
EasyChair Preprint
№ 8741

A PBPO+ Graph Rewriting Tutorial

Roy Overbeek and Joerg Endrullis

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 29, 2022

Submitted to:
TERMGRAPH 2022

A PBPO+ Graph Rewriting Tutorial

Roy Overbeek Jörg Endrullis
Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

r.overbeek@vu.nl j.endrullis@vu.nl

We provide a tutorial introduction to the algebraic graph rewriting formalism PBPO+. We show how
PBPO+ can be obtained by composing a few simple building blocks. Along the way, we comment
on how alternative design decisions lead to related formalisms in the literature, such as DPO.

1 Introduction

Graphs are useful data structures for virtually every field of computer science. And they come in many
varieties: they can be directed or undirected, may carry labels or attributes, the edges can be hyperedges,
and so on. Computation on these graphs is however similar, and can be roughly described as the stepwise
replacement of subgraphs, induced by a set of replacement rules. For this reason, it is helpful if the
replacement mechanism can be defined in a general way, without having to commit to a particular notion
of a graph. Ehrig et al. [9] first managed to do so in the 1970s, by specifying a replacement mechanism
(namely, Double Pushout (DPO) rewriting) in the language of category theory. Their seminal work laid
the foundation for the field of algebraic graph rewriting [7], in which a variety of categorical graph
replacement mechanisms have been proposed and studied.

PBPO+ [14] (short for Pullback-Pushout with strong matching) is a graph rewriting formalism in
this algebraic tradition, obtained by adding a strong matching requirement to PBPO [4]. One feature of
PBPO+ is that it is expressive: in the abstract setting of quasitoposes, PBPO+ has been shown [15] to
subsume other well known formalisms such as DPO [9], SqPO [5], AGREE [3] and PBPO. Quasitoposes
include various graph-like categories such as the categories of labeled multigraphs, hypergraphs, safely
marked Petri nets and simple graphs; as well as various categories that are not graph-like.

In this tutorial, we introduce PBPO+ in a stepwise manner, starting from minimal preliminaries. In
particular, we do not assume an understanding of category theory or related formalisms. Instead, we
introduce two toy formalisms ToyPO (Section 2) and ToyPB (Section 3), and show how PBPO+ can be
understood as a combination of the two (Section 4). Our approach complements existing tutorials for
related formalisms (Section 5).

Preliminaries. We write f ◦ g to denote function composition ((f ◦g)x = f (g(x))). By a graph G
we mean an unlabeled directed multigraph, i.e., G = (V,E,s, t), where V is a set of vertices (or nodes),
E a set of edges, s : V → E a source function and t : E → V a target function. A graph homomorphism
φ : G→ H from graph G to graph H is a pair of functions φV : VG→ VH and φE : EG→ EH satisfying
φV ◦ sG = sH ◦φE and φV ◦ tG = tH ◦φE . We use ↣ to denote injective homomorphisms, and A ∼= B to
denote that A and B are isomorphic.

A note on vocabulary. A category consists of objects and morphisms between them. In our graph
setting, these instantiate to graphs, and graph homomorphisms between graphs, respectively. We state
some concepts (such as pushouts and pullbacks) categorically in this paper, but readers unacquainted with
category theory may safely read “graph” for “object” and “graph homomorphism” for “morphism”.

2 A PBPO+ Graph Rewriting Tutorial

2 ToyPO

We start by defining a toy graph rewrite formalism called ToyPO (short for ToyPushout). This formalism
computes rewrite steps using a single pushout construction. It allows the specification of identification
and addition of elements.

Definition 1 (ToyPO Rule). A ToyPO rule is a morphism ρ : L→ R. L and R are called patterns.

Example 1. The rule ρ : L→ R depicted by a b
ρ

a b c can be described as speci-
fying (i) the identification of two connected nodes a and b, and (ii) the addition of a node c.
Notation 1 (Visual Notation). Our notation for graphs and graph homomorphisms can be described
formally. A vertex is a non-empty set {x1, . . . ,xn} represented by a box x1 · · · xn , and each morphism
f = (φV ,φE) : G→ G′ between depicted graphs G and G′ is the unique morphism satisfying S ⊆ f (S)
for all S ∈ VG. For instance, for nodes {a} and {b} in the left hand side of ρ (Example 1), ρ({a}) =
ρ({b}) = {a,b} of the right hand side. We will use examples that ensure uniqueness of each f (in
particular, we ensure that the mapping of edges φE is uniquely determined by the mapping of nodes φV).
Colors are purely supplementary.

