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Abstract 

Considering the uncertainty of passenger demand and vehicle selection, this paper 

investigates a robust optimization approach for the train timetabling problem with short-

turning strategy in urban rail transit system. With the scenario-based representation of 

passenger distribution, a mixed-integer linear programming (MILP) model is formulated 

that simultaneously integrates train timetabling, short-turning strategy and rolling stock 

circulation. The proportion of passengers who take the short-turning train services to the 

last station of the short-turning region and transfer to the full-length train services to their 

destination stations, is introduced to describe the passenger vehicle selection behavior under 

short-turning strategy. Finally, three experiments are designed for Xi’an Metro Line 3 to 

verify the solution quality and effectiveness of the proposed methods. The results indicate 

that the robust train timetable can more effectively satisfy multi-scenario passenger demand 

than the satisfactory train timetable generated by independent optimization of each demand 

scenario. 
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1 Introduction 

As one of the most important modes of public transportation, urban rail transit has 

attracted increasing attention and has increased the travel demand for this mode, owing to 

the outstanding advantages of faster velocity, higher reliability, and larger capacity. The 

number of passengers commuting with urban rail transit systems is more than 10 million 

per day in big cities, such as Beijing, Shanghai, and Tokyo. To maximize the transportation 

capacity and improve passenger service quality, the train timetable optimization should 

consider the coupling relationship between passengers and train services under the 

passenger distribution. 

Passenger demand is characterized by temporal and spatial distributions. At some 

stations, there is a high arrival rate for passenger demand during peak hours, causing some 

stranded passengers to remain at the stations. Meanwhile, fewer passengers at other stations 

of the same transit line, resulting in low occupancy levels for transportation capacity. Some 

researches indicate train timetabling with short-turning strategy (Li et al., 2019; Yang et al., 

2021; Zhu et al., 2022) can better adapt to the unbalanced temporal and spatial passenger 
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demand distributions with smaller fleet sizes. Short-turning strategy means that some train 

services (full-length) pass through all stations along this line, while some train services 

(short-turning) only travel through several stations. 

Furthermore, passengers usually need not refer to the train timetable when they take 

trains (Gong et al., 2021), and traffic demand always exhibits a significant degree of 

uncertainty in daily operations, such as its spatiotemporal distribution diversity and 

complex passenger vehicle selection, which increases the complexity of train timetable 

optimization. Therefore, this paper proposes a robust train timetabling approach with short-

turning strategy in terms of uncertain passenger demand and vehicle selection. 

 

1.1 Literature review 

The train timetable optimization problem has become popular research in recent 

decades. The train timetable defines the arrival and departure times of all the train services 

at each station, subject to operational and safety requirements. Due to the uneven 

characteristics of passenger spatiotemporal distribution, the short-turning strategy has been 

investigated by some researchers in the transportation systems. Tirachini et al. (2011) 

developed a short-turning model to increase the service frequency on the more loaded 

sections for a single bus line-single period setting, considering both operators’ and users’ 

costs. Canca et al. (2016) proposed a tactical approach with a short-turning strategy, to 

increase the frequency among certain stations of the lines and to equilibrate the train 

occupancy level. Yuan et al. (2021) built a new integrated optimization model for the train 

timetable, rolling stock assignment, and short-turning strategy on a bidirectional metro line, 

to reduce passengers’ total waiting time on platforms. Yang et al. (2021) built a passenger 

demand-oriented train scheduling optimization model with a two-layer space-time network 

considering a flexible short-turning strategy to reduce the total passenger travel time.  

Meanwhile, some researchers mainly focus on the integrated optimization of train 

timetable and rolling stock circulation. Wang et al. (2017) proposed an integrated model to 

optimize the train schedule and circulation plan simultaneously, which involved the 

operation of train services, the turnaround operations, the entering/exiting depot operation, 

and the number of available trains. Hoogervorst et al. (2021) present a Variable 

Neighborhood Search heuristic for the rolling stock rescheduling problem, which means 

rescheduling rolling stock when a disruption leads to cancellations in the timetable. Wang 

et al. (2022) formulated the studied problem as a new binary linear model, to minimize the 

weighted sum of total deadhead distance and total deadhead running time of rolling stocks 

during the depot exiting and entering operations, and developed a row and column 

generation-based algorithm to solve it. 

