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Abstract—Due to the sampling method for the wavelet coefficients 
of image can better adapting to its main directional characteristics, 
and the edge detection protects the edge information of the image, 
a local adaptive wavelet denoising method based on elliptic 
direction window and edge detection is proposed in this paper.  
The method first performs wavelet decomposition for image, and 
performs edge detection on the wavelet coefficients. Then, the 
wavelet coefficients of image are sampled by the elliptic directional 
window, and the local threshold of it is calculated. Next, the 
wavelet coefficients are quantized by soft threshold function.  
Finally, the denoised image is obtained by inverse wavelet 
transformation. In addition to be noted that a weight less than 1 is 
multiplied to reduce the threshold amplitude as much as possible 
to preserve the edge features of the image. In order to validate the 
performance of the proposed denoising method, four standard 
gray-scale test images are employed and the denoising results are 
compared with the Local Wiener Filtering with Directional 
Windows (LWFDW). The experimental results show that the 
method proposed in this paper performs better in terms of 
numerical indicators, is smoother in visual and has fewer pseudo-
Gibbs phenomena than the LWFDW. 
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I.  INTRODUCTION 
Since different types of noise are inevitably introduced in the 

processes of image formation and transmission, image denoising 
is a necessary pre-processing process before various image 
applications. It aims to effectively remove the noise from the 
original image, and while retain the details, structures and edges 
of the original image as much as possible [1]-[5]. Due to the 
advantages of the multi-resolution and edge detection 
characteristics, wavelet transform is widely used in various 
signal processing such as feature extraction, signal compression, 
image denoising, etc. [1]. In the wavelet domain, the current 
image denoising method using global threshold does not take the 
local characteristics of the wavelet coefficients into account. 
Because the image localization method in the spatial domain 
cannot adapt to the directional characteristics of the wavelet 
coefficients, the results of which is not ideal in the wavelet 
domain [6]-[10]. [11] proposed Local Wiener Filtering with 
Directional Windows (LWFDW), which is a localized wavelet 
threshold denoising method based on elliptic directional 
windows. In the wavelet coefficient matrix, local elliptic 
windows are set along the main feature direction, and the 

wavelet coefficients in each local elliptic window will have a 
larger probability of a higher similarity. This kind of local 
elliptic window can better adapt to the wavelet coefficients 
consistent with the main feature direction. However, without any 
methods applied to protect the edge information of image, the 
denoising method in [11] will result in unclear edge and pseudo-
Gibbs phenomena in the recovery image. For addressing the 
mentioned-above problem, we propose an adaptive wavelet 
threshold denoising method based on elliptic directional window 
with edge detection to protect the wavelet coefficients, and 
further improve the denoised performance of the restored image. 

II. WAVELET THRESHOLD DENOISING 
The threshold denoising model is expressed as: 

 y = y� + n (1) 

where, y represents the noisy image, 𝑦𝑦� is the clear image, and n 
stands for two-dimensional Gaussian noise. The model in 
wavelet domain can be gotten as follows: 

 𝑊𝑊𝑦𝑦 = 𝑊𝑊𝑦𝑦� +𝑊𝑊𝑛𝑛 (2) 

where, 𝑊𝑊𝑦𝑦 , 𝑊𝑊𝑦𝑦�  and 𝑊𝑊𝑛𝑛 represent the wavelet coefficient of the 
noisy image, the clear image and the noise, respectively. 

There are many commonly used thresholds estimation 
methods in wavelet domain, such as the general threshold 
VisuShrink [12], the SUREShrink threshold [6], the Minimaxi 
threshold [14], GCV threshold [15] and Bayesian threshold 
(BayesShrink) [8] and etc.. In this paper, the BayesShrink 
threshold estimation method with the best denoised 
performance is adopted, which is reviewed as follows. 