Definition 2 (Match). A match for a ToyPO rule ρ : L→ R in a host graph G is an injective morphism
m : L ↣ G. The image m(L)⊆ G is an occurrence of L in G.

Example 2. The injective morphism m : L ↣ G depicted by

a b
m

a bd e f

is a match for rule ρ of Example 1 in the host graph G. Three other matches are possible: d→ a, e→ f
and f → e.
Remark 1. We require injectivity of m for three reasons. First, it is easier to understand. Second, it yields
a strictly more expressive formalism (cf. Habel et al. [10]). Third, it better prepares for PBPO+, where
matches are injective as well.

Given rule ρ : L→ R and match m : L ↣ G of Examples 1 and 2, respectively, arguably the most
reasonable result of the rewrite step is the graph

a b cd e fH =

because this graph can be understood as the minimal solution in which m(L) is replaced by R in G. More
specifically, no elements of G−m(L) are deleted, duplicated or identified; and no elements other than
those in R−ρ(L) are added. Astonishingly, this informal notion of a minimal solution can be defined
formally and abstractly using the language of category theory; that is, without making any reference
whatsoever to graphs or graph homomorphisms.

L R

G H

H ′

ρ

m iR
iR ′=iG

=

iG ′

= !x

Figure 1: Pushout.

Definition 3 (Pushout [16, 2]). The pushout of a span G m← L
ρ→ R is a

cospan σ = G
iG→ H iR← R such that

1. σ is a candidate solution: iG ◦m = iR ◦ρ; and

2. σ is the minimal solution: for any cospan G
i′G→H ′

i′R←R that satisfies
iG′ ◦m = iR′ ◦ρ , there exists a unique morphism x : H → H ′ such
that iG′ = x◦ iG and iR′ = x◦ iR.

Both requirements are conveniently visualized in the commuting diagram
depicted in Figure 1.

R. Overbeek & J. Endrullis 3

Pushouts are unique up to isomorphism if they exist (and they always do in the category of graphs).
A useful intuitive description of a pushout is that of a gluing construction, because H can be thought of
as the result of gluing G and R along shared interface L. This view is especially intuitive if m is injective,
which is always the case in our setting.
Exercise 1. For span G

m
↢ L

ρ→ R given by Examples 1 and 2, verify that
1. the following pushout is indeed a candidate solution (i.e., satisfies condition 1 of Definition 3):

a b
ρ

a b c

m

a b

d e f

iR

iG

PO

a b c

d e f
(1)

2. the following graphs (with the obvious choices for the cospan morphisms iG, iR) constitute two
other candidate solutions:

a bd c e fH ′ = a b c gd e fH ′′ =

3. H satisfies condition 2 of Definition 3 specifically for competing candidates H ′ and H ′′; and
4. H ′ and H ′′ both fail condition 2 of Definition 3 because

(a) no suitable witness x : H ′→ H exists (the identification of elements cannot be undone); and
(b) a suitable witness x : H ′′→ H does not exist uniquely (node g can be mapped freely).

For a set theoretic description of the pushout, one may consult König et al. [12]. For this paper,
however, it suffices if the reader understands the pushout intuitively as a gluing construction, and that it
can be used for the specification of identification and addition of elements.

We may now define the notion of a ToyPO rewrite step.
L R

G H

ρ

m iR

iG

PO
Definition 4 (ToyPO Rewrite Step). A ToyPO rule ρ : L→R and match m : L↣G
induce a ToyPO rewrite step G⇒ρ,m

ToyPO H if there exists a pushout of the form
shown on the right.

3 ToyPB

Next, we would like to specify the duplication and deletion of elements. This is slightly more challeng-
ing, and allows for a larger variety of solutions.