Furthermore, in urban rail transit systems, there is uncertainty regarding passenger 

demand, some researchers applied robust optimization methods to optimize the train 

timetable. Shafia et al. (2012) proposed a new robust train-timetabling model and developed 

a branch-and-bound (B&B) algorithm to minimize the arrival times of trains for a single-

track railway line. Jamili and Pourseyed Aghaee (2015) optimized urban rail stop-skipping 

patterns based on uncertain passenger demand to increase the commercial speed and save 

energy consumption. Qi et al. (2018) proposed an Integer Linear Programming (ILP) model 

for integrated train timetabling and stop planning problem considering different demand 

scenarios. Zhou et al. (2020) built a two-phase robust optimization model considering 

uncertain passenger arrival times and alighting passengers to minimize total waiting 

passengers. Gong et al. (2021) formulated an integer nonlinear programming (INLP) model 

to simultaneously optimize the train services number, headway settings and speed profile 

with the scenario-based passenger distribution. Zhu et al. (2022) proposed a robust train 



timetabling optimization model with a short-turning strategy considering the uncertainty in 

passenger demand, to balance train utilization and stranded passengers.  

 

1.2 Focus of this study 

Table 1 summaries the difference between the proposed method and relevant existing 

approaches. As stated above, few studies have investigated train timetable optimization by 

considering the passenger uncertainty as well as short-turning strategy and rolling stock 

circulation simultaneously in the urban rail transit system. In real-world operations, 

passenger uncertainty includes the following two aspects: passenger demand volume and 

vehicle selection behavior. 

On the one hand, passenger demand volume consistently exhibits an uncertain 

fluctuation characteristic, and varies greatly on different days or periods. For illustration 

convenience, Fig. 1 demonstrates the passenger demand curves of five workdays in one 

week. The passenger demand of one day is typically different from that on other days, 

mainly larger during the peak hours on Monday and Friday. Recently, some studies 

(Cacchiani et al., 2020; Gong et al., 2021; Huang et al., 2021) focused on the robust 

optimization of train timetabling and usually used the scenario-based method to represent 

the uncertainty of passenger demand. The scenario-based method refers to several scenarios 

of passenger demand, considered synchronously in the optimization. For instance, the 

passenger demand of one day in Fig.1 can be considered a scenario. 

On the other hand, vehicle selection behavior is not certain, especially in the short-

turning strategy, some passengers can't arrive at their destination stations directly by short-

turning train services. In other words, they must take the train of full-length services. In 

most existing research about short-turning strategy, there are assumptions that passengers 

should wait on the platform and choose the direct trains to reach their destinations (Li et al., 

2019; Zhu et al., 2022). In reality, part of these passengers will take a train of short-turning 

services to the one station of the short-turning region and wait for a train of full-length 

services to the destination station. This unique “transfer” behavior will change the coupling 

relationship between passengers and train services and affect train loading factors. Some 

studies have considered passenger travel behaviors in the train timetable optimization 

problem. These studies have focused primarily on route choice behavior (Zhu et al., 2014; 

R. Xu et al., 2021), transfer behavior (X. Xu et al., 2021), train-booking behavior (Zhou et 

al., 2019), traffic mode choice behavior (Xu et al., 2018), and other travel behaviors under 

a disruption situation (Veelenturf et al., 2017; Zhu and Goverde, 2019). No attention has 

been given to extending the vehicle selection behavior to the train timetable optimization 

with the short-turning strategy.   

 

 
Fig.1 Illustration of passenger demand curves in one week 
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Table 1 Comparison between this paper and existing literature 
Publication Approach Passenger Demand 

Representation 

Objective Solution 

methods 

(Jamili and Aghaee, 
2015) 

TT-SS-SL Dynamic; TDOD matrix PTT DB; SA 

(Qi et al., 2018) TT-SS-SL Dynamic; Scenario-based TDOD 
matrix 

PS CPLEX 

(Wang et al., 2018) TT-RS-DL Static; Sectional passenger  TLV, HD, RSN CPLEX 

(Zhang et al., 2018) TT-RS-ST-

DL 

Null HD, RSN Solver 

(Li et al., 2019) TT-ST-SL Static; TDOD matrix TLV, OC GA 

(Zhou et al., 2020) TT-SL Stochastic; Scenario-based arrival 

rate 

PWN GA 

(Yuan et al., 2021) TT-RS-ST-

DL 

Dynamic; TDOD-matrix PWT GA; Solver 

(Yang et al., 2021) TT-RS-ST-

DL 

Dynamic; TDOD-matrix PTT Lagrangian 

(Gong et al., 2021) TT-SL Stochastic; Scenario-based TDOD 

matrix 

FC, PWT, EC CPLEX, VNS 

(Zhu et al., 2022) TT-RS-ST-

DL 

Stochastic; Interval-based arrival 

rate 

SPN, RSN GUROBI 

This paper TT-RS-ST-

DL 

Stochastic; Scenario-based TDOD 

matrix; vehicle selection behavior 

TLV, RSN GUROBI 

Approach: train timetable (TT); stop-skipping (SS); short-turning strategy (ST); rolling stock (RS); single line (SL); 

double-track line (DL). Passenger Demand Representation: time-dependent origin–destination matrix (TDOD matrix); 
without consideration of passenger demand (NULL). Objective: passenger travel time (PTT); passenger satisfaction (PS); 

train loading variation (TLV); headway deviation (HD); rolling stocks number (RSN); operating cost (OC); passenger 
waiting number (PWN); passenger waiting time (PWT); fixed cost (FC); energy consumption (EC); stranded passengers 

number (SPN). Solution methods: general-purpose solver (Solver), such as CPLEX, GUROBI; Decomposition-based 

algorithm (DB); Simulated Annealing algorithm (SA); Genetic algorithm (GA); Lagrangian relaxation- based algorithm 

(Lagrangian); variable neighborhood search (VNS). 

