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Abstract. Image classification has become a ubiquitous task. Models
trained on good quality data achieve accuracy which in some applica-
tion domains is already above human-level performance. Unfortunately,
real-world data are quite often degenerated by the noise existing in fea-
tures and/or labels. There are quite many papers that handle the prob-
lem of either feature or label noise, separately. However, to the best of
our knowledge, this piece of research is the first attempt to address the
problem of concurrent occurrence of both types of noise. Basing on the
MNIST, CIFAR-10 and CIFAR-100 datasets, we experimentally proved
that the difference by which committees beat single models increases
along with noise level, no matter it is an attribute or label disruption.
Thus, it makes ensembles legitimate to be applied to noisy images with
noisy labels. The aforementioned committees’ advantage over single mod-
els is positively correlated with dataset difficulty level as well. We propose
three committee selection algorithms that outperform a strong baseline
algorithm which relies on an ensemble of individual (nonassociated) best
models.

Keywords: Committee of classifiers, Ensemble learning, Label noise,
Feature noise, Convolutional neural networks.

1 Introduction

Standard image classification task consists in assigning a correct label to an
input sample picture. In the most widely-used supervised learning approach, one
trains a model to recognize the correct class by providing input-output image-
label pairs (training set). In many cases, the achieved accuracy is very high [6,
38], close to or above human-level performance [7, 15].

The quality of real-world images is not perfect. Data may contain some noise
defined as anything that blurs the relationship between the attributes of an
instance and its class [16]. There are mainly two types of noise considered in the
literature: feature (attribute) noise and class (label) noise [11, 27, 36].
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Despite the fact that machine algorithms (especially those based on deep
architectures) perform on par with humans or even better on high-quality pic-
tures, their performance on distorted images is noticeably worse [10]. Similarly,
label noise may potentially result in many negative consequences, e.g. deterio-
ration of prediction accuracy along with an increase of model’s complexity, size
of a training set, or length of a training process [11]. Hence, it is necessary to
devise methods that reduce noise or are able to perform well in its presence. The
problem is furthermore important considering the fact that the acquisition of
accurately labeled data is usually time-consuming, expensive and often requires
a substantial engagement of human experts [2].

There are many papers in the literature which tackle the problem of label
noise. Likewise, a lot of works have been dedicated to studying attribute noise.
However, to the best of our knowledge, there are no papers that consider the
problem of feature and label noise occurring simultaneously. In this paper, we
present the method that successfully deals with the concurrent presence of at-
tribute noise and class noise.

1.1 The main contribution

Encouraged by the promising results of ensemble models applied to label noise
and CNN-based architectures utilized to handle noisy images we examine how
a committee of CNN classifiers (each trained on the whole dataset) deal with
noisy images marked with noisy labels. With regard to the common taxonomy,
there are four groups of ensemble methods [22]. The first one relates to data
selection mechanisms aiming to provide different subset for every single classifier
to be trained on. The second one refers to the feature level. Methods among
this group select features that each model uses. The third one, the classifier
level group, comprises algorithms that have to determine the base model, the
number of classifiers, other types of classifiers, etc. The final one refers to the
combination of classifiers level where an algorithm has to decide how to combine
models’ individual decisions to make a final prediction. In this study, we assume
having a set of well-trained CNNs which make the ultimate decision by means
of soft voting (averaging) scheme [26]. We concentrate on the task of finding an
optimal or near-optimal model committee that deals with concurrent presence
of attribute and label noise in the image classification problem. In summary, the
main contribution of this work is threefold:

– addressing the problem of simultaneously occurring feature and label noise
which, to the best of our knowledge, is a novel unexplored setting;

– designing three methods of building committees of classifiers which outper-
form a strong baseline algorithm that employs a set of individually best
models;

– proving empirically that a margin of ensembles gain over the best single
model rises along with an increase of both noise types, as well as dataset
difficulty, which makes proposed approaches specifically well-suited to the
case of noisy images with noisy labels.
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The remainder of this paper is arranged as follows. Section 2 provides a litera-
ture review, with considerable emphasis on methods addressing label noise and
distorted images. Section 3 introduces the proposed novel algorithms for classi-
fiers’ selection. Sections 4 and 5 describe the experimental setup and analysis of
results, respectively. Finally, brief conclusions and directions for further research
are presented in the last section.

