DATA COLLECTION 

Process Parameters Values 

Laser power (kW) 2.3 – 2.53 

Scanning speed (mm/s) 25 – 27.5 

Dwell time between layers 
(seconds) 

[0, 5, 10] 

Powder feeding rate (g/min) 12 

Fig. 1. Proposed framework for inferencing melt pool width using audio signal and spatio-temporal robot motion data. 



 

Fig. 2. Photos of experiment and sensor setup. 

C. Feature extraction and signal visualization 

This study utilizes Essentia library [19] for audio feature 
extraction, distilling 83 acoustic signatures in time, frequency, 
and time-frequency domains. For capturing coaxial visual 
characteristics, the melt pool is approximated as an elliptical 
shape using the OpenCV library [20]. The minor axis of this 
ellipse is used to represent the MPW. 

Fig. 3 presents synchronized audio-visual signals during the 
LDED process under various conditions, including defect-free 
and defective scenarios. It demonstrates a correlation between 
anomalies in audio and visual signals with physical defects. For 
example, the occurrence of cracks is signified by a noticeable 
increase in acoustic amplitude accompanied by changes in the 
melt pool brightness, as shown in Fig. 3(a). In contrast, a defect-
free process exhibits stable and uniform audio-visual signals. 
The keyhole pore printing mode, as evident in Fig. 3(b), is 
characterized by irregularly enlarged melt pools and elevated 
acoustic signal amplitudes. In a 'laser-off' state, the absence of 
the melt pool is clearly visible, while the acoustic signal captures 
only ambient sounds. 

Fig. 4 displays optical microscope (OM) imaging of defects 
in 3D printed parts, correlating with anomalies in the 
multimodal signals. This correlation confirmed that print quality 
was spatially dependent. For instance, during the printing of the 
single bead wall structure, a shift from defect-free to defective 
modes was observed, primarily due to heat accumulation. This 
transition led to keyhole porosity in the upper layers. 
Furthermore, variations in audio-visual signal features were 
linked to the height of the parts. Robot TCP movements, 
particularly acceleration and deceleration at the beginning and 
end of deposition tracks, contributed to melt pool fluctuations. 
In idle states, when the robot remained stationary (velocity = 0), 
the laser was typically off. As the part height increased, defects 
became more prevalent due to heat accumulation, causing 
destabilization and enlargement of the melt pool. These 
observations suggested that integrating real-time robot TCP 
coordinates (x, y, z) and velocities with acoustic signals could 
enhance the accuracy of MPW prediction. 

 The discernible relationship between acoustic signals and 
spatial variations in melt pool characteristics underscores the 
potential of acoustic analysis combined with spatial data for 
MPW prediction. The subsequent section will provide a detailed 
quantitative analysis of these correlations, further elucidating 
the audio-visual cross-modal connections.  

 

Fig. 3. Audio-visual signal temporal synchronization and visualization. 

 

Fig. 4. Defects in the 3D printed parts observed from optical microscope (OM) 

image. 

D. Cross-modality feature correlation analysis 

 Fig. 5 presents the Spearman correlation heatmap that 
elucidates the relationship between acoustic features and melt 
pool visual characteristics (MPW). Spearman's rank correlation 
coefficient ρ is a non-parametric measure of correlation, 
representing statistical dependence between of two variables. It 
can be calculated as:  

𝜌 =  1 − 
6 ∑ 𝑑𝑖

2

𝑛(𝑛2 − 1)
 (1) 

where 𝑑𝑖 is the difference between the ranks of corresponding 
variables, and 𝑛  is the number of data points. The heatmap 
reveals that, among the top 12 acoustic features, 
"spectral_flux_mean" and "spectral_valley_2_mean" exhibit a 
moderately strong correlation (> 0.5) with the target MPW. 
 Spectral flux is a measure of the variability of the spectrum 
over time. It can reflect changes in the acoustic signal's 
frequency content. A higher spectral flux indicates significant 
variations in these signals. In the context of LDED, this implies 
that fluctuations in acoustic emissions are directly linked to 
changes in melt pool dimensions. Similarly, the spectral valley 
represents specific points in the spectrum where the energy is at 
a minimum, and its mean value over time provides insights into 
the consistency of these low-energy occurrences. 
 The positive correlation of these features with MPW 
suggests that both the variability captured by spectral flux and 
the consistency of low-energy points indicated by spectral 
valleys are indicative of the melt pool's behavior. Particularly, in 
a defective regime, high fluctuations in acoustic signals 
correspond to unstable or irregular MPW. This relationship 



underscores the potential of acoustic monitoring as a diagnostic 
tool in detecting anomalies or variations in the melt pool, 
thereby offering a pathway for control and quality assurance in 
LAM processes. 
 

