
EasyChair Preprint
№ 8440

Power Grid Data Monitoring and Analysis System
Based on Edge Computing

Wang Tianyou, Qin Yuanze, Huang Yu, Lou Yiwei, Xu Chongyou
and Chen Lei

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 10, 2022



Power Grid Data Monitoring and Analysis System
Based on Edge Computing

1st Tianyou Wang
National Engineering Research

Center for Software Engineering
Peking University
Beijing, China

240993819@qq.com

2nd Yuanze Qin
National Engineering Research

Center for Software Engineering
Peking University
Beijing, China

qyz@stu.pku.edu.cn

3rd Yu Huang
National Engineering Research

Center for Software Engineering
Peking University
Beijing, China
hy@pku.edu.cn

4th Yiwei Lou
National Engineering Research

Center for Software Engineering
Peking University
Beijing, China

cyfqylyw@gmail.com

5th Chongyou Xu
State Grid Ningbo Electric Power

Supply Company
Ningbo, China

hello1018@126.com

6th Lei Chen
State Grid Zhejiang Electric

Power Co. LTD.
Hangzhou, China

chenlei3909@163.com

Abstract—With the continuous accumulation of large-scale
power grid data, the traditional centralized data analysis method
is more and more expensive for data transmission. Based on
this, we designed a grid big data monitoring and analysis system
and transferred the computation process to the edge node close
to the data source through an edge computing strategy. On
the one hand, data processing and data analysis algorithms
are encapsulated by container technology, and the algorithm is
mirrored to the edge nodes of the power network through the
system to complete the computation. On the other hand, the
computing clusters are deployed at the edge nodes of the power
network, which is responsible for the scheduling, execution, and
status monitoring of computing tasks. Computing tasks can be
flexibly managed in a cluster by extending user-defined resources.
Through the reserved parameters, users can intervene in task
execution policies, and tasks can be configured. The edge node
sends the calculation result or early warning information to the
central monitoring service through the asynchronous message.
Compared with the traditional centralized data analysis system,
the proposed method relieves the problem of the overhead of
massive data transmission in the network, reduces the application
cost, helps to apply the data analysis to more edge side nodes,
and fully excavates the potential value of grid data.

Index Terms—smart grid, edge computing, data monitoring,
data analysis

I. INTRODUCTION

In 2019, State Grid put forward the construction strategy
of ”three types and two networks” [1], which is an important
measure to improve the reliability and stability of the power
supply. With the promotion of electric power construction of
Internet of things, large-scale sensing equipment and intelli-
gent terminals brings more abundant data resources [2], [3],
which also efficiently collect the information of the key power
equipment operating state and environment state in each link
of power supply [4]. How to take good use of these power
grid business data, mine its potential value, and make it play

a role in the actual production of power grid enterprises has
become an important topic that researchers pay attention to.
With the gradual popularization of big data, cloud computing
and machine learning technologies in the traditional industrial
field, the application of these technologies in the power grid
field is also promoting and achieving remarkable results, which
brings development motivation for smart grid. As the number
of intelligent terminal devices increases gradually, the power
grid service data accumulates in the edge nodes of the power
grid network. This presents a great challenge to the traditional
”acquisition + concentration” power monitoring analysis. In
particular, the problems of high transmission cost of data in
the network and heavy computing load of the master station
are prominent [5]. Therefore, how to make good use of the
advantages of grid edge nodes close to data sources and give
full play to the role of edge nodes in grid business data
processing and analysis is the key to solve this problem.

II. RELATED WORK

A. Edge computing

The basic idea of edge computing is to run computing
tasks on computing resources close to data sources to reduce
transmission overhead and improve data security [6].

Edge computing was first proposed in the content distribu-
tion network, which relies on the content distribution platform
to schedule requests of users’ access to the nearest cache
server thus speeding up content acquisition, bringing a better
experience for users, and improving network quality. Edge
computing refers to a new computing model that performs
computation at the edge of the network [7]. At present, edge
computing has been applied to practical scenarios such as
smart homes and smart cities [8], creating value in various



fields with its efficient computing model and supporting the
emerging application of the Internet of everything.