First, the Bayesian risk function is denoted as: 

 𝑟𝑟(𝑇𝑇) = 𝐸𝐸�𝑊𝑊�𝑦𝑦 −𝑊𝑊𝑦𝑦�
2

= 𝐸𝐸𝑊𝑊𝑦𝑦𝐸𝐸𝑊𝑊𝑦𝑦|𝑊𝑊𝑦𝑦��𝑊𝑊�𝑦𝑦 −𝑊𝑊𝑦𝑦�
2
  (3) 

where, 𝑊𝑊�𝑦𝑦 is the estimated coefficient after thresholding. 𝑊𝑊𝑦𝑦�  
obeys the generalized Gaussian distribution with parameters 
�𝜎𝜎𝑦𝑦� ,𝛽𝛽� ， where 𝜎𝜎𝑦𝑦�  is the standard deviation of wavelet 
coefficients of the clear image. And 𝛽𝛽 is the shape parameter. 
𝑊𝑊𝑦𝑦 obeys the Gaussian distribution with the parameter �𝑊𝑊𝑦𝑦� ,𝜎𝜎𝑛𝑛2� 
under the condition of variable 𝑊𝑊𝑦𝑦� , that is, 𝑊𝑊𝑦𝑦|𝑊𝑊𝑦𝑦� ∝ �𝑊𝑊𝑦𝑦� ,𝜎𝜎𝑛𝑛2�, 



where 𝜎𝜎𝑛𝑛2  is the variance of the noisy wavelet coefficient. 
Minimize the risk function 𝑟𝑟(𝑇𝑇) to get the optimal threshold 
𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒. Numerical experiments show that the threshold 𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒 
is proportional to 𝜎𝜎𝑛𝑛2 and inversely proportional to 𝜎𝜎𝑦𝑦�, namely 
[8]: 

 𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑛𝑛2

𝜎𝜎𝑦𝑦�
 (4) 

In the wavelet threshold denoising theory, it is necessary to 
determine the threshold function to quantize the wavelet 
coefficients. Commonly used threshold functions are hard 
threshold function, soft threshold function and semi-soft 
threshold function and etc. [6,9,12,13]. After wavelet 
transformation, useful signals are concentrated on scale 
coefficients and a small number of wavelet coefficients with 
larger amplitudes, while the energy of noise is dispersed in all 
coefficients with small amplitude. So, the wavelet coefficients 
smaller than a certain threshold are set to zero, and the wavelet 
coefficients larger than the threshold are reduced by the 
threshold shrinkage, which can achieve noise reduction with 
principle of the minimum mean square error. The reason for the 
use of the soft threshold function in this paper is to avoid "one 
size fits all" impact of the hard threshold. That is, the wavelet 
coefficients larger than 𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒  are uniformly subtracted from 
𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒, and those smaller than −𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒 are uniformly added to 
𝑇𝑇𝐵𝐵𝐵𝐵𝑦𝑦𝑒𝑒𝑒𝑒. The image restored by the soft threshold function will 
be visually smoother. 

III. WAVELET COEFFICIENT LOCALIZATION METHOD BASED 
ON ELLIPTIC WINDOW 

Compared with the global threshold denoising method, the 
local threshold denoising method can better retain the local 
features of the image. The existing methods for image 
localization are composed of region merging method [16], 
elliptic window sampling method [11] block matching method 
[17], strict sampling method using fixed-size square windows 
[18] and etc.. Since better adapting to the main characteristic 
direction of the wavelet coefficients, the local elliptic window is 
adopted to compute the wavelet coefficients for the localization 
method. After the image undergoes wavelet transformation, 
three wavelet coefficient matrices are generated at each 
decomposition scale. Each coefficient matrix contains different 
directional characteristics, which are horizontal, vertical, and 
diagonal directions. Thus, setting local elliptic windows in each 
coefficient matrix along its main characteristic direction will 
make the wavelet coefficients in each local window more likely 
to have higher similarity [11]. The definition of the elliptic 
window is denoted by 

 𝑊𝑊(𝑟𝑟, 𝑎𝑎) = {(𝑚𝑚,𝑛𝑛) ∈ 𝑍𝑍2:𝑚𝑚2 + 𝑎𝑎4𝑛𝑛2 ≤ 𝑎𝑎2𝑟𝑟2} (5) 

𝑊𝑊d(r, a) = {(m, n): min{a4m2 + n2, a4n2 + m2} ≤ a2r2} 

  (6) 

where, 𝑟𝑟 and 𝑎𝑎 stand for the direction parameters of the elliptic 
window; (𝑚𝑚,𝑛𝑛) represent the coordinate index of the pixel. Eq. 