For some historical context, and to illustrate the solution space, consider the approach where we
invert the procedure described in Section 2. For example, we read rule ρ : L→ R of Example 1 right-
to-left, suggestively writing the type signature as ρ : R← L. Read in this way, ρ intuitively specifies the

R L

G H

m

ρ

l1PO

l2

duplication of node ab and the deletion of node c. When we find a match m : R↣G,
we try to show that G can be understood as the result of a suitable gluing. That is,
we try to find morphisms l1 : L→ H and l2 : H → G such that the diagram shown
on the right is a pushout square. Morphisms l1 and l2 together constitute a pushout
complement for ρ and m.
Example 3. The pushout square of Diagram (1) in Exercise 1 can be read as an inverted application of ρ ,
by reading morphism iR as the match, the bottom right graph as the host graph, and the bottom left graph
as the result graph.

4 A PBPO+ Graph Rewriting Tutorial

a
ρ

m

a b

The inverse approach has two particular caveats:

1. Existence of pushout complements: Consider a rule ρ that deletes a node a,
and a match m as depicted on the right (the domain of ρ is the empty graph).
Even though all pushouts exist in the category of graphs, and even though we
have found a match m, a pushout complement does not exist for this corner:
the depicted edge can never be obtained through a gluing around an empty interface. The more
general implication of this observation is that we are only able to delete nodes if they do not
leave any edges “dangling” (called the gluing condition). This can be considered a pleasant safety
feature, but also a limitation: perhaps we would prefer to simply delete any incident edges (as a
general principle), or even be able to specify more fine-grained control on the level of the rule
itself.

a b
ρ

a b

m

a b
a b

PO

a b

2 Uniqueness of pushout complements: More importantly, unlike
pushouts, pushout complements need not be unique: the square
on the right shows that two pushout complements exist, one of
which does not model duplication (similarly, there exists another
pushout complement for the pushout square of Diagram (1)). This
is problematic if it is desired that rewrite step results are uniquely
determined by the rule and match. In the category of graphs, uniqueness of pushout complements
can at least be ensured by restricting rules ρ to injective morphisms (thus allowing deletion, but
not duplication of elements). However, in other categories, such as the category of simple graphs,
this is not generally sufficient.

These two caveats notwithstanding, the most dominant graph rewriting method, called the Double
Pushout (DPO) approach, combines the pushout complement approach (with the injectivity requirement)
with the ToyPO approach. In doing so, it enables the specification of rewrite steps with deletion, identi-
fication and addition features, for matches m that satisfy the gluing condition.

L K R

GL GK GR

m

l r

PO PO

Definition 5 (DPO Rewriting [9]). A DPO rewrite rule ρ is
a span L

l
↢ K r→ R. A diagram depicted on the right defines

a DPO rewrite step GL ⇒ρ,m
DPO GR, i.e., a step from GL to GR

using rule ρ and match m : L ↣ GL.

Alternatives to the DPO approach avoid the construction of pushout complements. For instance,
the Single Pushout (SPO) approach [13] relies on a single pushout construction, but uses partial graph
homomorphisms instead of total morphisms, in order to specify deletion. In this approach, the gluing
condition no longer needs to be checked either: all edges incident to a removed vertex are simply deleted.
As another example, the Sesqui-Pushout (SqPO) approach [5] replaces the first PO square of DPO by
what is called a final pullback complement square. This square allows duplication with deterministic
behavior, and like SPO, deletes any edges that would be left dangling.

T = a b

Figure 2: Node colors.

T = x

Figure 3: Edge colors.

For our proposal, called ToyPB (short for ToyPullback), we consider a
perspective that is dual to the ToyPO approach, rather than its inverse. First,
instead of trying to find an occurrence of some pattern L in a graph G (through
a match m : L ↣ G), we try to find a graph homomorphism α : G→ T into
some graph T . When we adopt such a viewpoint, we will call α an adherence
morphism, and we can think of T as a kind of type graph. For instance, if T
is the graph from Figure 2 then any adherence α : G→ T assigns one of two

R. Overbeek & J. Endrullis 5

“colors” a and b to nodes of G such that no two G-neighbors have the same color (α is effectively a proof
that G is 2-colorable or bipartite); and if T is as in Figure 3 then we can regard any α as assigning every
edge of G one of two “colors”, depending on which loop is being assigned. We now consider a ToyPB
rule to specify a manipulation of such type graphs.