With the large-scale access of smart terminals such as
smart meters, massive power grid service data accumulates
at the edge of the power grid network, edge computing is
gradually paid attention to in the field of the power grid, and
the computing capacity of edge nodes is gradually improved.
In this paper, combining with the actual demand to design a
system strategy, at the edge of the calculation on the edge of
the grid node deployment compute cluster, will be distributed
computing tasks from center to edge, transferring processes
from the central to the edge, combined the technology of
data mining and machine learning, near the location of the
data source to complete data analysis, aimed at reducing
massive power grid data in the network transmission overhead,
Improved edge data utilization is applied to power distribution
status analysis and device status analysis to improve power
supply service quality.

B. Container technology

Docker, as a kind of container technology, is the most used
container engine in the community. Compared with traditional
virtual technology, Docker is more lightweight, occupies fewer
resources, and can ensure isolation. Developers can easily
containerize applications.

Due to the advantages of Docker technology and the require-
ments of our system, we use Docker technology to build the
image of the basic algorithm, encapsulate the data processing,
calculation logic of data analysis, and the required dependent
environment in the image, and use the version control ability
of the image to manage the version of the algorithm. Using
the portability of the container, the algorithm is plug and play,
and the computing task is sent to the edge nodes of the power
grid for quick start and operation through mirroring, and the
data processing and data analysis are completed at the edge
nodes. In this way, the algorithm development process can
be separated from task operation, and algorithm development
needs to pay attention to the correctness of the application run-
ning in the mirror. Through the container packaging dependent
libraries and applications, it can ensure that the application
has been run in the same environment. In the task running,
the system only needs to provide the necessary computing
resources and storage space for the container.

Kubernetes [9], [10] can complete the functions of resource
scheduling, deployment, and operation. Among them, API
Server is the central nerve of the cluster. All operations on
resources are carried out through it, and communication of
many components also needs to go through API Server. Etcd
stores the status information of the entire cluster, such as
the information of each Node in the cluster, and API Server
is responsible for communicating with it. The Controller
Manager is responsible for maintaining the normal running
of the cluster. For example, if a Pod exits abnormally due to
an error, the Controller Manager is responsible for recreating
the Pod on the Node. The scheduler is responsible for resource
scheduling. Based on Pod status information provided by API

Server, Scheduler allocates resources to run Pod on Node.
Kubelet is a component on Node that is responsible for
creating, running, automatically repairing containers on Node
and interacting with the API Server to update their status.
Kube-proxy, like Kubelet, is a component of Node. It provides
the ability of load balancing and Service discovery, and also
maintains Service status.

C. Distributed machine learning

With the improvement of the scale of training data and
the increasing of training models, the problem of insufficient
performance of a single machine has brought many inconve-
niences, and distributed machine learning technology [11]–
[13] has gradually attracted people’s attention. At present,
parallelism is mainly considered from data and the model.
Data parallelism is suitable for the case where the number
of model parameters is small but the number of training data
is large. All data is divided into multiple data blocks, and
each node obtains a subset of all data without overlapping.
A complete copy of the parameters is stored at each compute
node, and the local copy of the parameters is trained with the
data subset of the node. The parameter updates of each node
are summarized through the parameter server. The advantage
of data parallelism is that multiple computing nodes do not
interfere with each other, and the parallel stochastic gradient
descent algorithm applies the method of data parallelism [14].
Model parallelism is suitable for large models [15], and a
large model can be divided into multiple small modules. The
advantage of model parallelism is that large models can be
processed and conflicts of model updates can be avoided, and
faster convergence can be achieved through scheduling among
multiple compute nodes [16].

III. THE PROPOSED SYSTEM

A. System architecture

The system adopts a three-layer architecture design scheme,
as shown in Figure 1. Users interact with the system through
the user layer, can access and manage node information,
algorithm information, application information and task infor-
mation, and can create computing tasks through the user layer
interface and deliver them to the target edge node. The service
layer manages node information, algorithm information, appli-
cation information, and task information and interacts with the
storage layer to manage the data information in the system.
In addition, the service layer can interact with the edge nodes
compute clusters through the Kubernetes cluster management
module. On the one hand, the computing tasks can be created
to run and condition monitoring. On the other hand, more
detailed cluster running status information can be obtained
and displayed to the user via the user layer, helping users
understand the state of the cluster running.