(5) represents an elliptic window in the horizontal and vertical 
directions, and Eq. (6) represents an elliptic window in the 
diagonal direction. The shapes of the elliptic window 
corresponding to  𝑊𝑊(6,2) , 𝑊𝑊(6,1/2) , 𝑊𝑊𝑑𝑑(6,2)  are shown in 
Fig. 1. 

 
            (a)                           (b)                         (c) 

Fig. 1 Illustration of elliptical directional windows. 
(a)horizontal;(b)vertical;(c)diagonal 

IV. THE PROPOSED METHODOLOGY 
The local elliptic window consistent with the main feature 
direction of the wavelet coefficients can better adapt to the 
wavelet coefficient features. If protective measures can be taken 
to preserve the characteristics of the image, the noise reduction 
effect could be further improved. To this end, this paper 
proposes a local adaptive wavelet threshold denoising method 
based on elliptic directional window and edge detection. Firstly, 
the image is decomposed by wavelet, and its wavelet coefficient 
is edge-detected. And then, the wavelet coefficients are 
sampled by the elliptic directional window. During sampling, 
some elliptic windows may contain some wavelet coefficients 
with larger amplitudes that represent edge features. In order to 
protect these wavelet coefficients, the threshold amplitude is 
reduced by multiplying a weight c less than 1 when the wavelet 
threshold is calculated in elliptic windows. For a more accurate 
result, the iteration is carried out to update the local signal 
standard deviation estimation. The detailed steps are introduced 
as follows: 
1) A J-scale wavelet transform of the noisy image is performed 

to obtain scale coefficients𝐴𝐴𝑗𝑗(𝑗𝑗 = 1, … , 𝐽𝐽) , and wavelet 
coefficients 𝑊𝑊𝑗𝑗,𝑘𝑘(𝑗𝑗 = 1, … 𝐽𝐽,𝑘𝑘 = ℎ, 𝑣𝑣,𝑑𝑑) , where ℎ,𝑣𝑣, 𝑑𝑑 
represent the horizontal, vertical and diagonal directions, 
respectively. 

2) The edge detection of the wavelet coefficient image with 
each scale and each direction are performed to obtain the 
wavelet coefficients of the edges. 

3) The wavelet coefficients with each scale and each direction 
are locally sampled by an elliptic window, and then the local 
threshold of the wavelet coefficients in the window is 
estimated according to Eq (7). 

 𝑇𝑇𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 =
𝜎𝜎�𝑛𝑛𝑗𝑗,𝑘𝑘
2

𝜎𝜎�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛
 (7) 

where  𝑇𝑇𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛  is the threshold value of wavelet coefficient 
at scale 𝑗𝑗, direction 𝑘𝑘, and position (𝑚𝑚,𝑛𝑛). If the elliptic 
window contains wavelet coefficients representing the edge, 
𝑇𝑇𝑗𝑗 ,𝑘𝑘,𝑚𝑚,𝑛𝑛 can be recast as 
 



 𝑇𝑇𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 = 𝑐𝑐
𝜎𝜎�𝑛𝑛𝑗𝑗,𝑘𝑘
2

𝜎𝜎�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛
 (8) 

among them, 𝜎𝜎�𝑛𝑛𝑗𝑗,𝑘𝑘  represents the noise standard deviation 
estimation of the wavelet coefficient, and the estimation 
formula of which is 
 

 𝜎𝜎�𝑛𝑛𝑗𝑗,𝑘𝑘 =
𝑚𝑚𝑒𝑒𝑑𝑑𝑚𝑚𝐵𝐵𝑛𝑛�|𝑊𝑊𝑗𝑗,𝑘𝑘|�

0.6745
 (9) 

where 𝑊𝑊𝑗𝑗,𝑘𝑘  corresponding to scale 𝑗𝑗  and direction 𝑘𝑘 . 
𝜎𝜎�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 represents the local signal standard deviation of the 
wavelet coefficients in the corresponding elliptic window, 
and its estimation formula is defined as: 