2 Related literature

Many possible sources of label noise have been identified in the literature [11],
e.g. insufficient information provided to the expert [11, 3], expert (human or
machine) mistakes [25, 32], the subjectivity of the task [17] or communication
problems [36, 3]. Generally speaking, there are three main approaches to dealing
with label noise [11]. The first one is based on algorithms that are naturally
robust to class noise. This includes ensemble methods like bagging and boosting.
It has been shown in [9] that bagging performs generally better than boosting in
this task. The second group of methods relies on data cleansing. In this approach,
corrupted instances are identified before the training process starts off and some
kind of filter (e.g. voting or partition filter [4, 37] which is deemed easy, cheap
and relatively solid) is applied to them. Ultimately, the third group consists
of methods that directly model label noise during the learning phase or were
specifically designed to take label noise into consideration [11].

In terms of images, the key reasons behind feature noise are faults in sen-
sor devices, analog-to-digital converter errors [30] or electromechanical interfer-
ences during the image capturing process [14]. State-of-the-art approaches to deal
with feature noise are founded on deep architectures. In [24] CNNs (LeNet-5 for
MNIST and an architecture similar to the base model C of [33] for CIFAR-10 and
SVHN datasets) were used to handle noisy images. Application of a denoising
procedure (Non-Local Means [5]) before the training phase improves classifica-
tion accuracy for some types and levels of noise. In [28] several combinations of
denoising autoencoder (DAE) and CNNs were proposed, e.g. DAE-CNN, DAE-
DAE-CNN, etc. The paper states that properly combined DAE and CNN achieve
better results than individual models and other popular methods like SMV [35],
sparse rectifier neural network [13] or deep belief network [1].

3 Proposed algorithms

As mentioned earlier, classification results are obtained via a soft voting scheme.
More specifically, probabilities of particular classes from single CNNs are summed
up and a class with the highest cumulative value is ultimately selected (see
Fig. 1).

Many state-of-the-art results in image classification tasks are achieved by an
ensemble of well-trained networks that were not selected in any way [7, 18, 21].
In [31] the authors went further and noticed that limiting ensemble size just to
two best-performing models increased accuracy in their case. We adopted that
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Fig. 1. The concept of the soft voting approach for the 10-class problem.

idea to the algorithm called (for the purpose of this study) top-n, which serves as
a benchmark in our experiments. First, all models are sorted in descending order
according to their accuracies. Then, ensembles constituted by k best networks
where k ranges from 1 to the number of available models are created. Finally, the
committee with the best score on the validation dataset is chosen. Algorithm 1
summarizes the procedure.

The first algorithm proposed in this paper, called 2-opt-c, was inspired by
the local search technique commonly applied to solving the Traveling Salesman
Problem (TSP) [8]. The original 2-opt formulation looks for any two nodes of
the current salesman’s route which, if swapped, would shorten the route length.
It works until no improvement is made within a certain number of sampling
trials. The 2-opt-c algorithm receives an initial committee as an input and in
each step modifies it by adding/subtracting/exchanging one or two elements in
the way that maximizes accuracy on the validation set. Thus, there are eight
possible atomic operations listed in Algorithm 2. The procedure operates until
neither of the operations improves performance. The 1-opt-c works in a very
similar way but is limited to three operations that modify only one element in
a committee (adding, removal and swap). The top-n-2-opt-c and top-n-1-opt-c
operate likewise besides being initialized with the output of the top-n procedure,
not an empty committee.
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Algorithm 1: top-n

input : Mall–all available models
output: Cbest–selected committee

1 Cbest ← ∅;
2 Ccurr ← ∅;
3 accbest = 0;
4 Msorted = sort(Mall); // sort models descending by accuracy

5 for i← 1 to size(Msorted) do
6 Ccurr ← Ccurr ∪Msorted[i];
7 acccurr ← accuracy(Ccurr);
8 if acccurr > accbest then
9 accbest ← acccurr;

