
EasyChair Preprint
№ 5046

Covid Tracker Application

Prashant Singh, Ayush Patel and Humaira Hossain

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 26, 2021

Prashant Singh
B. Tech SCSE

Galgotias University,

Noida, India
prashant_singh.scsebtech

@galgotiasuniversity.edu.in

Covid-19 Tracker
Ayush Patel

B. Tech SCSE

Galgotias University
Noida, India

ayushpatel466@gm
ail.com

Humaira
hossain
B.Tech
SCSE

Galgotias University
Bangladesh

humairamethela4@gmail.co
m

Abstract— Coivid-19 tracker is a React based
responsive web application which provides you
the real time data of current covid-19 cases all
across the world. It will show you how many
cases are recently recorded and how many
recovered as well as the total cases being recorded
in a particular country. The app will have a leaflet
package of React which will provide us the
interactive map thus we will try to make it
different and more interactive than other trackers
present out there. These maps will enable the user
to see real time data of total cases in any given
country. The easy to use GUI clubbed with the
interactive maps and graphs will help us to
provide the vital information that the users need in
order to stay updated with the covid-19 situation
that is rocking the world and subsequently
affecting the economy at a global scale. The web
application will be accessible through desktop or
mobile to provide the user with ease of access.
We aim to provide accurate data. Our aim is to
alleviate some stress from the user who feels
anxious about being uninformed about what might
be happening without them. Our app also serves
as a learning opportunity for the members along
with a great incentive to help people.

INTRODUCTION
The Covid-19 Tracker is a react based application
which gives us the track of current Covid -19
cases and recovered cases as well as the number

of deaths recorded. It has worldwide data and
country data.The maps will enable the user to see
real time data of total cases in any given country.
EASE OF USE:

The web application will be accessible through
desktop or mobile to provide the user with ease of
access. We aim to provide accurate data. Our aim
is to alleviate some stress from the user who feels
anxious about being uninformed about what might
be happening without them. Our app also serves
as a learning opportunity for the members along
with a great incentive to help people.

Literature Reviews:

As we already know, in early December
2019, an outbreak of coronavirus disease 2019
(COVID-19), caused by a novel severe acute
respiratory syndrome coronavirus 2 (SARS-
CoV-2), occurred in Wuhan City, Hubei
Province, China. On January 30, 2020 the
World Health Organization declared the
outbreak as a Public Health Emergency of
International Concern. As of February 14, 2020,
49,053 laboratory-confirmed and 1,381 deaths
have been reported globally. Perceived risk of
acquiring disease has led many governments to
institute a variety of control measures. We
conducted a literature review of publicly
available information to summarize knowledge

mailto:humairamethela4@gmail.co

about the pathogen and the current epidemic.
In this literature review, the causative agent,
pathogenesis and immune responses,
epidemiology, diagnosis, treatment and
management of the disease, control and
prevention strategies are all reviewed.We are
still affected by the disease and facing the
problems. It is a global threat and we do have
to keep track of it now, and even in the future
as well. Scientists all across the world are
already trying their best to get a vaccine. It is
controlled now in some countries, but not in
India. The recovery rate is better than before
but that’s not enough, the problem is that it
still exists. It is necessary to take
precautions even if the conditions are better,
but doing work is also important, we can’t just
sit around forever. For that we need a tracker
so that we can keep track of cases around us
and also stay updated with the data in order to
be safe.

II. SYSTEM ARCHITECTURE
The type of architecture adopted for the data
collection aspects of tracing apps has been a matter
of much discus- sion due to both security and
privacy concerns. We will discuss three distinct
system architectures commonly used or proposed
for developing COVID-19 tracing applications.
These are the centralised, the decentralised, and the
hybrid approaches that combine features from both
the centralised and the decentralised architectures.
Our classification criteria consider how the server is
used and what data is required (or stored) by it. We
now discuss each of the three archi- tectures
detailing their salient features. We will discuss some
specific tracing apps that employ each of our three
architec- tures in a later section.
A. CENTRALISED
Figure 1 shows the main entities and interactions of
a cen- tralised architecture. We note that the
centralised architec- ture we describe is based on
the Bluetrace protocol [13]. The initial requirement
for the app is that a user has to pre-register with the
central server. The server generates a privacy-
preserving Temporary ID (TempID) for each device.
This TempID is then encrypted with a secret key
(known only to the central server authority) and
sent to the device. Devices exchange these

TempIDs (in Bluetooth encounter messages) when
they come in close contact with each other. Once a
user tests positive, they can volunteer to upload all of
their stored encounter messages to the central server.
The server maps the TempIDs in these messages to
individuals to identify at-risk contacts. More details
on the centralised architecture’s key processes are
now given.
1) REGISTRATION PHASE
Figure 2 shows the steps required to register a user in
a centralised architecture. A user downloads the app
(steps 1 and 2) and registers details such as name,
mobile phone number, age bracket, and postcode
with the server (step 3). The server verifies the
mobile number by sending a One Time Password
(OTP) by SMS (steps 4 and 5). Upon verification,
the server computes a TempID (step 6), which is only
valid for a short time (Bluetrace recommended
expiry time is 15 min). The TempID and the expiry
time are then transmitted to the user’s app.
2) REGISTERING ENCOUNTERS/CONTACTS