Definition 6 (ToyPB Rule). A ToyPB rule is a morphism ρ : L′← R′. L′ and R′ are called type graphs.

Observe that ToyPO and ToyPB rules are formally identical. But it helps to emphasize the difference
in perspective by presenting the definitions differently.

Example 4. Rule a b
ρ

a b specifies the deletion of edges that originate in b-nodes,
and the duplication of edges that originate in a-nodes. An intended example application is given by the
commutative square in Figure 4. In this and the next example, the rule lies at the bottom of the square,
and the node identities of the rule have been adjusted to indicate how the morphisms are defined (see
Notation 1).

Example 5. Let us again think of an adherence α : G→ T on graphs G and T as assigning colors to

elements of G. Rule a b
τ

a b specifies the deletion of all “red” edges, and splits all
nodes so that the “blue” edges are rendered as edges of a (one-way) bipartite graph. An intended example
application is given by the commutative square in Figure 5.

The desired outcomes of Examples 4 and 5 (which we hope the reader agrees are the most reasonable
ones given the adopted intuitive perspective) can be obtained through a pullback construction, a notion
that is the dual to the pushout (Definition 3). Like pushouts, pullbacks are unique up to isomorphism.

H ′

G H

L′ R′

iG ′

iR ′

!x=

=

α iR

iG

=

ρ

Figure 6: Pullback.

Definition 7 (Pullback [16, 2]). The pullback of a cospan G α→ L′
ρ← R′

is a span σ = G
iG← H iR→ R such that

1. σ is a candidate solution: α ◦ iG = ρ ◦ iR; and

2. σ is the minimal solution: for any span G
iG ′← H ′ iR ′→ R′ that satisfies

α ◦ iG′ = ρ ◦ iR′, there exists a unique morphism x : H ′→ H such
that iG′ = iG ◦ x and iR′ = iR ◦ x.

Both requirements are conveniently visualized in the commuting diagram
in Figure 6.

Remark 2 (Fibered Product). The metaphor of a pushout as a gluing construction unfortunately does not
dualize very well. However, in the category of sets, the pullback can be understood as fibered product,
which is a generalization of the familiar Cartesian product: the pullback object H (Figure 6) contains all
pairs (x,y) (x ∈ G and y ∈ R′) for which α(x) = ρ(y). For the category of graphs, the vertex set V and
edge set E of H can in fact be constructed by constructing the fibered products for V and E independently.

a1 b1

b2 a2

a1 b1

b2 a2

α

a1
a2

b1
b2

ρ

=

a1
a2

b1
b2

Figure 4: Example 4.

a1 a2

b1 b2

a1 a2

b1 b2

α

a1 b1 a2 b2
τ

=

a1

b1

a2

b2

Figure 5: Example 5.

6 A PBPO+ Graph Rewriting Tutorial

Exercise 2. Adapt Exercise 1 for pullbacks: construct some candidates that compete with the solutions
given in Examples 4 and 5 (e.g., consider the empty graph), and assess why these candidates do not
qualify as pullbacks.

We may now define the notion of a ToyPB rewrite step. G H

L′ R′

α iR

iG

PB
ρ

Definition 8 (ToyPB Rewrite Step). A ToyPB rule ρ : L′ ← R′ and adherence
morphism α : G→ L′ induce a ToyPB rewrite step G⇒ρ,α

ToyPB H if there exists a
pullback of the form depicted on the right.

Note that unlike ToyPO, ToyPB does not have any injectivity restrictions, because we would usually
like arbitrarily large graphs G to be typeable by a relatively small type graph L′.

4 PBPO+

The following preliminary exercise shows that we can use pullbacks to construct preimages. It is useful
for understanding PBPO+ rules and matches.