 

The passenger uncertainty affects the coupling relationship between passengers and 

train services, and increase the complexity of the train timetabling problem. With these 

concerns, the train timetable optimization with deterministic passenger flow may no longer 

be suitable for different scenarios, particularly for instances of large passenger flow (Gong 

et al., 2021). To address the knowledge gap indicated above, this paper studies the train 

timetabling problem involving uncertain passenger demand and vehicle selection. The main 

contributions are presented as follows: 

1) This paper investigates a robust optimization approach for the train timetabling 

problem with short-turning strategy. Due to the uncertainty of passenger demand volume 

and vehicle selection behavior, the scenario-based passenger demand scenarios 

representation is introduced by discretizing the involved time horizon. We use the 

proportion of passengers who take the short-turning train services to the last station of the 

short-turning region and transfer to the full-length train services to their destination stations, 

to describe the passenger vehicle selection under short-turning strategy, which is considered 

in the robust train timetabling problem. 

2) A robust train timetabling optimization model is formulated that simultaneously 

integrates short-turning strategy and rolling stock circulation, in which the objective 

function is to reduce the load factor variation. The rolling stock mixed application mode, 

which means the trains of short-turning services can share rolling stocks with the trains of 

full-length services, has been considered in the train timetabling problem with short-turning 

strategy for the first time in this study.  

3) The proposed methodology is applied to optimize the train timetable of Xi’an Metro 



Line 3, China. The results indicate that the robust train timetable can more effectively satisfy 

multi-scenario passenger demand than the satisfactory train timetable generated by 

independent optimization of each demand scenario. It can effectively improve the coupling 

degree between passengers and train services by reducing train capacity oversaturation and 

waste (see Appendix A), and decrease the number of stranded passengers. In addition, we 

find the vehicle selection behavior (take the short-turning train services and transfer to the 

full-length train services) will transform some passengers from the full-length train services 

to the short-turning train services, and reduce the load factor variation between them. 

2 Problem statement and notations 

2.1 Problem statement 

As shown in Fig.2, a bidirectional train line consisting of 𝑁  stations in the metro 

system is investigated in this study. The downward direction denotes the direction that train 

operates from depot 𝑃 to depot 𝑀, and stations are numbered from 1 to 𝑁. In contrast, the 

opposite direction is defined as upward operations. Take the downward direction as an 

example, depot 𝑃 and depot 𝑀 are employed by the trains of full-length services connected 

with station 1 and station 𝑁, depot 𝐴 and depot 𝐵 are used by the trains of short-turning 

services connected with station 𝑎 and station 𝑏. A downward train of short-turning services 

departs from depot 𝐴 to depot 𝐵 or turns around at depot 𝐵. In contrast, a downward train 

of full-length services departs from depot 𝑃 to depot 𝑀 or turns around at depot 𝑀. Train 

operations in the upward direction are similar to the above.  

This study investigates the train timetabling problem involving short-turning strategy 

and rolling stock circulation plan. The train timetabling problem determines train arrival 

times, departure times, stations' dwell times, and sections' running times. The short-turning 

strategy decides which two stations to be the short-turning station and which train takes on 

short-turning services. The rolling stock circulation plan indicates which train services the 

same train undertakes to improve train utilization.  

In most existing studies about short-turning strategy, there are assumptions that only 

train services of the same type can be connected, which means that the trains of short-

turning services cannot share rolling stocks with the trains of full-length services (Zhu et 

al., 2022). This mode is called rolling stock independent application mode (Independent-

mode) in this study. In reality, the full-length and short-turning train services can share the 

rolling stocks if they have a common turn-back station, such as 𝑎 = 1 or 𝑏 = 𝑛 in Fig. 2. 

In other words, the rolling stock can operate a short-turning train service after finishing a 

full-length train service, and vice versa, this mode is called rolling stock mixed application 

mode (Mixed-mode) in this study. However, if 𝑎 ≠ 1  and 𝑏 ≠ 𝑁 , the rolling stock 

application mode can only be the Independent-mode. 

 
Fig.2 A bidirectional train line with multi deports 

In the following, some assumptions are first proposed to formulate the problem. 