INFORMATION
Once a user comes in contact with another app user,
they exchange an ‘‘Encounter Message’’ using
Bluetooth, as pre- sented in Figure 3. An encounter
message comprises the exchange of TempID, Phone
Model, and Transmit Power (TxPower) (steps 1 and
3). Each device also records the Received Signal
Strength Indicator (RSSI) and the times- tamp of the
message delivery (steps 2 and 4). Note that phone
numbers are not included in these messages. Since
the TempIDs are generated and encrypted by the
server they do not reveal any of the app user’s
personal information. Thus, both app users have a
symmetric record of the encounter that is stored on
their respective phones’ local storage. The protocol
uses a temporary blacklist to avoid a user registering
duplicated contacts. Thus, once a user receives an
Encounter Message, the app automatically blacklists
the sender for a short time.
3) UPLOADING ENCOUNTERS DATA
All encounter records are stored locally and are not
auto- matically uploaded to the server. Figure 4
shows the appli- cation flow when a user tests
positive for COVID-19 (step 1). The health official
confirms whether the user has the trac- ing app
installed, and flags the user as infected (step 2).

4) SERVER-SIDE PROCESSING OF THE

UPLOADED DATA
The server iterates through the list of encounter
messages, decrypting each TempID with its secret
key. This TempID is then mapped to the user’s
mobile number. The server uses the TxPower and
RSSI values to approximate the distance (prox-
imity) separating the users during the reported
encounter. The proximity estimation can also be
performed locally on the phone, but this has
battery usage implications. This proximity data, in
conjunction with the timestamps, is used to
ascertain the risk profile (closeness and duration)
of the encounter (step 5, Figure 4). A list is
prepared with all the required information (step 6)
for further processing by the relevant health
official (step 7). To summarise: In the centralised
architecture, the cen- tral server plays a key role in
performing core functional- ities such as storing
encrypted PII information, generating anonymous
TempIDs, risk analysis, and notifications for close
contacts. This accumulation of responsibilities
raises privacy concerns that are discussed in detail
in Section III. The server is assumed trusted in this
architecture, with some countries introducing strict
privacy- protection regula- tions for safeguarding
the use and life cycle of the collected data [14].

Problem Formulation:

To begin with the problem, we have to get the
current data of COVID-19 cases.

● We have this well-known API which
provides the data of well-known
diseases one of them is what we need
COVID-19.

● A n o t h e r f r e e A P I k n o w n as
“disease.sh” which keeps us updated
and provides us with death data, active
cases data, total cases and much more.

● API stands for application program
interface. A programmer writing an
application program can make a
request to the Operating System using
API (using graphical user interface or
command interface). It is a set of
routines, protocols and tools for
building software and applications. It

● may be any type of system like a

web-based system, operating-system or
a database System

● We need to fetch the data from that API
and use it so we don’t need our own
database to manually enter the data and
keep track of it.

● As we are aware of the fact that data
fetched from the API’s is in JSON
format, so we need to utilize that data
and make a better user interface with
that.

B. DECENTRALISED
In contrast to the centralised architecture, the
decentralised architecture proposes to move core

functionalities to the user devices, leaving the server
with minimal involvement in the contact tracing
process. The idea is to enhance user privacy by
generating anonymous identifiers at the user devices
(keeping real user identities secret from the other
users as well as the server) and processing the
exposure notifications on individual devices instead
of the centralised server.
We discuss the privacy and security implications of
this design in Section III.
We take the Private Automated Contact Tracing
proto- col (PACT) [15] as a base to describe the
decentralised architecture. The decentralised
approach does not require app users to ‘pre-register’
before use, thus avoiding the stor- age of any PII
with the server. Devices generate their random seeds
(used as input for a pseudorandom function), which
are used in combination with the current time to
generate privacy-preserving pseudonyms or ‘chirps’
with a very short lifetime of about 1 min (see Figure
5). These chirps are subse- quently periodically
exchanged with other devices that come in close
contact. Once a user is positively diagnosed with
COVID-19, they can volunteer to upload their seeds
and the relevant time information to a central server.
This is in contrast to the centralised architecture
where the complete list of encounter messages is
uploaded. Uploading of seeds, instead of all used
chirps, improves latency and provides improved
bandwidth utilisation.
The central server only acts as a rendezvous point,
akin to a bulletin board to advertise the seeds of the
infected users. This server is considered ‘honest- but-
curious’. Other app users can download these seeds

to reconstruct the chirps (by using timestamps)
that were sent by the infected users. The server, as
well as other users, cannot derive any identifying
details just by knowing the seeds and chirps. Only
the other app users can perform a risk analysis to
check if they are exposed for a long enough
duration. This one-way lookup against the
downloaded seeds restr icts the server ’s
functionality and alleviates some of the privacy
risks (see Section III). More details on the
decentralised architecture’s key processes are now
given.
1) APP INSTALLATION
COVID-19 t racing apps that adopt the
decentralised archi- tecture do not necessarily
require an interactive registration process during
the app installation stage. The app installation
process only

verifies a user’s smartphone and deploys a ran-
dom seed generation algorithm that is not linked to
the phone
2) GENERATING SEEDS, CHIRPS AND