At the user layer, users can interact with the system through
the Web front-end page, and manage nodes, algorithms, appli-
cations, and tasks through the user client interface. The service
layer is divided into information management and Kubernetes
cluster management module. The information management



Fig. 1. System architecture

module responds to users’ queries, additions, and deletions
of node information, algorithm information, application in-
formation, and task information, providing users with system
data management capabilities. Kubernetes cluster management
module is the interface between the system and Kubernetes
cluster interaction, responsible for the task resource definition
registered in the cluster, the task scheduling operation, task
status monitoring, and cluster resource usage monitoring. The
storage layer is responsible for mirroring storage system data,
service raw data, and basic algorithms.

B. The plan of Edge computing

To alleviate the data transmission overhead cost for the
grid network edge node for data analysis, this paper designs
an edge computing scheme based on the container and Ku-
bernetes technology and applies that to the power grid data
monitoring and analysis system. By distributing algorithm
images to the edge side of computing clusters, which replaces
the upload grid business data to the data center, it takes
full advantage of edge nodes’ proximity to data sources.
When the computing task is delivered to the edge node, a
data block has been completed and the data scale has been
reduced. Combined with the system’s support for distributed
computing tasks, multiple working nodes can be started to
jointly complete the computing task. The calculation results of
edge nodes are sent back to the central monitoring service by
asynchronous message. The overall scheme of edge computing
is shown in Figure 2.

In the edge computing scheme, algorithm mirroring is the
basis of all computing tasks. In order to facilitate users to
execute policies through the system configuration algorithm,
the algorithm accessing the system needs to configure inter-
faces according to certain specification reserved parameters
and follow the environment variable acquisition specification
defined by the system.

Computing tasks exist in Kubernetes cluster of edge nodes
in the form of user-defined resources. Users create computing
tasks through the system and send them to edge nodes.

Fig. 2. Edge computing overall scheme

After listening to the creation event, the custom controller
will allocate resources and create work clusters to complete
computing work. Before the task is run, the image related to
the task will be pulled to the edge node, and the execution
parameters and commands will be input to make it run in
the Pod, and the operation will end after the corresponding
task is completed. For computing tasks requiring network
topology information such as distributed machine learning,
related information can be written into Pod environment
variables through user configuration and predefined templates
in the system, which can be directly obtained when the task is
running. Asynchronous messages can be sent to the service’s
message management module for tasks that require feedback
on run results.

In order to enhance the universality and expansibility of
the system, the common tasks of power grid data statistics,
data processing, and data analysis are fully considered in the
system design. In that way, the general task creation mode
and state management strategy are designed. The operation of
computing tasks is managed through a customized controller.
At the same time, the differences between different types of
algorithm tasks are transferred to the upper layer by means of
predefined templates and user-defined environment variables,
which ensures the stability and universality of the core module
of the system and enables the unified management of various
types of computing tasks.

C. Computing task management

The delivery process of a computing task in the system is
shown in Figure 3, which includes the following steps: node
registration, algorithm, application registration, task construc-
tion, delivery, task creation in the cluster, task running, and
sending the calculation results to the message management
module of the monitoring and analysis system.

When registering a node, configure node connection param-
eters and save node information after the connection succeeds.
When registering an algorithm, configure the image address
information and environment variable parameters that the
algorithm depends on. Select an algorithm image and run
the command when registering the application. The steps in



Fig. 3. Work flow of the proposed system

the node registration, algorithm, and application registration
processes are not required during most task creation. They
are required only when the node, algorithm, or application is
registered with the system for the first time. Most tasks are
executed directly from the task delivery process.

When a task is delivered, the user arranges the task work-
flow based on the created application, determines the execution
sequence of the application, configures the execution period of
the task, and selects the edge node to deliver the task. After
the task is created, it is stored as a database record in the
relational database of the system. The task creation module
will read the task information in the database after listening
to the task creation, submit the task to Kubernetes cluster, and
give the specific task creation to the task’s custom controller
for processing.