L K

L′ K′

tL tK

l

PB

l′

Exercise 3 (Computing Preimages). For cospans L
tL
↣ L′ l′← K′ with one injective

leg tL, define l′−1(tL) as the subgraph of K′ that is mapped onto the subgraph tL(L)
of L′. Using intuitive reasoning, convince yourself that for a pullback, as depicted
on the right, we have K ∼= l′−1(tL).
Definition 9 (PBPO+ Rewrite Rule [4, 14]). A PBPO+ rewrite rule ρ is a collection of objects and
morphisms, arranged as follows around a pullback square:

ρ =

L K R

L′ K′

tL

l

tK

r

PB

l′

L is the lhs pattern of the rule, L′ its type graph, and tL the embedding of L into L′. Similarly for the
interface K. R is the rhs pattern or replacement for L.

Thus, a PBPO+ rule uses a type graph L′ with a distinguished pattern graph L, specified by means of
an injection tL : L ↣ L′. A morphism l′ : L′← K′ is used to specify deletion and duplication on the type
graph, similar to a ToyPB rule. A morphism r : K→ R is then used to specify identification and addition
specifically on l′−1(tL), similar to a ToyPO rule.

For matching, we would like to view L′ as providing a type environment around the designated
pattern tL(L) ⊆ L′. For rewrite steps, this means that precisely one occurrence of L in G should be
mapped onto tL(L) by an adherence morphism α : G→ L′. Stated in terms of preimages, we require that
α−1(tL)∼= L. We call such a match a strong match.

L G

L L′

m

PB α

tL

Definition 10 (Strong Match [14]). An adherence morphism α : G→ L′ estab-
lishes a strong match for an embedding tL : L ↣ L′ if the square depicted on the
right is a pullback square. The induced morphism m : L ↣ G is called the match
morphism.

Example 6. The left of
L a

L a

G a b b

L′ a b

α

m

tL
PB

L a

L a

G a a a

L′ a b

α

m

tL

=

R. Overbeek & J. Endrullis 7

L

x1 x2 y1 y2 z

K x1

x2

y1 y2 z R x1 z

x2 y2

y1 u

GL

x1 x2 y1 y2 z

c1 c2

GK

x1

x2

y1 y2 z

c1 c2

GR

x1 z

x2 y2

y1 u

c1 c2

L′

x1 x2 y1 y2 z

c1 c2

K′

x1

x2

y1 y2 z

c1 c2

Figure 7: Example illustrating duplication, deletion and redirection and constraining application.

visualizes a strong match: L′ has exactly one occurrence of L (namely m(L)) mapped onto tL(L). The
square is a pullback square. The right is merely a commutative square, not a pullback square: because
all of G is collapsed onto tL(L), the pullback object α−1(tL) is in fact G itself.

The definition of a PBPO+ rewrite step consists of a strong match square, a ToyPB-like pullback
square (using “rule” l′ : L′← K′), and a ToyPO-like pushout square (using “rule” r : K → R). For this,
the pullback and pushout squares need to be appropriately connected. As stated in the definition below,
this can always be done, because the existence of a unique morphism u : K ↣ GK satisfying tK = u′ ◦u
is guaranteed.

Definition 11 (PBPO+ Rewrite Step [14]). A PBPO+ rewrite rule ρ (Definition 9), match morphism
m : L ↣ GL and adherence morphism α : GL→ L′ induce a rewrite step GL⇒ρ,(m,α)

PBPO+ GR if the properties
indicated by the commuting diagram

K R

L GL GK GR

L L′ K′

!u

r

PO w

m

PB α

gL

u′

gR

PB
tL

tK

l′

hold, where u : K → GK is the unique (and necessarily monic) morphism satisfying tK = u′ ◦ u [14,
Lemma 11].1

Example 7 (Rewrite Step). The rewrite step GL⇒ρ,(m,α)

PBPO+ GR depicted in Figure 7 illustrates some impor-
tant features of PBPO+. The rule ρ consists of the objects L,K,R,L′ and K′ together with the obvious
morphisms. The pattern L requires any host graph GL to contain three nodes, and two of these nodes
have an edge targeting the third node. The graph L′ describes the permitted shapes of the host graph

1Morphism u can be obtained by pulling back m along gL. However, as shown in the cited lemma, the solution for u in
tK = u′ ◦u exists and is uniquely determined for PBPO+ (it is not for PBPO [14, Remark 17]). We thus need not specify how u
is constructed, allowing us to simplify the diagram.