EXCHANGING CHIRPS
Once the decentralised tracing app is installed, the
seed is generated (with an expiry period of one
hour) by the user’s device (see Figure 7). This seed
and the current time are subsequently used in a
pseudorandom function to generate the chirp. The
chirps are not linked to an individual or their
phone - so in principle, they are anonymous. The
app gen- erates new chirps with a time granularity
of 1 min. These are broadcasted every few seconds
via the Bluetooth beacon. In the listener’s phone,
the app will automatically store all chirps received
(step 4 in Figure 7). The information stored in the
receiving app includes the chirp, the timestamp
when the chirp is received, and the maximum
RSSI value. Identical chirps received within 1 min
are ignored. Note the critical difference from the
centralised architecture where TempIDs are
created by the server - in the decentralised case,
the seeds and chirps are generated at the device.

3) UPLOADING ENCOUNTERS DATA
If a user is diagnosed positive, they are given a
unique ‘‘permission number’’ by the relevant
authority to authorise the upload of all used seeds

that are locally stored in their phone (illustrated in
Figure 8), as well as the creation and expiry times of
the seeds. Note, the server in the decentralised
architecture only gets the seeds associated with a
single identified user. This is to be compared with
the centralised architecture where the complete
contact list (with TempIDs) of all encountered
individuals is uploaded to the server.
4) THE CONTACT TRACING PROCESS
Contrary to the centralised architecture, the tracing
process in the decentralised architecture is
performed locally by the app user on their device
(instead of the central server). The app users can
communicate with the server, typically once per day,
to download any seeds uploaded by infected users.
Given such seeds are downloaded (step 8 in Figure
8), the user’s app then reconstructs all the
corresponding chirps (using pseudorandom
calculations based on the seeds and discrete-time
intervals between the start and expiry time). Finally,
the app performs a lookup to check if any of the
reconstructed chirp information appears in its local
encounter chirp log. If so, proximity and duration
times are then derived (based on timestamps and
RSSI values) for risk analysis purposes. No human
intervention is required.
C. HYBRID
In the centralised architecture, the server performs
all the complex tasks, e.g., TempID calculations,
encryption, decryption, risk analysis, and
notifications of alerts for the at-risk contacts. On the
other hand, all these functionalities are delegated to
devices in the decentralised architecture, keeping
the server only as a bulletin board for lookup pur-
poses. The hybrid architecture proposes that these
function- alities are split between the server and the
devices. More specifically, the TempID generation
and management remain decentralised (i.e., handled
by devices) to ensure privacy and anonymisation,
whilst the risk analysis and notifications should be
the responsibility of the centralised server. There
are three main reasons for performing the tracing
process at the server: i) In the decentralised
architecture, the server is unaware of the number of
at-risk users as the devices make this risk analysis
without taking the server into consideration. Thus,
the server does not have any statistical information
and is unable to run any data analytics to identify

exposure clusters. ii) Risk analysis and
notifications are considered a sensitive process
that should be handled by the authorities,

ARCHITECTURE SUMMARY
We have discussed the three base architectures
employed for developing applications for contact
tracing purposes. The architectures are
categorised based on the functionality and level of
privacy preservation at the central server. In the
centralised architecture, the server manages the
security keys, generation of anonymous IDs,
contact risk analysis, and notification processes.
All these roles are transferred to the devices in the
decentralised architecture while the server acts
simply as a bulletin board. The hybrid
architecture tries to balance the load on the server
and improve privacy preservation by splitting
functionalities between the end-user device and
the server. One distinct advantage of using an
architecture that pushes the risk analysis and
notification process to the centralised server (i.e.,
both centralised and hybrid architectures) is that
health officials can decide the rate of
notifications depending on the pandemic
circumstances (e.g., the availability of test kits).
On the other hand, decen- tralised and hybrid
architectures aim to keep the user identi- ties
secret from the central server. A server security
breach in this latter architecture would, therefore,
result in lower information leakage.
DATA MANAGEMENT, PRIVACY, AND
SECURITY
One of the major issues in any tracing application
is man- agement, privacy, and security of the data
that is collected. The European Data Protection
Board issued a statement on the importance of
protecting personal data while fighting COVID-19
and flagged articles of the General Data Protec-
tion Regulation that provide the legal grounds for
processing personal data in the context of
epidemics [18]. In addition, some Governments’
have passed special privacy protections laws
aimed at addressing privacy issues [19]. To
comply with these requirements, the tracing apps
need to use a multitude of techniques, across the
three distinct phases of their operation: i)
Registration, ii) Operation, and iii) Positive case