 𝜎𝜎�𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 = ��
1
𝑁𝑁𝑅𝑅
∑ 𝑊𝑊2(𝑚𝑚+ 𝑝𝑝,𝑛𝑛 + 𝑞𝑞)(𝑝𝑝.𝑞𝑞𝑞𝑞𝑞𝑞) − 𝜎𝜎�𝑛𝑛𝑗𝑗,𝑘𝑘

2 �
+

 (10) 

where, 𝑅𝑅 represents the elliptic window, 𝑁𝑁𝑞𝑞 stands for the 
number of wavelet coefficients in the elliptic window. 
Function (𝑎𝑎)+represents 

 (𝑎𝑎)+ = � 0, 𝑎𝑎 ≤ 0
𝑎𝑎,𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (11) 

4) The soft threshold function processing of each wavelet 
coefficient needs to be performed. The estimated wavelet 
coefficients 𝑊𝑊�𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 at scale 𝑗𝑗 , direction 𝑘𝑘 , and position 
(𝑚𝑚, 𝑛𝑛) can be obtained as 

𝑊𝑊�𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛 =

�
0, �𝑊𝑊𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛� ≤ 𝑇𝑇𝑗𝑗 ,𝑘𝑘,𝑚𝑚,𝑛𝑛

𝑒𝑒𝑠𝑠𝑛𝑛�𝑊𝑊𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛���𝑊𝑊𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛� − 𝑇𝑇𝑗𝑗 ,𝑘𝑘,𝑚𝑚,𝑛𝑛�, �𝑊𝑊𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛� > 𝑇𝑇𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛
 (12) 

5) The wavelet coefficients quantized by thresholds and scale 
coefficients are used to implement the inversed wavelet 
transform to obtain the restored image after the first noise 
reduction. Repeat steps 1) ~3) for the coarsely restored 
image to obtain new wavelet coefficients 𝑊𝑊𝑗𝑗,𝑘𝑘

′ (𝑗𝑗 =
1, … 𝐽𝐽,𝑘𝑘 = ℎ,𝑣𝑣,𝑑𝑑) , and update the local signal standard 
deviation of the wavelet coefficients in each elliptic window 
𝜎𝜎𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛
′  

 𝜎𝜎𝑦𝑦𝑗𝑗,𝑘𝑘,𝑚𝑚,𝑛𝑛
′ = � 1

𝑁𝑁𝑅𝑅
∑ 𝑊𝑊′2(𝑚𝑚 + 𝑝𝑝,𝑛𝑛 + 𝑞𝑞)(𝑝𝑝,𝑞𝑞𝑞𝑞𝑞𝑞)  (13) 

As other steps and data remain unchanged, and new 
thresholded wavelet coefficients are obtained. 

6) Finally, the inverse wavelet transformation on scale 
coefficients and new thresholded wavelet coefficients is 
implemented to obtain denoised images. The flowchart of 
details is shown in Fig. 2. 

 
Fig. 2 Flow chart of wavelet local adaptive threshold denoising method based 

on elliptic directional window and edge detection 

V. EXPERIMENT RESULTS AND ANALYSIS 
In order to test the effectiveness of the denoising method 
proposed in this article, with the platform of MATLAB2018, 
four standard gray-scale test images-Lena, Barbara, Peppers, 
and Boats are selected for comparison experiments. The size of 
the images is 512×512. This paper verifies the importance of 
edge detection before threshold processing. The selected 
reference method is based on the LWFDW method [11]. The 
Symlet-8 wavelet base of the stationary wavelet transform is 
selected, the decomposition scale of which is 4. The edge 
detection operator selects the Canny operator, the parameters of 
the elliptic window are𝑊𝑊(6,2),𝑊𝑊(6,1/2),𝑊𝑊𝑑𝑑(6,2), and the 
weight c is set to 0.9. The noise standard deviations σ used in 
the simulation are set to 10, 15, 20, 25, and 30, respectively. 
Peak signal-to-noise ratio (PSNR) [8] and structural similarity 
(SSIM) [17] are chosen to evaluate the quality of denoised 
results. 