8 A PBPO+ Graph Rewriting Tutorial

around the pattern L. Due to the strong match condition, any α : GL→ L′ has to map all nodes and edges
in the context GL−m(L) of the host graph nodes onto L′− tL(L). So, in particular, c1c2 in L′ captures all
the context nodes of GL. Each edge in L′− tL(L) is a placeholder for an arbitrary number (0 or more) of
edges in the host graph. This example illustrates the following features:

(i) Application conditions:

The graph L′ allows for (an arbitrary number of) edges from x1x2 to the context, from the context
to z, from y1y2 to x1x2 and from y1y2 to z (and edges among context nodes). Besides the edges
in the pattern, any other edges are forbidden. For instance there cannot be edges from z to the
context, and no additional edges from x1x2 to y1y2.

(ii) Duplicating and deleting elements:

The morphism l′ : K′→ L′ enables the duplication and deletion of nodes and edges. For instance,
from L′ to K′, the node x1x2 is duplicated along with its edges to the context (indicated in red).
The edges from c2 to x (indicated in blue) and the thick edges are deleted, because they do not lie
in the image of l′.

(iii) Identifying and adding elements:

The morphism r : K → R enables the identification of elements of K, and the addition of new
elements. Here, K is the result of restricting the duplication and deletion effects of l′ to tL(L)∼= L.
In the example, r identifies (or merges) x1 with z and x2 with y2, adds a fresh node u and a fresh edge
from x2y2 to itself. In the middle row, observe that the sources and targets of edges are updated
accordingly from GK to GR. For instance, the edges y1 → x1 and y2 → z in GK are redirected to
target the merged node x1z in GR.

(iv) Edge redirection:

The combination of duplication along l′ : K′ → L′ and merging along r : K → R enables the ar-
bitrary redirection of all those endpoints (source and target) of edges that lie in the pattern m(L).
Importantly, the edge itself does not need to be part of the pattern, only the endpoint to be redi-
rected. For instance, the edges from y1y2 to z (indicated in green) are redirected to go from x2 to
x1. This is achieved by first duplicating one endpoint of the edge, namely the source y1y2, and then
merging the fresh source y2 with x2, and the target z with x1.

For another example, see [15, Example 15].

5 Related Work

One of the first tutorials by Ehrig et al. [8] present intuitive approaches to DPO and SPO, also covering
some metatheoretic properties. Baresi et al. [1] take a different approach and provide a broad and applied
introduction to the graph transformation research field, introducing DPO set theoretically. The tutorial
by Heckel [11] discusses a notion of typed graph transformation informally. The problem of dangling
edges is highlighted, and some solutions that have been proposed to deal with them are discussed. The
very recent tutorial by König et al. [12] explains the “essence” of DPO, and gives a gentle build-up
towards pushouts. In their case, this involves giving a set-theoretic definition of pushouts. Only SPO
is mentioned when the subject of deletion in unknown contexts is discussed. In addition, the tutorial
discusses attributed graph rewriting and tools.

For a more extensive overview of tutorials, see [12, Section 7.1].

R. Overbeek & J. Endrullis 9

Acknowledgments

We thank Jasmin Blanchette, Wouter Brozius and Femke van Raamsdonk for discussions and feedback.
We also thank the anonymous reviewers for their helpful suggestions. Both authors received funding
from the Netherlands Organization for Scientific Research (NWO) under the Innovational Research In-
centives Scheme Vidi (project. No. VI.Vidi.192.004).

References
[1] L. Baresi & R. Heckel (2002): Tutorial Introduction to Graph Transformation: A Software Engineer-

ing Perspective. In: Proc. Conf. on Graph Transformation (ICGT), LNCS 2505, Springer, pp. 402–429,
doi:10.1007/3-540-45832-8 30.

[2] M. Barr & C. Wells (1990): Category theory for computing science. Prentice Hall.
[3] A. Corradini, D. Duval, R. Echahed, F. Prost & L. Ribeiro (2015): AGREE – Algebraic Graph Rewriting with

Controlled Embedding. In: Proc. Conf. on Graph Transformation (ICGT), LNCS 9151, Springer, pp. 35–51,
doi:10.1007/978-3-319-21145-9 3.