identifica- tion phases, depending on:
• What data is produced and by whom?
• What data is exchanged between whom and
when?
• What data is stored where and by whom?
• Who can access what piece of data?
In this section, we will first discuss the data life
cycle for the three architectures described in Section
II and then focus on the privacy and security issues
associated with these architectures. We consider
three key stakeholders in the attack ecosystem; i) the
government ii) the administrator controlling the
central server (referred to as server for brevity),
and iii) malicious users. All architectures assume
that health author- ities3 already know the real
identities of all positive cases as all uploads are
authorised through the health authorities to prevent
fake data being uploaded.
A. DATA MANAGEMENT
Details of data storage in the centralised
architectures appear in Table 1. The server is
responsible for i) storing PII collected when a user
registers, ii) generating, storing and transferring the
TempIDs to all registered users periodically (after
every 15 min for example), and iii) maintaining a list
of all individ- uals who are diagnosed as positive
and their close contacts. In contrast, the user device,
after receiving the TempID from the server, carries
out the following two tasks: i) it generates,
exchanges and stores the contacts it has had with
peers for a specified period of time, usually 21 days,
and ii) upon request, it shares contact data it has
stored with the server with the consent of the user.
Data storage details for the decentralised
architectures are presented in Table 2. The user
devices are responsible for generating the hourly
seed and computing the chirps based on the seed
and the current time. In addition, they are
responsible for exchanging and storing these chirps,
the RSSI, and the received timestamp information
with peers. There is also the option for the device to
store additional metadata, such as location
information. The server plays a limited role
compared to the centralised architecture. It is only
called into action when a user is diagnosed as
COVID-19 positive and voluntarily uploads the
seeds and time validity data as described in Section

II-B2. This data, stored at the server, can now be
used for lookup by other users who have come in
contact with the infected user, by reconstructing
the chirps using the seeds.
Table 3 shows data storage during the various
phases of hybrid tracing architecture. In the
operation phase, the devices store all encounters
as PET entries in two different tables. The server
records the device IDs (with blank metadata such
as risk score, notified or not, etc.). The server only
obtains the PETs from users who have tested
posit ive and volunteers to upload this
information. Another significant difference
from the decentralised architecture is that these
PETs are not transferred to other devices; rather,
other devices upload their PETs from their query
table for a risk analysis to be carried out by the
server.
B. PRIVACY
The success of any automatic contact tracing app
depends on several factors, including: how
seamlessly and accurately it can capture close
contacts. Another factor is the confidence the
users have about their privacy and security when
using the app. A naive approach for contact
tracing could be to develop a privacy-agnostic
system that advertises and exchanges the
mobile phone numbers of the participants and
periodically registers their location with a
centralised server [15]. Such an application would
raise serious privacy concerns, and would likely
not be accepted by users. Therefore, all the
architec- tures have privacy protection built-in.
However, the amount of protection provided
differs considerably and depends on the attack
models, trust assumptions, and the protection
measures they adopt [20].
In the previous section, we discussed the data
management aspects highlighting the source and
storage of different types of data in the three
architectures. From a privacy perspective, we
classify the data that is to be stored into three
categories: i) PII of participants (e.g., names,
phone numbers, whether they have tested positive
to the virus or not, etc.), ii) Contact advertisement
messages (pseudonyms exchanged between
devices), and iii) Social/proximity graphs; an
indication of the interactions between users and

the people they came into close contact with. Each
data category has different privacy implications.
We first explore the smartphone’s privacy
implications, as it is typically less secure than a
server. In this case, attacks like theft or coercion (a
user being forced or per- suaded) will result in the
content stored in the smartphone being revealed.
This type of threat is present in all of the
architectures. However, the difference between the
differ- ent architectures is what is stored on the
smartphones (see Tables 1, 2, 3). Data that may be
stored on devices, such as details of encounter
messages, is considered to be less sensitive, as this
information cannot be used to directly iden- tify the
contacts.
In a centralised architecture, the servers have access
to all three types of data. Therefore, if access to the
servers is compromised by malicious users, it would
be possible to identify all individuals and their
contacts, therefore jeopar- dising their privacy.
Hence, centralised architectures need to provide
adequate protection of the servers to guarantee user
privacy.
In the decentralised architecture, all users can access
the public server to download the list of seeds and
calculate the chirps used by an infected user.
However, as these seeds are uploaded together with
their expiry periods, they can result in the
unauthorised identification of infected individuals
using other side-channel information. For example,
malicious per- sons/ apps/ organisations can keep
collecting the ephemeral identifiers and the seeds
from reported cases and link the identifiers/chirps
with the accessed auxiliary information. Also, as
only an infected user uploads seeds to the server, a
traffic analysis attack, launched by a malicious user
who can eavesdrop, would be able to identify a
COVID-19 positive user uploading seeds to the
server. These attacks are discussed further in section
V.
The hybrid architecture adopts additional advanced
privacy enhancement methods such as secret
sharing [21], decisional Diffie-Hellman (DDH)
[22], and private set inter- section [23].4 In general,
a user’s secret is shared by the user and the server.
Furthermore, part of the infection risk analysis is
computed at the server using privacy preserving
secret shar- ing. Therefore, if one party is