The process of creating a task in a cluster starts when the
custom controller of the task resource listens to the creation
event of the task resource in the cluster. The custom controller
of the task resource reads the newly created task object in
the cluster, constructs the required Pod resource and Service
resource according to the task template information submitted
to the cluster, and injects related information into the Pod
according to the environment variable parameters configured
for the algorithm by the user in the system, to be obtained
when the container starts. The purpose of the Service is to
provide a stable access interface to the Pod and solve PodIP
changes in the event of a Pod restart. The results of the task are
finally presented to the user through asynchronous messaging.

The steps that a task goes through are encapsulated in an
algorithm image. Relatively generic steps include command,
parameter, and environment variable parsing, data reading,
algorithm execution, results, and feedback. The execution
steps of the specific task calculation are determined by the
algorithm developer in the development of the algorithm, but

the parameter parsing, environment variable parsing and result
sending parts need to follow the development specifications of
the system. The relevant functions make it possible to interact
with the task management module and message management
module correctly.

IV. MULTIPLE ALGORITHM ADAPTATION

In the design of this system, the universality of the system
is fully considered, and it can support the operation of various
data statistics tasks, data processing tasks and data analysis
tasks. Aiming at the machine learning task, the system re-
alizes the adaptation of XGBoost algorithm and LightGBM
algorithm which achieve excellent performance in all kinds
of data science competitions. In addition, in order to support
the calculation and analysis of massive data and to support
the operation of distributed algorithms, the system introduces
the start of multi-copy distributed computing. The algorithm
and its dependencies are encapsulated in the container by
Docker container technology, and the command interface and
parameter configuration interface are reserved. The algorithm
is stored in the image repository. After the image address and
variable parameter are registered in the algorithm management
module, users can adapt the algorithm to build applications in
the system, and then create computing tasks and send them to
edge nodes for operation.

The general data statistics and data processing tasks only
interact with the task management module of the system.
However, the system needs to solve the problem of calculation
and analysis of massive data. It needs to start several working
nodes for distributed computing. Therefore, two distributed
machine learning algorithms are taken as examples to intro-
duce in detail the design and implementation of adaptation
of algorithms with obvious characteristics in the proposed
system.

A. The design and implementation of XGBoost algorithm
access adaptation

XGBoost (eXtreme Gradient Boosting) [17] is the most
famous Boosting algorithm, which has been used in some work
of major Internet companies and gradually plays a role in the
industry.

When the XGBoost algorithm adapted in the system, it is
necessary to pay attention to the task management module and
ensure that can support stand-alone operation and distributed
operation. In addition to the conventional data processing and
model training code logic, because the algorithm image will
eventually be delivered to the Edge node Kubernetes cluster
to run, the algorithm execution command and data parameter
configuration need to be specified by the user at the time of
creation. Moreover, the algorithm needs to reserve parameter
interfaces, which are injected into the runtime container by
the task management module of the system. In addition, the
network needs to be set up in the distributed scenario. When
the node runs, it needs to obtain the request address, port
of the central node, and the serial number of the current
node in the whole work cluster to complete the training task



of specific data blocks. Information such as the IP address
of the working node can be obtained only when the task is
created, in which the task cannot be configured in advance. In
that way, the system records information such as IP address
and node number when creating Pod in the task creation
module of the system. The related configuration of network
topology information is passed to Pod by writing environment
variables, so that the related configuration information can
be read directly from environment variables in the algorithm
mirroring. The pseudocode of XGBoost on computation task
running is shown in Algorithm 1.

Algorithm 1 XGBoost on computation task running
Input: args - The list of parameters input by the user
Output: model - The generated model after training

1: user args ← get user args(args); // Parses parameters
from user input commands

2: master addr, port, rank,
world size = extract xgb env(); // Obtain cluster net-
work topology information from environment variables
// master addr: Master node address
// port: port number
// rank: Current node number
// world size: Number of compute nodes

3: if world size < 1 then
4: if rank = 0 then
5: start rabit tracker(master addr, port,

rank, world size);
// If the distributed algorithm is to run, the node with
rank 0 starts as the master node and is responsible
for overall coordination
// Obtain assigned data according to the sequence
number and the node number
// Read data based on the user’s input address

6: end if
7: train data ← read train data(rank, world size,

user args.path);
8: end if
9: model ← xgb.train(train data, user args); // Pass in

parameters and data that the user input to complete the
training process

10: if rank = 0 then
11: return model; // The Master node returns the trained

model and stores it in the configured path
12: else
13: return NULL;
14: end if

The system needs to support multiple types of computing
tasks. Considering flexibility and compatibility, the system
supports two methods to obtain network topology information
through environment variables.