[4] A. Corradini, D. Duval, R. Echahed, F. Prost & L. Ribeiro (2019): The PBPO Graph Transformation Ap-
proach. J. Log. Algebraic Methods Program. 103, pp. 213–231.

[5] A. Corradini, T. Heindel, F. Hermann & B. König (2006): Sesqui-Pushout Rewriting. In: Proc. Conf. on
Graph Transformation (ICGT), LNCS 4178, Springer, pp. 30–45, doi:10.1007/11841883 4.

[6] H. Ehrig (1986): Tutorial introduction to the algebraic approach of graph grammars. In: Proc. Workshop on
Graph-Grammars and Their Application to Computer Science, LNCS 291, Springer, pp. 3–14, doi:10.1007/3-
540-18771-5 40.

[7] H. Ehrig, K. Ehrig, U. Prange & G. Taentzer (2006): Fundamentals of Algebraic Graph Transformation.
Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/3-540-31188-2.

[8] H. Ehrig, M. Korff & M. Löwe (1990): Tutorial Introduction to the Algebraic Approach of Graph Grammars
Based on Double and Single Pushouts. In: Proc. Workshop on Graph-Grammars and Their Application to
Computer Science, LNCS 532, Springer, pp. 24–37, doi:10.1007/BFb0017375.

[9] H. Ehrig, M. Pfender & H. J. Schneider (1973): Graph-Grammars: An Algebraic Approach. In:
Proc. Symp. on on Switching and Automata Theory (SWAT), IEEE Computer Society, p. 167–180,
doi:10.1109/SWAT.1973.11.

[10] A. Habel, J. Müller & D. Plump (2001): Double-pushout graph transformation revisited. Math. Struct.
Comput. Sci. 11(5), pp. 637–688, doi:10.1017/S0960129501003425.

[11] R. Heckel (2006): Graph Transformation in a Nutshell. Electron. Notes Theor. Comput. Sci. 148(1), pp.
187–198, doi:10.1016/j.entcs.2005.12.018.

[12] B. König, D. Nolte, J. Padberg & A. Rensink (2018): A Tutorial on Graph Transformation. In: Graph
Transformation, Specifications, and Nets - In Memory of Hartmut Ehrig, LNCS 10800, Springer, pp. 83–
104, doi:10.1007/978-3-319-75396-6 5.

[13] M. Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theor. Comput. Sci.
109(1&2), pp. 181–224, doi:10.1016/0304-3975(93)90068-5.

[14] R. Overbeek, J. Endrullis & A. Rosset (2021): Graph Rewriting and Relabeling with PBPO+. In: Proc. Conf.
on Graph Transformation (ICGT), LNCS 12741, Springer, pp. 60–80, doi:10.1007/978-3-030-78946-6 4.

[15] R. Overbeek, J. Endrullis & A. Rosset (2022): Graph Rewriting and Relabeling with PBPO+: A Unifying
Theory for Quasitoposes. CoRR abs/2203.01032, doi:10.48550/arXiv.2203.01032. arXiv:2203.01032.

[16] B. C. Pierce (1991): Basic category theory for computer scientists. MIT press.

http://dx.doi.org/10.1007/3-540-45832-8_30
http://dx.doi.org/10.1007/978-3-319-21145-9_3
http://dx.doi.org/10.1007/11841883_4
http://dx.doi.org/10.1007/3-540-18771-5_40
http://dx.doi.org/10.1007/3-540-18771-5_40
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/BFb0017375
http://dx.doi.org/10.1109/SWAT.1973.11
http://dx.doi.org/10.1017/S0960129501003425
http://dx.doi.org/10.1016/j.entcs.2005.12.018
http://dx.doi.org/10.1007/978-3-319-75396-6_5
http://dx.doi.org/10.1016/0304-3975(93)90068-5
http://dx.doi.org/10.1007/978-3-030-78946-6_4
http://dx.doi.org/10.48550/arXiv.2203.01032
https://arxiv.org/abs/2203.01032

	Introduction
	ToyPO
	ToyPB
	PBPO+
	Related Work