10 Cbest ← Ccurr;

11 end

12 end

Algorithm 2: 2-opt-c

input : Mall–all available models, C0–initial committee
output: Cbest–selected committee

1 Cbest ← C0;
2 accbest ← accuracy(Cbest);
3 while accbest rises do
4 acccurr = 0;
5 acccurr, Ccurr ← add(Cbest,Mall, acccurr);
6 acccurr, Ccurr ← remove(Cbest, acccurr);
7 acccurr, Ccurr ← swap(Cbest,Mall, acccurr);
8 acccurr, Ccurr ← addTwo(Cbest,Mall, acccurr);
9 acccurr, Ccurr ← removeTwo(Cbest, acccurr);

10 acccurr, Ccurr ← addAndSwap(Cbest,Mall, acccurr);
11 acccurr, Ccurr ← removeAndSwap(Cbest,Mall, acccurr);
12 acccurr, Ccurr ← swapTwice(Cbest,Mall, acccurr);
13 if acccurr > accbest then
14 accbest ← acccurr;
15 Cbest ← Ccurr;

16 end

17 end

Another algorithm, called stochastic, relies on the fact that the performance
of the entire ensemble depends on diversity among individual component classi-
fiers, on the one hand, and the predictive performance of single models, on the
other hand [29]. The pseudocode of the algorithm is presented in Algorithm 3.
In the ith epoch, a committee size ranges from i to i+ range with the expected
value equal to i+ range

2 . This property is assured by the formula in line 7 which
increases the probability of adding a new model along with decreasing ensemble
size and vice versa. Figure 2 illustrates this relationship. In each step, one model
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Fig. 2. Probability of adding a new model to the committee in the stochastic algorithm.

is either added or removed. In the first scenario a model with the best individ-
ual performance is appended to the committee with probability ta (lines 11-14)
or a model which minimizes the maximum correlation between any model from
the committee and itself is added with probability 1 − ta (lines 15-18). Anal-
ogously, if the algorithm decides to decrease a committee size it removes the
weakest model with probability tr (lines 22-25) or a model which minimizes the
highest correlation between any two models in the committee with probability
1 − tr (lines 26-29). In each epoch, the algorithm performs Ni iterations to ex-
plore the solution space. A correlation between two models is measured by the
Pearson correlation coefficient calculated on probability vectors obtained from
predictions on the validation set.

4 Experimental setup

4.1 MNIST, CIFAR-10 and CIFAR-100 datasets

As a benchmark, we selected three datasets with a diversified difficulty level.
MNIST database contains a large set of 28x28 grayscale images of handwritten
digits (10 classes) and is commonly used in machine learning experiments [23].
The training set and the test set are composed of 60 000 and 10 000 images,
respectively.

CIFAR-10 [20] is another popular image dataset broadly used to assess ma-
chine learning/computer vision algorithms. It contains 60 000 32x32 color images
in 10 different classes. The training set includes 50 000 pictures, while the test
set – 10 000 ones.