 

Fig. 5. Top 12 acoustic features correlated with melt pool visual characteristics 

(i.e., melt pool width approximated by an ellipse shape). 

E. Machine learning models for melt pool width prediction 

 Following the qualitative and quantitative analysis of the 
correlation between acoustic signals, robot TCP position data, 
and melt pool width (MPW), various ML models were explored 
for MPW prediction. Selected for their ability to handle 
complex, non-linear relationships, these models leverage the 
complex relationships identified in the data to provide robust 
MPW regression prediction. The employed machine learning 
algorithms include: 

• Random Forest Regressor (RF): The Random Forest 
Regressor [21] aims to minimize the mean squared error by 
aggregating predictions from individual decision trees. The 
objective function is as follows: 

min ∑ (𝑦𝑖 − 𝑦�̂� )
2

𝑛

𝑖=1
 (2) 

where 𝑛 is number of data, 𝑦�̂� is the predicted value and 𝑦𝑖  
is ground truth. This averaging approach helps to improve 
accuracy and control over-fitting. 

• XGBoost Regressor (XGBRegressor): XGBoost stands for 
eXtreme Gradient Boosting [22], a scalable and accurate 
implementation of gradient boosting machines. It builds the 
model in a stage-wise manner, where each new model 
incrementally reduces the loss function (usually a mean 
squared error (MSE)) using the gradient descent algorithm. 
It minimizes the following objective function:  

min ∑ 𝑙(𝑦𝑖 , 𝑦�̂�)
𝑛

𝑖=1
+ ∑ Ω(𝑓𝑘)

𝐾

𝑘=1
 (3) 

where 𝐿 is a loss function (MSE), 𝑦�̂� is the predicted value, 
𝑦𝑖  is the ground truth, 𝐾  is number of trees, and Ω  is a 
regularization term. 

• LightGBM Regressor (LGBMRegressor): LightGBM is a 
gradient boosting framework that uses tree-based learning 
algorithms [23]. It is characterized by its efficiency in 
handling large datasets and high speed. LightGBM grows 
tree leaf-wise (vertically) while other algorithms grow 
level-wise (horizontally), leading to faster convergence. 
The model is built by iteratively choosing the leaf with max 
delta loss to grow. It attempts to minimize the following 
objective:  

 𝑚𝑖𝑛 ∑ 𝑙(𝑦𝑖 , 𝑦�̂�)
𝑛

𝑖=1
+ ∑ 𝜆 ||𝜔𝑗||

2𝑚

𝑗=1
 (3) 

where 𝑙 is a differentiable convex loss function measuring 
the difference between ground truth and predicted values, 

and 𝜆  is the regularization parameter. ||𝜔𝑗||
2

represents L2 

regularization term for weights of the leaves. 

 These algorithms were selected for their effectiveness in 
handling complex, non-linear relationships in data, making them 
suitable for the complex task of MPW prediction. 

III. RESULTS AND DISCUSSIONS 

A. Regression model performance evaluation 

 The evaluation of regression model performance is critical 
in proving the effectiveness of models in MPW prediction. Fig. 
6 illustrates this by plotting predicted values against ground truth 
data.  

 The RF using a combination of acoustic signals and robot 
TCP motion data (Fig. 6(b)) emerged as the superior model. It 
achieved the highest R2 score of 0.73, indicating a strong 
positive correlation between the predicted and actual values. 
This model also yielded the lowest Mean Absolute Error (MAE) 
and Mean Squared Error (MSE), suggesting it has the best 
predictive accuracy and is most consistent with the ground truth. 