compromised, the entire secret or risk analysis
result will not be revealed. These privacy
enhancement methods help protect the identity of
infected users from being revealed by malicious
users or compromised servers. However, these
enhanced privacy protections still cannot prevent
the users’ PII getting de-anonymised if a
malicious user can successfully access data
collected from side-channel context information.
C. SECURITY
The notion of security encompasses limiting an
adversary’s abilities to introduce false negatives
and false positives in the system, in addition to
ensuring system integrity and avail- ability. The
motivation for carrying out an attack varies and
can range from political and ideological to
financial. In the context of contact tracing, an
attacker may aim to inject erroneous entries or
cause a denial of service.
As all three architectures discussed in this article
involve a centralised server, it is pertinent to
explore the specific secu- rity threats for each of
the architectures. The potential security threat
depends on what data originates from a server,
what data is shared and accessible to a server and
in what form the data i s col lected and s
tored (e . g . , pseudonymous, encrypted,
unencrypted). Furthermore, it depends on the
modus operandi
4Readers are encouraged to follow the provided
references for details of these privacy preserving,
secret sharing techniques.
of the server, namely whether it is i) A trusted
server, ii) An honest-but-curious server, iii) A
compromised/malicious server, or iv) A colluding

server.
A malicious/compromised server can disrupt all
types of communications or inject false exposure
notifica- tions in all architectures. Similarly, a
colluding server can liaise with other malicious
entities to perform user de-anonymisation.
In the centralised architecture, the server is
considered trusted. It is responsible for storing
users’ PII and managing security keys used to
encrypt/decrypt TempIDs. This poses the risk of
data theft if the server gets compromised, a
general threat against any centralised server. In this

context, the server application needs to run in a
trusted environment and use appropriate
authentication and access control mechanisms. All
information exchanged between the server and the
user’s smartphone as well as between the server and
the health officials needs to be authorised and
secure. Thus, centralised architectures only
consider malicious users in their attack models and
aim to keep the information of all users secure to
prevent loss of users’ privacy as described in Section
V-F. This ensures that no malicious third party can
access any information sent/received or exfiltrate
information. However, malicious users in centralised
architectures could exploit the un- authenticated
BLE contact information exchanged between
devices to spread incorrect contact information by
relaying or replaying. This type of attack, discussed
further in Section V-A, would result in false
positives during the contact tracing process, forcing
users to be incorrectly notified as close contacts.
Decentralised and hybrid architectures, on the other
hand, assume an honest-but-curious server that
performs all the tasks assigned to it and passively
harvests sensitive data, if available. The attack
model considers the government and the server to be
untrustworthy and only reveals users’ identities to
the health authorities. As mentioned earlier, the
primary user concern relates to the government
using the data for purposes other than contact
tracing. Therefore, these architectures aim to hide
the user identities and generate anonymous IDs for
the devices, thereby preventing the ability of the
server to link IDs to user information. The decen-
tralised architecture delegates data management
to users’ smartphones, making the solution more
robust against a sin- gle point of failure/attack, such
as the central server. However, the decentralised
architecture still requires a minimally func- tioning
central server. Therefore, it will be vulnerable to a
much lower number of server-based attacks. In
decentralised architectures, anonymous IDs are
uploaded to the server, which are then potentially
accessible by other smartphones for matching. Thus
an honest-but-curious server will not be able to learn
any PII, link the anonymous IDs or build social
graphs unless it has access to some side-channel
information. In case of a data breach, there will be
no impact as the attackers only have access to the

seeds/tokens of infected users, which are already
public. A malicious user, on the other hand, can
still cause false positives by relaying the chirps
and launch Denial of Service (DoS) attacks by
broadcasting fake but correctly formatted
advertisements.
The hybrid architecture carries out the contact
risk anal- ysis and notification processes at the
se rver. T h i s p r e v e n t s a n y r e - i
dent i f ica t ion/ de- anonymisation attacks, as
discussed in Section V. In addition, the hybrid
architecture provides additional mechanisms to
hide user identities from the server while enabling
centralised matching of contacts. Similar to the
decentralised architectures, it proposes the
generation of ephemeral IDs at the devices. The
rationale is that devices keep full control over
their secret identifiers, making them less
susceptible to breaches at the server.
ATTACKS
In this section, we will cover some of the possible
attacks that can be launched against different app
architectures.
A. REPLAY/RELAY ATTACK
For these attacks, the goal of an adversary is to
force the users to store misleading contact
information, resulting in false positives. This is
achieved by forwarding any message received
from honest users at the same or a different loca-
tion. The adversary requires minimal resources to
launch this attack but may use directional
antennas to extend the area of its influence
further. A relay/ replay attack is the simplest of
the attacks that can be launched against users of a
tracing app. An adversary can capture the
advertised message by a user and immediately
relay the captured message at the same location,
extending the range of the message, or replay it at
another location later on. Note that we classify an
attack in this category if the replayed/relayed
message has a valid ID (the TempID or chirp);
otherwise, it is categorised as a DoS attack
(discussed later in Section V-E).