The CIFAR-100 dataset is similar to CIFAR-10. It comprises 60 000 images
with the same resolution and three color channels as well. The only difference
is the number of classes–CIFAR-100 has 100 of them, thus yielding 600 pictures
per class.
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Algorithm 3: Stochastic algorithm

input : Mall–all available models, N–number of epochs, Ni–number of
iterations within an epoch, ta–probability threshold below which the
strongest model is added, tr–probability threshold below which the
weakest model is removed, r–range of possible committee sizes in an
epoch

output: Cbest–selected committee
1 Ccurr ← ∅;
2 Cbest ← ∅;
3 accbest ← 0;
4 Mleft ←Mall;
5 for i← 0 to N − 1 do
6 for j ← 1 to Ni do
7 pa ← 1− (size(Ccurr)− i)/r;
8 u← generate from the uniform distribution U(0, 1);
9 if u < pa then

10 ua ← generate from the uniform distribution U(0, 1);
11 if size(Ccurr) == 0 or ua < ta then
12 ma ← getStrongestModel(Mleft);
13 Ccurr ← Ccurr ∪ma;
14 Mleft ←Mleft \ma;

15 else
// select model from Mleft which minimizes maximum

// correlation between any model from Ccurr and itself

16 ma ← getMarginallyCorrelatedModel(Ccurr,Mleft);
17 Ccurr ← Ccurr ∪ma;
18 Mleft ←Mleft \ma;

19 end

20 else
21 ur ← generate from the uniform distribution U(0, 1);
22 if size(Ccurr) == 1 or ur < tr then
23 mr ← getWeakestModel(Ccurr);
24 Ccurr ← Ccurr \mr;
25 Mleft ←Mleft ∪mr;

26 else
// select model from Mcurr which minimizes maximum

// correlation between any two models in Ccurr

27 mr ← getMaximallyCorrelatedModel(Ccurr);
28 Ccurr ← Ccurr \mr;
29 Mleft ←Mleft ∪mr;

30 end

31 end
32 acccurr ← accuracy(Ccurr);
33 if acccurr > accbest then
34 accbest ← acccurr;
35 Cbest ← Ccurr;

36 end

37 end

38 end
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Table 1. CNN architectures used for MNIST, CIFAR-10 and CIFAR-100.

Layer Type #maps & neurons kernel/pool size

1 convolutional 32 maps of 32x32 neurons (CIFAR)
32 maps of 28x28 neurons (MNIST)

3x3

2 batch normalization
3 convolutional 32 maps of 32x32 neurons (CIFAR)

32 maps of 28x28 neurons (MNIST)
3x3

4 batch normalization
5 max pooling 2x2
6 dropout (20%)

7 convolutional 64 maps of 16x16 neurons (CIFAR)
64 maps of 14x14 neurons (MNIST)

3x3

8 batch normalization
9 convolutional 64 maps of 16x16 neurons (CIFAR)

64 maps of 14x14 neurons (MNIST)
3x3

10 batch normalization
11 max pooling 2x2
12 dropout (20%)

13 convolutional 128 maps of 8x8 neurons (CIFAR)
128 maps of 7x7 neurons (MNIST)

3x3

14 batch normalization
15 convolutional 128 maps of 8x8 neurons (CIFAR)

128 maps of 7x7 neurons (MNIST)
3x3

16 batch normalization
17 max pooling 2x2
18 dropout (20%)

19 dense 128 neurons
20 batch normalization
21 dropout (20%)
22 dense 10 neurons (MNIST, CIFAR-10)

100 neurons (CIFAR-100)

4.2 CNN architectures

Individual classifiers are in the form of a convolutional neural network composed
of VGG blocks (i.e. a sequence of convolutional layers, followed by a max pooling
layer) [31], additionally enhanced by adding dropout [34] and batch normaliza-
tion [18]. All convolutional layers and hidden dense layer have ReLU as an acti-
vation function and their weights were initialized with He normal initializer [15].
Softmax was applied in the output layer while the initial weights were drawn
from the Glorot uniform distribution [12]. Table 1 summarizes the CNNs archi-
tectures. Please note that slight differences in architectures for MNIST, CIFAR-
10 and CIFAR-100 are caused by distinct image sizes and numbers of classes in
the datasets. Without any attribute or label noise, a single CNN achieved ap-
proximately 99%, 83% and 53% accuracy on MNIST, CIFAR-10 and CIFAR-100,
respectively.
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4.3 Training protocol

The following procedure was applied to all three datasets. Partition of a dataset
into training and testing subsets was predefined as described in Section 4.1. At
the very beginning, all features (RGB values) were divided by 255 to fit [0, 1]
range. Images were neither preprocessed nor formatted in any other way. From
the training part, we set aside 5 000 samples as a validation set for a single mod-
els training and another 5 000 samples for a committee performance comparison.
From now on when referring to the training set we would mean all training sam-
ples excluding the above-mentioned 10 000 samples used for validation purposes.