Assumption 1: All trains have the same capacity, regardless of whether they operate 



full-length or short-turning services. The running times among adjacent stations are 

constants, which are not affected by the process of passenger boarding and alighting. 

Assumption 2: This study only considers two train service patterns, including one 

full-length service and one short-turning service, since more service patterns mean greater 

complexity in the operational organization (Li et al., 2019). The number of full-length train 

services is proportional to short-turning train services. There are a fixed number of full-

length train services between two adjacent short-turning train services. The first train 

service during the planning period is assumed to be a short-turning service. 

Assumption 3: In each scenario, a specific proportion is set for passengers taking the 

short-turning train services and transfer to the full-length train services, we suppose the 

“transfer” station is the last station of the short-turning region in the running direction. 

 

2.2 Notations and decision variables 

The related symbols used in the formulation are defined as follows. 

Table 2 Related symbols used in the formulation 
Notation Description 

𝐺 set of passenger scenarios 

𝜓 index of scenarios, 𝜓 ∈ 𝐺 

𝐸𝜓 the probability of scenario 𝜓 

𝐷 set of running direction, 𝐷 = {𝑑𝑛, 𝑢𝑝}, 𝑑𝑛 refers to the downward direction, 𝑢𝑝 refers to 

the upward direction 

𝑥 index of running direction, 𝑥 ∈ 𝐷 

𝑆 set of stations, 𝑆 = {1,2, . . . , 𝑁} 
𝑖, 𝑗 index of stations, 𝑖, 𝑗 ∈ S 
𝑎, 𝑏 index of stations, 𝑎, 𝑏 ∈ 𝑆, index of turn-around stations for the downward direction 

𝑅𝑥 set of train services in the running direction 𝑥, 𝑅𝑥 = {1,2, . . . , |𝑅𝑥|} 
𝑟, 𝑟′ index of train services, 𝑟, 𝑟′ ∈ 𝑅𝑥 

𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝑒𝑛𝑑 starting, ending time of the research time range 

𝐾 set of time slots in the operating time period, 𝐾 = {1,2,… , |𝐾|} 
𝑘 index of time slots, 𝑘 ∈ 𝐾 

𝜂𝑟
𝑥 binary constant that refers to whether train service 𝑟 of the 𝑥 direction is a short-turning 

service 

𝑐𝑖
𝑥 train running time between station 𝑖 and 𝑖 + 1 (𝑖 ∈ 𝑆/{𝑁}) on direction 𝑥 

𝑤𝑖
𝑥 train dwell time at station 𝑖 on direction 𝑥 

ℎ𝑚𝑖𝑛
𝑥 , ℎ𝑚𝑎𝑥

𝑥  the maximum and minimum headway on direction 𝑥 

𝜑𝑎 binary constant that refers to whether 𝑎 = 1 

𝜑𝑏 binary constant that refers to whether 𝑏 = 𝑁 

𝑧𝑚𝑖𝑛 minimum turn-around time 

𝑝𝑖,𝑗,𝑘
𝑥 (𝜓) number of arriving passengers with journey 𝑖 →  𝑗 entering in station 𝑖 of direction 𝑥 in 

time slot 𝑘 in scenario 𝜓 

𝑝𝑖,𝑘
𝑥 (𝜓) number of arriving passengers entering in station 𝑖 of direction 𝑥 in time slot 𝑘 in scenario 

𝜓 

𝜉𝜓 proportion of Type III (passengers who take the short-turning train services to the last 

station of the short-turning region, and transfer to the full-length train services to their 

destination stations.) in Type II in scenario 𝜓 

𝜆𝑖,𝑘
𝑥 (𝜓) passenger arrival rate of station 𝑖 of direction 𝑥 in time slot 𝑘 in scenario 𝜓 

𝜔𝑖,𝑗
𝑥 (𝜓) proportion of arrival passengers with journey 𝑖 →  𝑗 in the passengers entering in station 𝑖 

of direction 𝑥 in scenario 𝜓 

𝛷𝑚𝑎𝑥 maximum load factor 

 

Decision variables used in the formulations. 