As the TempID has a short expiry time in
centralised systems (Bluetrace recommended 15
min), the replay attack can be launched before the
expiry of the advertised TempID. If any person

who has received this replay message tests positive,
the originator will be identified as a close contact of
the affected person (false positive) and may be asked
to get tested. A more focused attack is also possible
if the replay attack is executed near an epidemic
testing clinic or a treatment ward/hospital.
Individuals already diagnosed with COVID-19
therefore register the replayed messages as a
close contact.
The decentralised version has marked differences in
behaviour when viewed with the lens of replay/ relay
attacks. The chirp generation mechanism, as
discussed in Section II-B2, involves using a seed
that is valid for 1 hour. The current timestamp
randomises the chirps with 1-minute precision.
Finally, the receiver records the time at which each
chirp is received. During the tracing process,
described in Section II-B4, the app validates the
received timestamp of each stored chirp with the
time of creation of each recon- structed chirp, only
accepting the received chirp as valid if these two
times approximately match. This mechanism
provides safeguards against the replay attack.
Theoretically, it can still be launched within 1
minute of the chirp message’s expiry time. Relay
attacks can still be effective as these are not delayed,
resulting in valid chirps.
With hybrid architectures, it is still possible to
launch relay attacks, as symmetric information
would still exist in the PET tables, maintained by
two hosts with a malicious relay. However, the
replay attacks are not possible as only one of the
users would receive the replayed EphID, and the
calcu- lated PETs would only exist for the receiver
of the replayed message. If that receiver tests
positive, the uploaded replayed PETs would not
match with any other PET.
Another difference between the centralised and the
decen- tralised architectures w.r.t. the replay attack is
the scope
of potential targets. In the centralised version, the
victim is the originator (a single person) of the
message being replayed while in the decentralised
version, victims are the multiple recipients of the
replayed message. If the originator tests positive,

he/she will upload the seeds to the server (see
Section II-B3). The recipients of the replay
messages will identify themselves as close
contacts with the originator by comparing the
originator’s uploaded encounter chirps. On the
other hand, in the centralised version, if any
person who has received the replay/relay message
tests positive, the origina- tor is falsely identified
as a close contact. On the other hand, the relay
attack has the same purview in all architectures,
affecting both the originator and the recipient of
the relayed encounter message.
B. WIRELESS DEVICE TRACKING
The attacker’s goal in this type of attack is to
track the device by the BLE information
broadcast by the COVID-19 tracing apps.
Consider a shopping mall that wants to track the
gen- eral movement pattern of its customers. It
can deploy BLE nodes, like Apple’s iBeacons,
strategically throughout the entire shopping
centre, passively listening for advertisements
from tracing apps. These nodes can send the
captured BLE messages to a central tracking
server for further processing. The tracking server
can now use simple triangulation [29] and
timestamps to estimate the location of each
device. This enables tracking, even recording how
much time each cus- tomer (device) spends in
each store.
For apps that use the centralised architecture,
TempIDs and phone model information can be
used to to uniquely identify a device. Since
TempIDs are changed after a short time (typi-
cally 10-15min), tracking a device beyond the
point where the device starts advertising a new
TempID would require extra intelligence to link
the two TempIDs (also see Section V-H) to the
same device, advertising the same phone
model. In the decentralised architecture,
chirps with a 1-minute lifetime provide limited
opportunity for tracking. The tracking server can
still enumerate the total number of users in the
area, how- ever it is difficult to track the
movement of a device without a phone model.
The tracking, in this case, would be applicable to
limited scenarios e.g., a few customers in a shop
or if user’s device is stationery. Hybrid
architectures behave like the centralised

architecture as the devices advertise EphID with a
lifetime of 15 minutes, making it possible to track a
device based on EphIDs.
C. LOCATION CONFIRMATION
In this attack, the attackers’ goal is to discover the
presence of a user in a known location/environment,

such as a neighbour- hood. The BLE advertisements
and information contained in the exchange of
encounter messages in the centralised archi- tecture
can be used to confirm a user’s location. For
example, assume that Alice is the only one in her
family who owns an iPhone 9, and this is known to
an adversary, Eve. Eve can con- firm whether Alice
is at home by listening to the encounter messages
that include Alice’s phone model information.
D. ENUMERATION ATTACK
The primary goal of this attack is to count the
number of users who have tested positive.
Enumeration refers to any user’s ability to estimate
the number of users infected with COVID-19, who
have volunteered to upload their contact tracing data
to the server. Note that enumeration does not include
the server’s ability to count the number of positive
cases. In the centralised architecture, the information
regard- ing positive cases and their close contacts
remains within the server, therefore preventing users
from enumerating.
In the decentralised architecture, each positive case
uploads all of their seed from the last 21 days (21
days × 24 seeds per day = 504 seeds). All app users
can download the list of all seeds from the server
and can estimate the num- ber of positive cases. One
option to conceal this information is to calculate all
the chirps at the server and store these in a bloom
filter ([30] and Section VI-B5). This bloom filter
(see Figure 13) is then retrieved by the app to check
for matches with their contact chirps, without
revealing other details. The enumeration attack can
also be mitigated, in the decentralised architecture, if
the infected user is provided with the capabil- ity to
redact some contact information while uploading
their contacts. Enumeration attacks are not possible
in the hybrid architecture as the server conceals the
list of infected user IDs from other users.
FIGURE 13. Encoding chirps into a Bloom Filter.
E. DENIAL OF SERVICE
The goal of this attack is to consume the resources