For the algorithm developed for the specific business sce-
narios of the power grid, the complete network topology
information can be read directly from the environment variable
network info, and then the specific fields can be used

as required. Popular algorithm frameworks in the industry
often have unique variable acquisition specifications. Reading
environment variables from network info needs to supple-
ment environment variable conversion logic during algorithm
development, which is not friendly to algorithm developers
and is not convenient to use. Although the templates config-
ured by system developers for different algorithm frameworks
can be well compatible with the implementation of open-
source frameworks, they are not flexible enough, requiring
frequent modification of the core code to support the access
of algorithms, which increases the complexity of system
maintenance. Therefore, the ability to construct environment
variables is open to the user in this system. For environment
variables that can be set directly by the user, the user can
assign values directly. For variables such as network topology
information, whose values can be determined only during
running, the user only need to configure template placeholders.
When environment variables are injected, the system detects
the environment variables configured based on the template,
obtains information such as the network address from the
network info structure, and replaces placeholders in the
template with valid information. It should be noted that the
meaning and presentation of placeholders in the template fol-
low the system specification. In this way, users can configure
algorithms based on templates to create environment variable
formats that conform to open-source framework specifications,
which the system can inject into the Pod at running time. In
most cases, a new algorithm can be supported for use in the
system without the system modifying the code. In this paper,
the construction of environment variables injected into the Pod
needs to support two types so that different algorithms can be
adapted in the system for use. The pseudocode is shown in
Algorithm 2.

When the container encapsulating XGBoost algorithm is
started in the cluster, the network topology information of
the entire cluster of working nodes has been written into
the environment variable. These include the master addr,
master port, rank, and world size parameters required for
the execution of the distributed XGBoost algorithm, which can
be used by reading directly from the environment variable.

B. Design and implementation of LightGBM algorithm access
adaptation

The gradient lifting tree is a very popular model in machine
learning for a long time. LightGBM [18] is an efficient frame-
work for implementing the gradient lifting tree, which has an
excellent performance in training speed, memory consumption
and accuracy. LightGBM’s efficient support for parallelism
makes it easy to use in distributed computing scenarios.

This system is based on the open-source LightGBM frame-
work of Microsoft Asia Research Institute, which supports
the delivery of the computation tasks of the LightGBM algo-
rithm in the system, and realizes the operation of distributed
tasks based on socket communication. The specific adaptation
methods are as follows. First, under the guidance of the
official documents of the open-source project, the operating



Algorithm 2 Construct the environment variable input into the
Pod
Input: network info - The structure maintained during con-

struction, containing detailed network topology informa-
tion in the working network
user env str – Character string in json format, contain-
ing user-configured environment variables

Output: pod env list – The list of environment variables for
Pod, containing the pairs of key-value.

1: Initialize pod env list; // Input complete network topol-
ogy information environment variables

2: pod env list ← add network info(
pod env list, network info); // A list of user-defined
parameters is parsed from the commands input by the user.
Each variable is a key-value pair

3: env var list ← get user env from str(user env str);
// Iterate over the argument list

4: while x = 0 to len(env var list)− 1 do
5: env var ← en var list[x]; // Each variable is a key-

value pair, where the key is the name of the environment
variable and the value is the value or template

6: if is template(env var.value) then
7: env var.value ← replace template(env var.value,

network info); // If it is a template, replace the
value with network info

8: end if
9: pod env list.add(env.var); // After replacing the infor-

mation, add it to the Pod environment variables list as
key-value pairs of environment variables

10: end while
11: return pod env list; // Returns a list of constructed Pod

environment variables to be input to the Pod template

dependencies and operating environment of the LightGBM
framework are encapsulated into the algorithm image. At
runtime, a training parameter configuration file and node
information configuration file are constructed according to user
configuration, and a training task can be started according to
the two configuration files.