Table 3 Decision variables used in the formulation 
Notation Description 

𝑑𝑟,𝑖
𝑥  departure time of train 𝑟 of direction 𝑥 at station 𝑖  

𝑎𝑟,𝑖
𝑥  arrive time of train 𝑟 of direction 𝑥 at station 𝑖 

𝜅𝑟,𝑟′
𝑑𝑛  binary variable that refers to whether upward train service 𝑟′ is operated by the rolling 



stock that operated downward train service 𝑟 before 

𝜅𝑟′,𝑟
𝑢𝑝  binary variable that refers to whether downward train service 𝑟 is operated by the rolling 

stock that operated upward train service 𝑟′ before 

𝑔𝑟,𝑖
𝑥 (𝜓) if 𝑟 > 1, number of passengers entering in station 𝑖 of direction 𝑥 between the departure 

times of train service 𝑟 and 𝑟 − 1; if 𝑟 = 1, number of passengers entering in station 𝑖 of 

direction 𝑥 between the departure time of train service 1 and 𝑡𝑠𝑡𝑎𝑟𝑡. 
𝑓𝑟,𝑖
𝑥 (𝜓) number of passengers alight from train service 𝑟 in station 𝑖 of direction 𝑥 in scenario 𝜓 

𝑏𝑟,𝑖
𝑥 (𝜓) number of passengers boarding train service 𝑟 in station 𝑖 of direction 𝑥 in scenario 𝜓 

𝑤1𝑟,𝑖
𝑥 (𝜓) number of passengers waiting in the platform of the station 𝑖 of the direction 𝑥 before train 

service 𝑟 left in scenario 𝜓 

𝑤2𝑟,𝑖
𝑥 (𝜓) number of passengers remain in the platform of the station 𝑖 of the direction 𝑥 after train 

service 𝑟 left in scenario 𝜓 

𝑣𝑟,𝑖
𝑥 (𝜓) number of in-vehicle passengers of train service 𝑟  between stations 𝑖  and 𝑖 + 1  ( 𝑖 ∈

𝑆/{𝑁}) of the direction 𝑥 in scenario 𝜓, not considering passenger vehicle selection for 

the full-length and short-turning train services. 

𝑣2𝑟,𝑖
𝑑𝑛(𝜓) number of in-vehicle passengers of train service 𝑟  between stations 𝑖  and 𝑖 + 1  ( 𝑖 ∈

𝑆/{𝑁}) of the direction 𝑥 in scenario 𝜓, considering passenger vehicle selection for the 

full-length and short-turning train services. 

𝜃𝑟,𝑖
𝑥 (𝜓) load factor value of train service 𝑟 between stations 𝑖 and 𝑖 + 1 (𝑖 ∈ 𝑆/{𝑁}) of direction 𝑥 

in scenario 𝜓 

𝜒𝑟,𝑖
𝑥 (𝜓) risk degree of train load factor over the maximum load factor, for train service 𝑟 between 

stations 𝑖 and 𝑖 + 1 (𝑖 ∈ 𝑆/{𝑁}) of direction 𝑥 in scenario 𝜓 

 

2.3 Representation of passenger demand and vehicle selection with short-turning 

strategy 

To represent the dynamic feature of passenger demand within one scenario, we adopt 

the TDOD matrix to describe the specific information of passengers, including their origins, 

destinations and arrival times at individual origin stations. The uncertainty of passenger 

demand volume and vehicle selection behavior can be reflected across different stochastic 

scenarios, where time-dependent passenger demand varies randomly, and the related 

parameters about vehicle selection are set differently. Let 𝐺  be the set of passenger 

scenarios and 𝐸𝜓 > 0 be the probability of scenario 𝜓 ∈ 𝐺 with ∑ 𝐸𝜓𝜓∈𝐺 = 1. 

Note that the research time range [𝑡𝑠𝑡𝑎𝑟𝑡 , 𝑡𝑒𝑛𝑑]  is split into 𝐾  time slots with the 

splitting time instants 𝑡1, 𝑡2, . . . , 𝑡𝑘−1, 𝑡𝑘 , . . . , 𝑡𝐾−1, and 𝑡0 = 𝑡𝑠𝑡𝑎𝑟𝑡, 𝑡𝐾 = 𝑡𝑒𝑛𝑑. For scenario 

𝜓 ∈ 𝐺, 𝑝𝑖,𝑗,𝑘
𝑥 (𝜓) denotes the number of arriving passengers with journey 𝑖 →  𝑗 entering in 

the station 𝑖 of the direction 𝑥 in the time slot 𝑘, that is, the time interval [𝑡𝑘−1, 𝑡𝑘). Then, 

the corresponding scenario-based TDOD matrix for a bidirectional urban rail transit line 

with N stations can be represented by 

(

 
 

0 𝑝1,2,𝑘
𝑥 (𝜓) 𝑝1,3,𝑘

𝑥 (𝜓) ⋯ 𝑝1,𝑁,𝑘
𝑥 (𝜓)

0 0 𝑝2,3,𝑘
𝑥 (𝜓) ⋯ 𝑝2,𝑁,𝑘

𝑥 (𝜓)

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑝𝑁−1,𝑁,𝑘

𝑥 (𝜓)

0 0 0 0 0 )

 
 

. 