(battery, bandwidth, processing, etc.) available in
the system (user mobile, server). In this regard, we
discuss the issue of an adversary injecting bogus
encounter messages/chirps into the contact tracing
environment. This is done with the following,
potentially malafide intentions:

• Consume mobile device storage and battery (all
three architectures)
• Cause an upload of these bogus messages to the
server once a user tests positive (centralised and
hybrid only)
• Increase processing time at the server
(centralised and hybrid only)
• Increase processing time at the mobile device
(more profound in the decentralised architecture
as all chirps (including the bogus ones) need to be
compared with the reconstructed chirps)
Note that in the centralised version, the server
will process the bogus encounter messages, but
will discard these after the server completes a
validity check. On the other hand, in the
decentralised version, there is no way to check the
validity of the received chirp if it is correctly
formatted.
F. D E - A N O N Y M I S I N G T H E U S E R S /
LINKAGE ATTACK

In this attack, a user aims to de-anonymise
another user’s identity by correlating the
anonymous broadcast data with information
gathered through side-channels. This can be
achieved by linking the anonymous ID with the
user’s identity in what is known as a linkage
attack. Most contact tracing apps have been
designed with data and user privacy in mind.
However, in the decentralised architecture, it is
still possible to identify users once they test
positive to the virus. Figure 14 presents the steps
required to launch the attack. User A uses a
decentralised app that records the details of his
encounters with other persons (day/time/duration/
location/gender, etc.) (step 5). If this user receives
an alert (step 6), he/she can easily identify the
infected user by comparing the reconstructed
chirps (step 7). This can be achieved by looking at
the time stamp (and duration) of the chirps and
comparing his/her collected records (step 8).
Some malicious record keeping can also be done

automatically by a modified app that collects
location information using GPS/WiFi etc.
For the centralised architecture, it is possible to de-
anonymise close contacts, but it is hard to de-
anonymise a positive case since an app user is not
provided with a list of TempIDs for comparison. A
positive case can still be identified if a user who is
in isolation and has only met one person receives a
close contact notification. Tem- pIDs can easily be
associated with a user by referring to the advertised
mobile model number. The duration of con- tact and

an isolated encounter will increase the chances of
linking TempIDs with a particular user. Similarly, a
Sybil attack [31] can also be launched whereby an
attacker can deploy multiple devices and only use a
single device for a short time. If the user receives a
notification from the server on one of his/her
devices, the user can narrow the linkage attack to a
short time window when that device was active.
An attacker can launch another kind of linkage
attack, called a Paparazzi attack [2], [32] in
decentralised apps using passive BLE devices. When
a user tests positive, the server receives the seeds,
which are, in turn, sent to the users, including the
attacker. The attacker reconstructs chirps and
combines this data with that obtained from the
passive BLE devices. It can then track the positive
case throughout the contagion period. Similar to the
Paparazzi attack, attackers can trace infected users
by deploying a large number of passive BLE devices
while colluding with the server. This is referred to as
an Orwell attack [33].

Required tools:

Major tools required for the development of
the applications:

1. React - React (also known as React.js or
ReactJS) is an open-source JavaScript library
for bui lding user interfaces or UI
components. It is maintained by Facebook
and a community of individual developers
and companies. React can be used as a base
in the development of single-page or mobile
applications.

2. HTML - Hypertext Markup Language, a
standardized system for tagging text files to
achieve font, color, graphic, and hyperlink
effects on World Wide Web pages.

3. CSS - CSS describes how HTML elements
are to be displayed on screen, paper, or in
other media. CSS saves a lot of work. It can
control the layout of multiple web pages all
at once. External style sheets are stored in
CSS files.

4. An IDE (Integrated Development
Environment) - For the complete
development and management for the
source code and libraries. It’s also used
for final compilation of the software.

Feasibility Analysis:

There are a number of trackers present out there,
but then what makes our project different from
them?

● Simply put you can stay up to date by
listening to the news and just looking at
the data on some random website. Our app
just provides the same with a much better
GUI so that wherever you tap on the map
you can get the data of that particular
country, you can search individually by
country name, enable your location to get
the data of your country and more.

● Graphs and tooltips are available so
that you can just hover your mouse
over the

●

just simply adding it the home screen
will save your time and you can use
it as an app in your handsets.

● Our feasibility is attainable as
the library used is apt and our
goal of providing the users
with accurate, and easily
accessible data at their
fingertips will be achieved.

Figures and Tables:

ACKNOWLEDGMENT

We would like to thank our guide, Mr. Bibhas
Kumar for his continual support and unwavering
guidance. Furthermore, we would like to thank the
numerous moderators for their feedback.