Since the algorithm runs in the Pod created by Kubernetes
cluster during execution, relevant parameters constructing the
configuration file need to be obtained from environment
variables. The code logic for injecting environment variables
during Pod creation is common for different types of algo-
rithms, similar to IV-A. LightGBM algorithm needs to obtain
the Master node address, Master node port, all Worker node
address, Worker node port, total number of nodes in the work
cluster, and the serial number of the current node from the
environment variables. After obtaining the above information,
according to the obtained network topology information and
user-configured execution parameters, create a training param-
eter configuration file, write the training parameters required
by the LightGBM framework, create a node information
configuration file, write the IP address or domain name and
port information of each node in the work cluster. Finally,

run the command to train the model. There is no data file
processing involved in the code of the LightGBM framework
for running computing tasks. Data files are directly transmitted
to the framework level for reading and processing through
user configuration parameters. The pseudocode is shown in
Algorithm 3.

Algorithm 3 Computation tasks based on LightGBM frame-
work
Input: args – The list of parameters entered by the user
Output: model –The generated model after training

1: master addr ← get env var(”MASTER ADD”); // Ob-
tain the address of the master node

2: master port ← get env var(”master port”); // Obtain
the port number of the master node

3: worker addrs ← get env var(”worker addrs”); // Get
the worker node address list

4: worker port ← get env var(”worker port”); // Get the
port number of the worker node

5: world size ← int(get env var(”world size”); // Obtain
the total number of nodes

6: rank ← int(os.environ[”rank”]); // Obtain the current
node serial number

7: machine conf file path ←
generate machine conf file(master addr,
master port,
worker addrs, worker port); // Based on the obtained
configuration information, create the storage compute
node address and port configuration file

8: if rank = 0 then
9: local port ← master port;

10: else
11: local port ← worker port;
12: end if
13: config file path ←

generate train conf file(machine list file path,
world size, args.output model, local port, args); //
Create a training profile based on the environment variable
configuration information and user input parameters

14: train LightGBM(config file path); // Pass the training
profile path to start the training

According to the adaptation process of the above two
algorithms, different types of machine learning algorithms are
submitted to the computing cluster through the same process.
Before container startup and algorithm code execution, the
system allocates resources, starts resources and manages re-
sources for computing tasks according to the general process.
When the container is started and the algorithm code is
executed, the difference between algorithms will be perceived
through the environment variables injected into Pod. The
working node of distributed machine learning algorithm needs
to read the node role, node serial number and network topol-
ogy information from the environment variables to interact
with other working nodes. In common distributed computing
tasks, nodes do not need to interact with each other, but only



focus on node roles and node serial numbers.

V. CONCLUSION

This paper designed and implemented power grid data mon-
itoring and analysis system based on edge computing. First, we
use container technology to encapsulate the computing logic
in the image, and then deliver the algorithm image from the
central service to the edge node instead of uploading data from
the edge node to the central service. Finally, the data analysis
process is completed on the edge side near the data source. In
this way, the cost of data transmission is reduced, data analysis
technologies such as machine learning are applied to power
grid business scenarios, and the value of the grid data is fully
mined. This paper completed the following work:

(1) Investigate the research status of machine learning tech-
nology application in smart power grid at home and abroad.
Aiming at the problem that a large amount of data is sum-
marized to the center service leading to the huge transmission
cost, a kind of edge computing scheme is designed. Based on
the container technology, the algorithm image is delivered to
the edge Kubernetes cluster to complete computing tasks, and
the universality of the scheme is fully considered to facilitate
the access of a variety of algorithms.

(2) Design and implement the power grid big data moni-
toring and analysis system based on edge computing. Utilize
Kubernetes to manage the creation, running, and status moni-
toring of computing tasks by extending user-defined resources.
Through container technology, images of XGBoost algorithm
and LightGBM algorithm are constructed according to the
algorithm adaptation of the system, and registered in the
system to realize the construction and delivery of relevant
computing tasks. In addition, the system fully considers the
convenience of accessing various types of algorithms, and
provides flexible configuration interfaces at the user layer. It
can be extended without changing the core modules of the
system.

