

Argon Ionization by Laser of Fundamental Frequency and Its Second-Harmonic: Phase Delays

Diego Arbó and Sebastián López

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

July 2, 2024

Argon ionization by laser of fundamental frequency and its second-harmonic: Phase delays

Diego G. Arbó,^{1,2,*} and Sebastián D. López¹

¹Institute for Astronomy and Space Physics IAFE (CONICET-UBA), C1428ZAA, Buenos Aires, Argentina ²Universidad de Buenos Aires, Facultad de Cs. Exactas y Naturales and Ciclo Básico Común, Buenos Aires, Argentina *<u>diego@iafe.uba.ar</u>

Abstract

The ionization phases from argon atoms subject to a linearly polarized laser field $(\omega - 2\omega)$ setting are calculated. We find excellent agreement between our results and measured phase delays [L. J. Zipp et al, Optica 1, 361].

Since the 1990's, two-color ω -2 ω laser fields with well-controlled relative phases have been studied experimentally and theoretically. One key feature is that the broken inversion symmetry of the ω -2 ω field allows for interference between odd and even partial waves of the outgoing photoelectron. Zipp *et al* [1] extended the measurement of ionization phases and attosecond time delays to the strong-field multiphoton regime. The role of electron wave packets emitted by absorption of subsequent harmonics in the RABBIT is replaced in this ω -2 ω interference protocol by adjacent ATI peaks generated by a strong driving field of frequency 2 ω . The concomitant weaker field opens up interfering pathways to sidebands in between neighboring ATI peaks by absorbing or emitting one ω photon. Measuring the ionization as a function of the relative phase between the ω and the 2 ω fields, to some extent resembling the original RABBIT protocol, promises to offer insight into the ionization phase and, possibly, timing information of multiphoton processes [2].

In this paper, we present a theoretical study of the ionization phase in the multiphoton regime accessible by two collinearly polarized laser fields of the form $\vec{F}(t) = \left[F_{2\omega}\cos(2\omega t) + F_{\omega}\cos(\omega t + \phi)\right]\hat{z}$. In Fig. 1 we show *ab*

initio results of the energy spectrum calculated within the time dependent Schrödinger equation (TDSE) in the forward direction as a function of the relative phase ϕ . Phase delays have been extracted by fitting the ATI and sideband with the perturbative prediction [4]. We find a very good agreement between our TDSE calculations and the experiments [1] but strong deviations from the predictions of the strong field approximation (SFA) in dashed vertical lines, clearly indicating that the atomic potential has a crucial influence on the ionization phase of ATI peaks even at energies well above the ionization threshold.

Figure 1: TDSE energy spectrum in the forward direction as a function of the relative phase ϕ . Squares: calculated phase delays and the stars: experiments in [1]. Vertical dashed lines: SFA.

In order to investigate the role of NIR probing field in the determination of the time delays, in Fig. 2 we show the delays calculated for decreasing probe laser intensities ($I_{2\omega}$). It can be noted that the shape of the delays of the ATI peaks substantially changes from the value $I_{2\omega} = 4 \times 10^{11}$ W/cm² to $I_{2\omega} = 1 \times 10^{11}$ W/cm², where the "shoulder" structure around E = 20 eV vanishes. As the emission energy increases and the probe intensity decreases, the global trend of ATI delays converges to the strong field limit $\delta = \pi$, corresponding to a time delay of $\delta/2\omega = 666.7$ as, (horizontal dashed line). However, contrarily to the SFA predictions [1,4], a delay different from zero is reached for high emission energies at these probing intensities, and a no clear extrapolation can be proposed as a zero probing intensity. Maybe this non-zero limit can be due to delays produced by numerous ionization paths since unlike RABBIT, the present ω -2 ω protocol opens up a multitude of competing quantum paths, turning the extraction and interpretation of interference phases more complex.

Figure 2: Time delays as a function of the emission energy calculated from asymmetries integrated over half spheres for decreasing NIR intensity.

This work was supported by CONICET PIP0386, PICT-2017-2945, PICT-2020-01434, and PICT-2020-01755 of ANPCyT (Argentina) and by the Austrian FWF (grant Nos. M2692, W1243).

References

[1] L. J. Zipp et al, "Probing electron delays in above-threshold ionization", Optica 1, 361-364 (2014).

- [2] J. Fuchs et al, "Time delays from one-photon transitions in the continuum", Optica 2, 154-161 (2020).
- [3] S. Donsa et al, "Circular Holographic Ionization-Phase Meter", Phys. Rev. Lett. 123, 133203 (2019).

[4] S. D. López et al Phys. Rev. A 104, 043113 (2021).