
EasyChair Preprint
№ 5309

Distributed Species-Based Genetic Algorithm for
Reinforcement Learning Problems

Anirudh Seth, Alexandros Nikou and Marios Daoutis

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 8, 2021



Distributed species-based genetic algorithm for
reinforcement learning problems

Anirudh Seth1,2[0000−0003−3762−2578], Alexandros Nikou2[0000−0002−8696−1536],
and Marios Daoutis2[0000−0003−0401−6897]

1 KTH Royal Institute of Technology, Brinellvägen 8, 114 28 Stockholm, Sweden
2 Ericsson Research, Torshamnsgatan 23, 16440, Stockholm, Sweden
{anirudh.seth, alexandros.nikou, marios.daoutis}@ericsson.com

Abstract. Reinforcement Learning (RL) offers a promising solution when
dealing with the general problem of optimal decision and control of agents
that interact with uncertain environments. A major challenge of existing
algorithms is the slow rate of convergence and long training times espe-
cially when dealing with high-dimensional state and action spaces. In our
work, we leverage evolutionary computing as a competitive alternative
to training deep neural networks for RL problems. We present a novel
distributed algorithm based on efficient model encoding which enables
the intuitive application of genetic operators. Another contribution is the
application of crossover operator in two neural networks in the encoded
space. Preliminary results demonstrate a considerable reduction of train-
able parameters and memory requirements while maintaining compara-
ble performance with DQN and A3C when evaluated on Atari games,
resulting in an overall significant speedup.

Keywords: Neuro-evolution strategies · Model Encoding · Distributed
Speciation · Reinforcement Learning · Genetic Algorithms

1 Introduction
Reinforcement Learning (RL) is an active area of research within artificial in-
telligence routinely applied in a wide range of domains, for example robotic
manipulation [1], personalized recommendations [10] and recently in novel areas
such as telecommunication [6]. Existing methods, e.g. Q-learning [4] and policy
gradients [3], train deep neural networks by back-propagation of gradients. Such
approaches usually entail expensive computations, often not trivially paralleliz-
able, which result in hours or even days of training in order to obtain desirable
results especially when solving complex problems with large state-spaces [3, 4].

Alternative approaches to solve RL problems include Augmented Random
Search (ARS) [2], evolution strategies [7] and deep neuro-evolution [9]. The latter
two approaches belong to a class of black-box optimisation techniques which
are based on principles of evolutionary computation. The results highlight the
robustness of these approaches to sparse/dense rewards, tolerance to arbitrarily
long time horizons as a consequence of gradient free learning and significant
speedup due to distributed training [7, 9].

In our work, we propose a novel distributed species-based genetic algorithm
aimed at solving RL problems, which trains a deep neural network using the
genetic operators mutation, selection and crossover. The algorithm relies on an



2 A. Seth et al.

Fig. 1: Distribution of species in
the initial population.

θ00

θ01
...

θ0
w

+σ1φ(τ1) =

θ10

θ11
...

θ1
w

+σ2φ(τ2) =

θ20

θ21
...

θ2
w

· · ·

θ
g

0

θ
g

1
...

θg
w

Evolution

Weights

Encoding [(τ0, speciesID)] [(τ0, speciesID), (τ1,σ2)] [(τ0, speciesID), (τ1,σ2) · · · (τg,σg)]

Parent1

Parent2

[(τ0, speciesID1), (τ1,σ1) · · · (τt,σt)]

[(τ0, speciesID2), (τ ′1,σ
′

1) · · · (τ
′

t,σ
′

t)]

crossover

[(τ0, speciesID), (τ1,σ1) · · · (τp,σp), (τ
′

p+1, τ
′

p+1), · · · (τt,σt)]

crossover point

Fig. 2: Graphical representation of the model encod-
ing, mutation and crossover.

efficient and compact model encoding that scales well in memory and utilizes
extremely low bandwidth making it highly scalable. The performance is presently
evaluated in Atari 2600 benchmarks and is compared to established algorithms
such as DQN [5] and A3C [3].

2 Methods
As in any other typical genetic algorithm or population based optimisation
method, we evolve a population P of N individuals (candidate solutions to
the problems – i.e. a DQN network). The concept of speciation to cluster the
individuals with topological similarities was first introduced in NEAT [8]. We
build upon the same idea and randomly generate S classes of species, with each
class represented by a unique NN layer weight initialisation strategy, that pro-
motes diversity and protects innovation within the population pool. We call this
algorithm Sp-GA in the following text.

At each generation, we evaluate the entire population using a fitness function
(cumulative reward for a RL problem). A fraction of the population T with
highest fitness scores are selected as parents for the current generation. These
parents then generate the offsprings for the subsequent generation using genetic
operators like mutations, crossover and selection. The mutation operator selects
a single parent uniformly at random from T and updates all the parameters by
applying additive Gaussian noise as θ′ = θ + σε where ε ∼ N (0, I) and σ is the
mutation power. The individual with the highest fitness is copied as-is to the
next generation, a concept called elitism. Crossover operation selects a pair from
T to generate a new individual with features from each parent. The parameter
ψ represents the probability of using mutation and 1− ψ for crossover.

In our work, we propose a novel way to perform single point crossover of two
neural networks to produce one child neural network in the encoded space. This
evolutionary process is repeated until a new population of size P + 1(elite) is
generated completing one epoch/generation of the genetic algorithm.