To create noisy versions of the datasets we degraded features of the three
copies of each dataset by adding the Gaussian noise with standard deviation
σ = 0.1, 0.2, 0.3, respectively. The above distortion was applied to the training
set, two validation sets and the test set. All affected values were then clipped to
[0, 1] range. Next, for the original datasets and each of the three copies influenced
by the Gaussian noise, another three copies were created and their training
set labels were altered with probability p = 0.1, 0.2, 0.3, respectively. If a label
was selected to be modified, a new value was chosen from the discrete uniform
distribution U{0, 9}. If the new label value equaled the initial value, then a new
label was drawn again, until the sampled label was different from the original
one. Hence, we ended up with 16 different versions of each dataset in total (no
feature noise plus three degrees of feature noise multiplied by analogous four
options regarding the label noise).

The second step was to train CNNs on each of the above-mentioned dataset
versions. We set the maximum number of epochs to 30 and batch size to 32.
In the case of four consecutive epochs with no improvement on the validation
set, training was stopped and weights from the best epoch were restored. Adam
optimizer [19] was used to optimize the cross-entropy loss function:

−
∑K

c=1 yo,c log(po,c) where K is the number of classes, yo,c – a binary indicator
whether c is a correct class for observation o, and po,c – a predicted probability
that o is from class c. The learning rate was fixed to 0.001.

4.4 Algorithms parametrization

The stochastic algorithm was run with the following parameters: the number
of available models – 25, the number of epochs – 16, the number of iterations
within an epoch – 1000, probability threshold below which the strongest model
is added – 0.5, probability threshold below which the weakest model is removed
– 0.5, range of possible committee sizes in each epoch – 10. Please note that the
above parametrization allows the algorithm to consider any possible committee
size (from 1 to 25). Other analyzed algorithms are parameterless.

5 Experimental results

This section presents experimental results of testing various ensemble selection
algorithms. For each pair (σ, p) ∈ {0, 0.1, 0.2, 0.3} × {0, 0.1, 0.2, 0.3} 50 CNNs
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Fig. 3. Relative accuracy margin that committees gained over the top-1 algorithm.

were independently trained from which 25 were drawn to create one instance of
experiment. Each experiment was repeated 20 times to obtain reliable results.
In the whole study, we assume not having any knowledge regarding either the
type or the level of noise the datasets are affected by.

Figure 3 depicts the relative accuracy margin that committees gained over
the top-1 algorithm which selects the best individual model from the whole li-
brary of models. Scores are averaged over top-n, 2-opt-c, 1-opt-c, top-n-2-opt-c,
top-n-1-opt-c and stochastic algorithms. For example, if the best individual
model achieves 80% accuracy while the mean accuracy of ensembles found by
analyzed algorithms equals 88% then the relative margin of ensembles over top-1
is equal to 10%. Attribute curves refer to computations where all scores within
particular attribute noise level are averaged over label noise (four values for every
attribute noise level). Label curves are created analogously–for particular label
noise all scores within specific label noise are averaged over attribute noise. Both
curves concern increasing noise level concurrently on both attributes and labels
by the same amount (i.e. with σ = p). For example, 0.2 value on the x-axis refers
to σ = 0.2 attribute noise and p = 0.2 label noise.