And 𝑝𝑖,𝑘
𝑥 (𝜓) denotes the number of passengers entering in the station 𝑖 of the direction 

𝑥 in time interval [𝑡𝑘−1, 𝑡𝑘), can be calculated by 

𝑝𝑖,𝑘
𝑥 (𝜓) = ∑ 𝑝𝑖,𝑗,𝑘

𝑥 (𝜓)

𝑁

𝑗=𝑖+1

   ∀ 𝑖 ∈ [1,𝑁 − 1]. 

The passenger arrival rate of station 𝑖 of the direction 𝑥 can be written as: 
𝜆𝑖,𝑘
𝑥 (𝜓) = 𝑝𝑖,𝑘

𝑥 (𝜓)/(𝑡𝑘 − 𝑡𝑘−1). 

Then, 𝜔𝑖,𝑗
𝑥 (𝜓) denotes the proportion of arrival passengers with journey 𝑖 →  𝑗 in the 

passengers entering in station 𝑖 of direction 𝑥,  



𝜔𝑖,𝑗
𝑥 (𝜓) =

∑ 𝑝𝑖,𝑗,𝑘
𝑥 (𝜓)

|𝐾|
𝑘=1

∑ 𝑝𝑖,𝑘
𝑥 (𝜓)

|𝐾}
𝑘=1

  ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷 𝑗 ∈ [𝑖 + 1,𝑁]. 

As shown in Fig.1, in the short-turning region, some passengers can’t reach their 

destination stations directly by the short-turning train services. Take the downward 

direction as an example, for the passengers entering in the stations (𝑎, 𝑎 + 1, . . . , 𝑏 − 1), 
they can’t reach to the stations  (𝑏 + 1, 𝑏 + 2, . . . , 𝑁)  directly by the short-turning train 

services. In the short-turning region, we divide 𝑝𝑖,𝑘
𝑥 (𝜓) into the following two types of 

passengers: 1) Type I: they can reach their destination stations directly by the short-turning 

or full-length train services, are denoted as 𝑝1𝑖,𝑘
𝑥 (𝜓). 2) Type II: they can’t reach their 

destination stations directly by the short-turning train services, in other words, they must 

take the full-length train services, are denoted as 𝑝2𝑖,𝑘
𝑥 (𝜓).  

The existing research about short-turning strategy mostly assumed that passengers 

would choose the direct trains to their destinations (Li et al., 2019;Zhu et al., 2022). Type 

II must wait on the platform and take the full-length train services to reach their destination 

stations. In reality, some passengers of Type II will take the short-turning train services to 

the one station of the short-turning region, and transfer to the full-length train services to 

their destination stations. This study defines passengers with this transfer behavior as Type 

III. Take the passengers with journey 𝑎 →  𝑁 in the downward direction as an example, as 

shown in Fig.3(a), Type II must wait on the platform of Station 𝑎 and take the full-length 

train services to Station 𝑁. Considering the vehicle selection behavior, Type III can firstly 

take the short-turning train services to the last station (Fig.3(b)) or other stations (Fig.3(c)) 

in the short-turning region, and transfer to the full-length train services to Station 𝑁. The 

unique vehicle selection behavior will change the coupling relationship between passengers 

and train services, and affect the train loading factors. For scenario 𝜓 ∈ 𝐺, 𝜉𝜓 denotes the 

proportion of Type III in Type II. Therefore, this study uses the scenario-based 

representation method to capture these two features. Each scenario is assumed to correspond 

to a distinguishing day and a specific vehicle selection proportion. 

 

 
(a) Type II                            (b) Type III (transfer in Station b)     (c) Type III (not transfer in Station b) 

Fig. 3 Demonstration of vehicle selection behavior for Type II and Type III 

3 Methodology 

To reduce the number of decision variables, we add dummy running segments to short-

turning services at stations outside the region of short-turning service. As shown in Fig. 4, 

those dummy departure times of short-turning services from the station 𝑎 to station 1 are 

extended from the departure time of station 𝑎, while those times from station 𝑏 to station 𝑁 

are extended from the departure time of short-turning train services at station 𝑏.  

Then, 𝜂𝑟
𝑥 represents whether train service 𝑟 of the 𝑥 direction is a short-turning service, 

which is given as 



𝜂𝑟
𝑥 = {

1, if train service 𝑟  of the 𝑥 direction is a short − turning service
0, otherwise 

    ∀ 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 (1) 

 
Fig. 4 Demonstration of train operations with short-turning strategy 

 

3.1 Train operation constraints 

First, the arrival and departure times of train service from the first station in the running 

direction is bounded within the research time range, we have 
𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑑𝑟,1

𝑥 ≤ 𝑡𝑒𝑛𝑑 , ∀ 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 (2) 

Constraints (3–4) are built to determine the arrival and departure times of other stations: 

𝑎𝑟,𝑖
𝑥 = 𝑑𝑟,1

𝑥 +∑𝑐𝑗
𝑥

𝑖−1

𝑗=1

+∑𝑤𝑗
𝑥

𝑖

𝑗=2

, ∀ 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆/{1} (3) 