2.1 Model encoding and genetic operators

Authors in [7, 9] employ lists of random seeds for distributed computing but
these approaches are limited to a vanilla genetic algorithm without crossover. In
our work, we propose an enhanced model encoding that scales well in memory,
can be easily serialized, utilizes low bandwidth and can also work with a wide
variety of genetic algorithms. An individual from the population (a NN) can be
represented as a list of tuples (Fig. 2), the first tuple contains the specie identifier



Distributed species-based genetic algorithm 3

Hyperparameter Value
Population 200

Mutation Power 0.002
No of elites 10%

Ψ 0.75
Species 5

Fig. 3: Hyperparame-
ters used to train Sp-
GA

DQN A3C Sp-GA
No. of workers 1 CPU 8 workers - 1 CPU each 10 workers - 4 CPU each

Frames 5M 5M 5M
Training time ∼ 9hr ∼ 3hr45min ∼ 55min

frostbite 240 180 270
spaceinvader 585 555 1020

Fig. 4: Maximum episodic reward for DQN,A3C and elite’s
performance for Sp-GA after training on ∼ 5 million frames
on 2 Atari 2600 games.

(class name), initialisation seed and the subsequent tuples represent the mutation
power, seeds utilized for evolutionary operations at each generation. Given this
encoded representation, a worker can decode the model by iterating through this
list of seeds and applying iterative mutations.

Crossover of two neural networks is a challenging task to implement in a
distributed manner. Previous work [7, 9] only rely on mutations when evolving
the neural network. The chromosomal crossover and recombination of genes in
cells motivated us to apply the same approach to the encoded representation
of the networks. A crossover point is sampled and a new encoding is formed
by merging the two encodings along the sampled point. The resulting encoding
represents a valid individual which contains features from each parent (Fig. 2).

3 Results

The performance of the proposed algorithm (Sp-GA) was evaluated on Atari
2600 games. Due to limited computational resources, we compare the results
from 2 games, i.e. space-invaders and frostbite with reference implementations 3

of DQN and A3C. The tuned hyper-parameters were obtained from the bench-
marked results 4. The following steps in our algorithm are identical to DQN and
A3C: 1) data pre-processing 2) network architecture 3) 30 random, initial no-op
operations The hyper-parameters used for training are summarized in Fig. 4 and
the initial distribution and kinds of species are shown in Fig. 1. Each episode
(DQN and A3C), generation Sp-GA) was capped at maximum of 10k frames.
The maximum episodic reward (DQN and A3C) and elite individual’s reward
(Sp-GA) after training for ∼ 5 million frames on a Kubernetes cluster is reported
in Fig. 4. The elite model for frostbite belongs to the species ’xavier normal’ and
for space-invader it belongs to the species ’kaiming uniform’. Sp-GA outperforms
DQN and A3C on both games and is at least 4 times fast. However, all these
comparisons are preliminary and need further investigation. The key takeaway
is that Sp-GA is a comparable competitor to DQN and A3C and is significantly
scalable.

4 Discussion

In this work we presented a distributed species-based genetic algorithm as a
scalable alternative to RL algorithms like DQN and A3C. A novel framework to
apply crossover in the encoding space is also proposed. Our results show compa-
rable performance and significant speedup when compared to Markov Decision
Process (MDP) based approaches. The results in our work are limited to 2 games
and training on ∼ 5 million frames and require further verification. We have also
demonstrated how different variants of genetic algorithms can be scaled and

3 https://docs.ray.io/en/master/rllib.html
4 https://github.com/ray-project/rl-experiments



4 A. Seth et al.

Fig. 5: Performance of DQN, A3C (max score over an episode), Sp-GA(top elite’s
score) with increasing epochs on Atari 2600 games.

quickly solve RL problems with a large state space. Future efforts will be de-
voted towards training our algorithm on a wider set of games for more training
frames and tuning the hyper-parameters for each use case. It is also interesting
to see how this algorithm would perform in RL problems from other domains
such as from robotics and telecommunication. Overall it is noteworthy to see a
simple algorithm performing surprisingly well paving the way to novel variants
such as a hybrid approach combining Sp-GA with a MDP-based algorithm.

References

1. Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E., Quillen,
D., Holly, E., Kalakrishnan, M., Vanhoucke, V., Levine, S.: Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation (2018)

2. Mania, H., Guy, A., Recht, B.: Simple random search provides a competitive ap-
proach to reinforcement learning (2018)

3. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver, D.,
Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning (2016)

4. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning (2013)

5. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al.: Human-level
control through deep reinforcement learning. nature 518(7540), 529–533 (2015)

6. Nikou, A., Mujumdar, A., Orlic, M., Feljan, A.V.: Symbolic reinforcement larning
for safe ran control. Internaltinal Conference of Autonomous Agents and Multi
Agent systems (AAMAS) (to appear) (2021)

7. Salimans, T., Ho, J., Chen, X., Sidor, S., Sutskever, I.: Evolution strategies as a
scalable alternative to reinforcement learning (2017)

8. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (Jun 2002)

9. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: Genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning (2018)

10. Zheng, G., Zhang, F., Zheng, Z., Xiang, Y., Yuan, N., Xie, X., Li, Z.: Drn: A
deep reinforcement learning framework for news recommendation. pp. 167–176 (04
2018)