RESULTS

• The application provides an efficient way of
showing the identified Covid-19 containment zones
to the users in a Google map. With the alarming
increase of Covid-19 affected cases throughout the
world, this developed application can be employed
as a tool for creating further social awareness
among the people.

• This application further tracks the user's location
and checks whether it is present in the list of

identified containment zones. It sends separate
notification alerts to the user on entering.
Thereby this application identifies the
containment zones and highlights the need for
taking further precautionary measures for
combating Covid-19.

• Tests will be carried out in various containment
zones across for the validation of the Android
application. The identified containment zones
chosen for the testing of the application is yet to
be decided.

Reference

https://github.com/disease-sh/api.

"Disease.Sh - Open Disease API (@Diseaseapi)
On Twitter". Twitter.Com, 2020,
https://twitter.com/DiseaseAPI.

"Using Javascript’S Async/Await Syntax To
Fetch Data In A React App". Medium, 2019,
https://medium.com/@matt.readout/using-javascri
pts-async-await-syntax-to-fetch-data-in-a-react-ap
p-878b930cdc6f#:~:text=Basically%2C%20when
%20c
alling%20fetch(),JSON%20data%20that%20we%
20expec.

"How To Make A Chart Using Fetch & REST
API's". Zingchart Blog, 2017,
https://blog.zingchart.com/how-to-make-a-chart-u
sing-fetch-rest-apis/.

P. H. O’Neill, T. Ryan-Mosley, and B. Johnson.
(2020). A Flood of Coronavirus Apps are Tracking
Us. Now it’s Time to Keep Track of Them. [
O n l i n e] . A v a i l a b l e : h t t p s : / /
w w w. t e c h n o l o g y r e v i e w. c o m / 2 0 2 0 / 0 5 /
07/1000961/launching-mittr-cov%id-tracing-
tracker/

https://medium.com/%2540matt.readout/using-javascri
http://www.technologyreview.com/2020/05/

1. P. H. O’Neill, T. Ryan-Mosley, and B. Johnson.
(2020). A Flood of Coronavirus Apps are
Tracking Us. Now it’s Time to Keep Track of
T h e m . [O n l i n e] . Av a i l a b l e : h t t p s : / /
w w w . t e c h n o l o g y r e v i e w . c o m /
2 0 2 0 / 0 5 / 07/1000961/launching-mittr-
cov%id-tracing- tracker/

2. S. Vaudenay, ‘‘Centralized or decentralized? The
contact tracing dilemma,’’ IACR Cryptol. ePrint
Arch., vol. 2020, p. 531, May 2020. [Online].
Available: https://eprint.iacr.org/ 2020/531

3. C. Criddle and L. Kelion. (2020). Coronavirus
Contact-Tracing: World Split Between Two Types
of App. [Online]. Available: https://www.bbc.

http://www.technologyreview.com/2020/05/
http://www.technologyreview.com/2020/05/

com/news/technology-52355028
4. J. Duball. (2020). Centralized vs. Decentralized:

EU’s Contact Trac- ing Privacy Conundrum.
[Online]. Available: https://iapp.org/news/a/
central ized-vs-decentral ized-eus-contact-
tracin%g- privacy-conundrum/

5. R. Jennings. (2020).What are the Data Privacy
Considerations of Contact Tracing Apps. [Online].
Available: https://ukhumanrightsblog. com/
2 0 2 0 / 0 5 / 0 1 / w h a t - a r e - t h e - d a t a -
p r i v a c y - cons%iderations-of-contact- tracing-
apps/

6. D. Palmer. (2020). Security Experts Warn: Don’t
Let Contact-Tracing App Lead to Surveillance.
[Online]. Available: https://www.zdnet.com/
article/ security-experts-warn-dont-let-contact-
tr%acing- app-lead-to- surveillance/

7. P. Farrell. (2020). Experts Raise Concerns About
Security of Coronavirus Tracing App Covidsafe.
[Online]. Available: https://www.abc.net.au/ news/
2 0 2 0 - 0 5 - 1 4 / e x p e r t s - c o n c e r n e d - a b o u t -
coronavi%rus- tracing- covidsafe-security/
12245122

[8] E . M . R e d m i l e s ,
‘‘ U s e r c o n c e r n s & t r a d e o f f s i n t e c h n o l o g y -
f a c i l i t a t e d c o n - t a c t t r a c i n g , ’ ’ 2 0 2 0 ,
arXiv:2004.13219. [Online]. Available: https://arxiv.
org/abs/2004.13219
9. J. Li and X. Guo, ‘‘COVID-19 contact-tracing

apps: A survey on the global deployment and
challenges,’’ 2020, arXiv:2005.03599. [Online].

Available: https://arxiv.org/abs/2005.03599
10. L. Reichert, S. Brack, and B. Scheuermann, ‘‘A

survey of auto- matic contact tracing
approaches,’’ Cryptol. ePrint Arch., IACR, Belle-
vue, WA, USA, Tech. Rep. 2020/672, 2020.
[Online]. Available: https://eprint.iacr.org/
2020/672

http://www.zdnet.com/
http://www.abc.net.au/