VI. ACKNOWLEDGMENT

This study was funded by Science and Technology Program
of State Grid Corporation of China (No.5400-202019120A-0-
0-00).

REFERENCES

[1] Y. Lee, “Focus on ”three types and two networks, world-class” to pro-
mote the high-quality development of provincial power grid enterprises
(in chinese),” State Grid, no. 4, p. 2, 2019.

[2] Z. Li, F. Chen, B. Li, C. Deng, and Z. Tian, “Research on application
of hybrid distributed and point optical fiber sensing mechanism in
substation (in chinese),” Electric Power Information and Communication
Technology, vol. 18, no. 11, p. 6, 2020.

[3] J. Guo, Y. Liang, C. Chen, S. Chen, Y. Lu, and H. Huang, “Challenge
and application prospect of power intelligent sensing technology (in
chinese),” Electric Power Information and Communication Technology,
2020.

[4] J. Liu, Z. Zhao, and X. Ji, “Research and application of internet of things
in power transmission and distribution system (in chinese),” Chinese
Journal on Internet of Things, no. 1, p. 15, 2018.

[5] S. Zhang, J. Tong, Y. Zhang, M. Zhang, Y. Lei, and Y. Zhu, “Research
on edge computing technology for intelligent sensing layer of energy
interconnection,” Electric Power Information and Communication Tech-
nology, vol. 18, no. 4, pp. 42–50, 4 2020.

[6] W. Shi, X. Zhang, Y. Wang, and Q. Zhang, “Edge computing:state-
of-the-art and future directions,” Journal of Computer Research and
Development, vol. 56, no. 1, p. 21, 2019.

[7] W. Shi, C. Jie, Z. Quan, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” Internet of Things Journal, IEEE, vol. 3, no. 5, pp.
637–646, 2016.

[8] W. Shi, H. Sun, J. Cao, Q. Zhang, and W. Liu, “Edge computing: a new
computing model in the internet of everything era (in chinese),” Journal
of Computer Research and Development, vol. 54, no. 5, p. 18, 2017.

[9] L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A kubernetes
controller for managing the availability of elastic microservice based
stateful applications,” Journal of Systems and Software, no. 11, p.
110924, 2021.

[10] D. Bernstein, “Containers and cloud: From lxc to docker to kubernetes,”
Cloud Computing, IEEE, vol. 1, no. 3, pp. 81–84, 2014.

[11] S. Gupta, W. Zhang, and F. Wang, “Model accuracy and runtime tradeoff
in distributed deep learning:a systematic study,” Computer Science, pp.
171–180, 2015.

[12] Y. Li, D. Han, and Z. Yan, “Long-term system load forecasting based on
data-driven linear clustering method,” Journal of Modern Power Systems
and Clean Energy, 2017.

[13] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, and B. Y. Su, “Scaling
distributed machine learning with the parameter server,” ACM, 2014.

[14] M. Zinkevich, M. Weimer, A. J. Smola, and L. Li, “Parallelized stochas-
tic gradient descent,” in Advances in Neural Information Processing
Systems 23: Conference on Neural Information Processing Systems A
Meeting Held December, 2011.

[15] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P. Xing,
“Primitives for dynamic big model parallelism,” Computer ence, 2014.

[16] S. Lee, J. K. Kim, X. Zheng, Q. Ho, and E. P. Xing, “On model par-
allelization and scheduling strategies for distributed machine learning,”
in International Conference on Neural Information Processing Systems,
2014, pp. 2834–2842.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
ACM, 2016.

[18] M. Qi, “Lightgbm: A highly efficient gradient boosting decision tree,”
in Neural Information Processing Systems, 2017.


	Introduction
	Related Work
	Edge computing
	Container technology
	Distributed machine learning

	THE PROPOSED SYSTEM
	System architecture
	The plan of Edge computing
	Computing task management

	Multiple Algorithm Adaptation
	The design and implementation of XGBoost algorithm access adaptation
	Design and implementation of LightGBM algorithm access adaptation

	Conclusion
	Acknowledgment
	References