 A comparative analysis across all models reveals a clear 
trend: models trained on combined acoustic and robot TCP 
motion data outperform those relying solely on acoustic signals. 
For instance, when augmented with robot motion data, the 
XGBoost Regressor (XGBRegressor) and LightGBM Regressor 
(LGBMRegressor) exhibit a significant boost in performance 
(about 20% and 15% in R2 score, respectively) compared to their 
acoustic-only counterparts (Figs. 6(c) and 6(e)). 

 The evaluation confirms that integrating spatiotemporal 
robot TCP motion data with acoustic features improves model 
predictions for MPW. The next sub-section will visualize the 
ground truth MPW data with the predicted values for different 
printing scenarios.  

B. Inference of melt pool visual characteristics 

Fig. 7 presents a detailed view of the RF models' 
performance in capturing the dynamics of melt pool visual 
characteristics (i.e., MPW) over time for different LDED test 
samples. Each graph depicts the ground truth data against the 
predicted MPW values, demonstrating the models' performance 



with and without additional robot TCP motion information 
across varying scenarios. 

 

Fig. 6. Ground truth data plotted against predicted data points for melt pool 
width prediction. (Note: the higher R2 score indicates better performance, while 

a lower MAE and MSE score indicates better performance.). 

In the single-bead wall fabrication with 25 layers and 
without interlayer dwell (Fig. 7(a)), the actual MPW fluctuated 
significantly. The MPW became increasingly unstable over time 
due to heat accumulation and laser defocusing. The localized RF 
model (acoustic + robot TCP motion) prediction closely 
followed the actual MPW trend, indicating the model's 
responsiveness to changes in the process dynamics. The 
acoustic-only model, on the other hand, exhibited larger 
variations in predictions. However, both models tended to 
underestimate the MPW fluctuations in the higher layers (time 
> 40s). The initial five layers (0 – 20s) of the same single-bead 
wall fabrication (Fig. 7(b)) showed a more detailed view. The 
localized RF model predictions aligned better with the actual 
MPW values than the standard model trained only on acoustic 
feature.  

When an interlayer dwell time of 5s was introduced (Fig. 
7(c)), the actual MPW became zero during the laser-off period. 

Both acoustic-only model and localized model exhibited large 
variations in the MPW predictions. The poor performance in this 
test sample could be due to the difficulties of inference during 
the 'laser-off' condition, when the acoustic signal consists 
primarily of ambient sound. The ambient noise content was 
difficult to distinguish, causing the model to predict the melt 
pool state incorrectly. This indicates one of the areas for future 
improvement. 

 

Fig. 7. Visualization of the melt pool width (ground truth vs. predicted) as a 

function of the time for different test samples. The tracks have been deposited 
with the parameters of 2.3 kW (powder), 25 mm/s (speed) and 12 g/min 

(powder feeding rate). 



 The multi-layer multi-track fabrication with 30 tracks (Fig. 
7(d)) shows a complex deposition scenario in which the actual 
MPW exhibits a more complex pattern due to overlapping 
tracks. Both the standard and localized predictions have a strong 
correlation with the actual MPW, but the localized predictions 
clearly outperform the standard acoustic-only predictions. 

IV. CONCLUSIONS 

This paper presented a novel method that used acoustic 
signal features and robotic motion data to predict melt pool 
visual characteristics in LAM. The proposed method revealed 
that combining acoustic signals with spatiotemporal data from 
the robot's TCP movements considerably improves the 
prediction accuracy of melt pool width , which is one of the most 
commonly used features for closed-loop control in LAM. The 
RF regressor achieved the best performance, with the highest R2 
score (0.73) and the lowest MAE (116.4), indicating that the 
model is capable of monitoring complicated melt pool visual 
characteristics. The results are validated by a series of 
experiments across various LAM scenarios. The future research 
aims to incorporate this approach into an acoustic-based closed-
loop control system, with the predicted visual feature serving as 
the feedback signal to adjust the laser power input. This 
technique has the potential to provide a versatile and cost-
effective solution for robotic LDED quality monitoring and 
assurance without the need for time-consuming and 
computationally demanding visual feature extraction.   
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