Two main conclusions can be drawn from the plots. First, a committee margin
rises along with an increase of both noise types (separately and jointly as well).
Secondly, a difference increases further for more demanding datasets. In case of
MNIST, the difference is less than 1% while when concerning CIFAR-100 the
margin amounts to more than 20% for 0.1 and 0.2 noise level and around 30% for
0.3 noise level. Figure 4 illustrates in a concise, aggregated way how algorithms
perform in comparison with top-n for various noise levels. Values on the y-axis
indicate how much (percentage-wise) the margin achieved by top-n over top-1
is better/worse than the margin attained by the rest of the algorithms. For
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Fig. 4. Performance of designed algorithms contrasted with top-n results.

example, if accuracies of top-1, top-n and stochastic methods are 80%, 85% and
85.5%, respectively then the value for stochastic algorithm amounts to 10% in
that case since 0.5% constitutes 10% of 5%. Line y = 0 refers to top-n. For each
dataset the leftmost plot, for the given level of attribute noise, presents scores
averaged over the label noise (four values for each level). Likewise, in the middle
plot, for the given level of label noise, the scores averaged over the four values of
attribute noise are depicted. In the third plot, the scores are not averaged since
x-values refer to both attribute and label noise. From the first row of plots, which
refers to the MNIST dataset, it stems that there are huge relative differences
in results achieved by the algorithms which, furthermore, vary a lot between
noise levels. This phenomenon is caused by the fact that all errors for all noise
levels are below 1% in MNIST. Thus, even very little absolute difference between
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scores may be reflected in high relative value (one instance constitutes 0.01% of
test set size). Therefore, it is hard to draw any vital conclusions for this dataset
other than a general observation that for a relatively easy dataset the results of
all algorithms are close to each other.

From the plots related to CIFAR-10 and CIFAR-100, one can see that three
of our algorithms noticeably surpassed the top-n one. The stochastic method
achieved better results on all noise levels. The only yellow dot below zero refers to
no noise case on either attributes and labels. Both top-n-2-opt-c and top-n-1-opt-c
also beat top-n in most of the cases. Another observation is that our algorithms
are positively correlated with a noise level in the sense that the attained margin
rises along with increasing noise.

We have also analyzed 35-sized libraries of the models. The relationships be-
tween results achieved by the algorithms remain similar to those with 25 models,
only the absolute accuracy values are slightly higher. It is not surprising since
algorithms have a wider choice of models and may keep more of them in a com-
mittee. As the last remark, we noticed that 2-opt-c and 1-opt-c obtained very
high accuracy on validation sets (greater than top-n-2-opt-c and top-n-1-opt-c,
respectively) however it was not reflected on test sets. This observation suggests
that one has to be careful when dealing with methods whose performance is
measured solely on the validation set with neglecting models’ diversity, as such
committees tend to overfit.

6 Conclusions and future work

The main goal of this paper is to address the problem of concurrently occurring
feature and label noise in the image classification task which, to the best of our
knowledge, has not been considered in the existing literature. To this end, we
propose five novel ensemble selection algorithms among which four are inspired
by the local optimization algorithm derived from the TSP and one employs a
stochastic search. Three out of five methods outperform the strong baseline ref-
erence algorithm that applies a set of individually selected best models (top-n).
We have also empirically proven that a margin gained by the committees over
the best single model rises along with an increase of both types of noise as well
as with raising dataset difficulty, thus making proposed ensembles specifically
well-suited to noisy images with noisy labels.

There is a couple of lines of inquiry worth pursuing in the future. Firstly, one
may experiment with the parametrization of the stochastic algorithm (a range of
possible committee sizes in an epoch, a tradeoff between individual performance
and ensemble diversity, etc.). Analysis of other correlation measures could be
insightful as well. Secondly, all our algorithms operate on probability vectors,
which allows us to assume that they would achieve similar results in other do-
mains and are not limited to noisy images only. Finally, this paper addresses
only one aspect of ensembling - models selection. Other areas which could be
considered when forming a committee model, briefly mentioned in Section 1.1,
are also worth investigation.
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