The numerical results of the experiment are shown in Table 
1. The bold items represent the best results among the proposed 
method and the reference method under the same experimental 
conditions. Fig. 3 and 4 respectively show the original image and 
the noisy image with σ=20. The results in Table 1 show that (1) 
when the noise level is low, the numerical indexes of the two 
local wavelet threshold noise reduction methods are close. (2) 
When the noise level is high, the proposed method is better than 
the LWFDW method, and the higher the noise level, the more 
obviously the proposed method is better than LWFDW. The 
results in Fig. 5 show that the two local wavelet threshold 
methods have similar recovery capabilities to edges, but the 
proposed method is visually smoother than the LWFDW, and 
has fewer pseudo-Gibbs phenomena. 

 

TABLE I.  QUALITY EVALUATION INDEXES OF FOUR TEST IMAGES AND 
THREE WAVELET DENOISING METHODS 

Test 
image 

Noise 
standard 
deviation 

PSNR SSIM 

LWFDW Proposed LWFDW Proposed 

Lena  35.63 35.80 0.92 0.93 
 33.42 33.77 0.89 0.90 

=10σ
=15σ



 31.79 32.32 0.88 0.85 
 30.51 31.18 0.81 0.86 
 29.45 30.27 0.77 0.84 

Barbara 

 33.78 33.78 0.93 0.93 
 31.33 31.39 0.88 0.89 
 29.65 29.71 0.85 0.86 
 28.32 28.47 0.81 0.83 
 27.21 27.39 0.77 0.79 

Peppers 

 35.12 35.17 0.90 0.90 
 33.20 33.48 0.87 0.88 
 31.72 32.18 0.83 0.86 
 30.46 31.07 0.80 0.84 
 29.50 30.28 0.76 0.82 

Boats 

 33.24 33.15 0.87 0.87 
 31.25 31.28 0.83 0.83 
 29.80 29.96 0.79 0.80 
 28.67 28.95 0.75 0.77 
 27.73 28.08 0.71 0.74 

 

 
        (a)                                       (b) 

 
        (c)                                       (d) 

Fig. 3 Original images of (a)Lena, (b)Barbara, (c)Peppers, (d)Boats 

 
        (a)                                       (b) 

 
        (c)                                       (d) 

Fig. 4 Noisy images of (a)Lena, (b)Barbara, (c)Peppers, (d)Boats  

 

 

 

 
        (a)                                       (b) 

Fig. 5 Comparison of the noise reduction results of Lena, Barbara, 
Peppers and Boats at the noise level. (a) LWFDW (b) The proposed 

denoising method  

VI. CONCLUSION 
This paper proposes a local adaptive wavelet threshold 
denoising method based on elliptic directional window and 
edge detection, aiming to protect the edge features and improve 
the denoised results. The method first performs wavelet 
transformation for the image, and then applies edge detection to 
the wavelet coefficient of the image. Next, wavelet threshold 

=20σ
=25σ
=30σ
=10σ
=15σ
=20σ
=25σ
=30σ
=10σ
=15σ
=20σ
=25σ
=30σ
=10σ
=15σ
=20σ
=25σ
=30σ



estimation on the wavelet coefficients inside the window is 
computed after sampling the wavelet coefficients of image by 
the elliptic window. Owing to the elliptic windows which 
contains the wavelet coefficients representing the edges, we add 
a weight less than 1 to the restored image after the first noise 
reduction to reduce the threshold shrinkage to protect the edge. 
At the same time, in order to obtain a more accurate estimation, 
the iteration is applied to update the estimated value of the local 
signal standard deviation to obtain a new thresholded wavelet 
coefficient. Finally, the denoised image can be achieved by the 
inverse wavelet transformation with the scale coefficient and 
the denoised wavelet coefficients. By comparison with 
LWFDW, experimental results show that the proposed method 
can achieve better denoising effects in terms of numerical 
indicators, and the denoised image is smoother in the uniform 
area and has fewer pseudo-Gibbs phenomena in visual. 
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