𝑑𝑟,𝑖
𝑥 = 𝑎𝑟,𝑖

𝑥 +𝑤𝑖
𝑥, ∀ 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆/{1} (4) 

Moreover, headways should satisfy the maximum and minimum headway constraints 

for passenger satisfaction and safety, as follows: 
ℎ𝑚𝑖𝑛
𝑥 ≤ 𝑑𝑟,1

𝑥 − 𝑑𝑟−1,1
𝑥 ≤ ℎ𝑚𝑎𝑥

𝑥 , ∀ 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥/{1} (5) 

ℎ𝑚𝑖𝑛
𝑥 ≤ 𝑑1,1

𝑥 ≤ ℎ𝑚𝑎𝑥
𝑥 , ∀ 𝑥 ∈ 𝐷 (6) 

ℎ𝑚𝑖𝑛
𝑥 ≤ 𝑡𝑒𝑛𝑑 − 𝑑|𝑅𝑥|,1

𝑥 ≤ ℎ𝑚𝑎𝑥
𝑥 , ∀ 𝑥 ∈ 𝐷 (7) 

 

3.2 Rolling stock circulation constraints 

Rolling stock can continue to serve another service in the opposite direction or return 

to the depot when finishing one train service. Similarly, train service can be operated by the 

rolling stock in the depot or the one that has finished the previous train service. Then, we 

introduce the following two binary variables to demonstrate the connection relationships 

between two train services of different directions: 

𝜅𝑟,𝑟′
𝑑𝑛 : if upward train service 𝑟′ is operated by the rolling stock that operated downward 

train service 𝑟 before, 𝜅𝑟,𝑟′
𝑑𝑛 = 1; otherwise, 𝜅𝑟,𝑟′

𝑑𝑛 = 0. 

𝜅𝑟′,𝑟
𝑢𝑝

: if downward train service 𝑟 is operated by the rolling stock that operated upward 

train service 𝑟′ before, 𝜅𝑟′,𝑟
𝑢𝑝

= 1; otherwise, 𝜅𝑟′,𝑟
𝑢𝑝

= 0. 

For the downward train services connected with upward train services, constraints are 

shown as follows: 

∑𝜅𝑟,𝑟′
𝑑𝑛

𝑅𝑑𝑛

𝑟=1

≤ 1, ∀𝑟′ ∈ 𝑅𝑢𝑝 (8) 

∑𝜅𝑟,𝑟′
𝑑𝑛

𝑅𝑢𝑝

𝑟′=1

≤ 1, ∀𝑟 ∈ 𝑅𝑑𝑛 (9) 

Constraint (8) denotes that if ∑ 𝜅𝑟,𝑟′
𝑑𝑛𝑅𝑑𝑛

𝑟=1 = 1, the upward train service 𝑟′ can only be 

operated by one rolling stock that has finished a downward service; otherwise, the upward 

train service 𝑟′  is operated by the train from the depot. Constraint (9) denotes that if 

∑ 𝜅𝑟,𝑟′
𝑑𝑛𝑅𝑢𝑝

𝑟′=1 = 1, only one upward train service can be operated by the rolling stock which has 

finished the downward train service 𝑟; otherwise, the rolling stock of train service 𝑟 will 

return to the depot and don’t operate any train service. The similar constraints for the 



upward train services connected with downward train services is shown in Constraints (10 

11). 

∑𝜅𝑟′,𝑟
𝑢𝑝

𝑅𝑑𝑛

𝑟=1

≤ 1, ∀𝑟′ ∈ 𝑅𝑢𝑝 (10) 

∑𝜅𝑟′,𝑟
𝑢𝑝

𝑅𝑢𝑝

𝑟′=1

≤ 1, ∀𝑟 ∈ 𝑅𝑑𝑛 (11) 

Therefore, we introduce two binary constants to judge whether 𝑎 = 1 or 𝑏 = 𝑁. 

𝜑𝑎 = {
1,     if  𝑎 = 1   
0,   otherwise 

(12) 

𝜑𝑏 = {
1,     if  𝑏 = 𝑁   
0,   otherwise 

(13) 

     And the constraints are shown as follows: 

𝜂𝑟
𝑑𝑛 − 𝜂

𝑟′
𝑢𝑝
≤ 𝑀(1 − 𝜅𝑟,𝑟′

𝑑𝑛 ) + 𝜑𝑏      ∀𝑟 ∈ 𝑅
𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (14) 

𝜂𝑟
𝑑𝑛 − 𝜂

𝑟′
𝑢𝑝
≥ −𝑀(1 − 𝜅𝑟,𝑟′

𝑑𝑛 ) − 𝜑𝑏    ∀𝑟 ∈ 𝑅
𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (15) 

𝜂
𝑟′
𝑢𝑝
− 𝜂𝑟

𝑑𝑛 ≤ 𝑀(1 − 𝜅
𝑟′,𝑟

𝑢𝑝 ) + 𝜑𝑎   ∀𝑟 ∈ 𝑅
𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (16) 

𝜂
𝑟′
𝑢𝑝
− 𝜂𝑟

𝑑𝑛 ≥ −𝑀(1 − 𝜅
𝑟′,𝑟

𝑢𝑝 ) − 𝜑𝑎   ∀𝑟 ∈ 𝑅
𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (17) 

Constraints (14-15) denote that if 𝜑𝑏 = 0 and 𝜅𝑟,𝑟′
𝑑𝑛 = 1, then 𝜂𝑟

𝑑𝑛 − 𝜂
𝑟′
𝑢𝑝
= 0, which 

means that if upward train service 𝑟′ is operated by the rolling stock that operated downward 

train service 𝑟 before, train service 𝑟′ and 𝑟 must be the same type (full-length or short-

turning); if 𝜑𝑏 = 1  and 𝜅𝑟,𝑟′
𝑑𝑛 = 1 , then −1 ≤ 𝜂𝑟

𝑑𝑛 − 𝜂
𝑟′
𝑢𝑝
≤ 1 , which means that the 

connection relationship between train service 𝑟′ and 𝑟 has no requirement on these two 

trains’ type, the rolling stock application mode can be the Mixed-mode. The similar 

constraints about 𝜅
𝑟′,𝑟

𝑢𝑝
 are shown in Constraints (16-17). 

Moreover, if two train services in different directions can be connected, the rolling 

stock operating those two train services needs to satisfy the turn-around time constraint in 

the depot. For downward train services connect with upward train services, the depots for 

train circulation are connected with station 𝑏 or station 𝑁 in the upward direction, and the 

constraints for turn-around time are presented as follows: 

(𝑎
𝑟′,1

𝑢𝑝
− 𝑑𝑟,𝑁

𝑑𝑛 ) (1 − 𝜂𝑟
𝑑𝑛) + (𝑎

𝑟′,𝑁−𝑏+1

𝑢𝑝
− 𝑑𝑟,𝑏

𝑑𝑛)𝜂𝑟
𝑑𝑛 ≥ 𝑧𝑚𝑖𝑛 −𝑀(1 − 𝜅𝑟,𝑟′

𝑑𝑛 ), ∀𝑟 ∈ 𝑅𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (18) 

where 𝑧𝑚𝑖𝑛  is the minimum turn-around time, 𝑎
𝑟′,1

𝑢𝑝
− 𝑑𝑟,𝑁

𝑑𝑛  represents the time interval 

between upward train service 𝑟′  arriving at station 1 and downward train service 𝑟 

departing from station N. Similarly, 𝑎
𝑟′,𝑁−𝑏+1

𝑢𝑝
− 𝑑𝑟,𝑏

𝑑𝑛  the time interval between upward 

train service 𝑟′ arriving at station 𝑁 − 𝑏 + 1 and downward train service 𝑟 departing from 

station b. If 𝜅𝑟,𝑟′
𝑑𝑛 = 1 and 𝜂𝑟

𝑑𝑛 = 1 , downward train 𝑟  is a short-turning service, so 

𝑎
𝑟′,𝑁−𝑏+1

𝑢𝑝
− 𝑑𝑟,𝑏

𝑑𝑛  must satisfies the minimum turn-around time; while if 𝜅𝑟,𝑟′
𝑑𝑛 = 1 and 

𝜂𝑟
𝑑𝑛 = 0 , downward train 𝑟  is a full-length service, so 𝑎

𝑟′,1

𝑢𝑝
− 𝑑𝑟,𝑁

𝑑𝑛  must satisfies the 

minimum turn-around time. The similar constraint about upward train services connect with 

downward train services is shown in Constraint (19). 

(𝑎𝑟,1
𝑑𝑛 − 𝑎𝑟,𝑁

𝑢𝑝 )(1 − 𝜂
𝑟′
𝑢𝑝) + (𝑎𝑟,𝑎

𝑑𝑛 − 𝑑
𝑟′,𝑁−𝑎+1

𝑢𝑝 ) 𝜂
𝑟′
𝑢𝑝
≥ 𝑧𝑚𝑖𝑛 −𝑀(1 − 𝜅

𝑟′,𝑟

𝑢𝑝 ) , ∀𝑟 ∈ 𝑅𝑑𝑛, 𝑟′ ∈ 𝑅𝑢𝑝 (19) 

 

3.3 Passenger demand constraints 

Passenger demand is a significant factor for train timetable optimization problems, 

since the number of train services and the headways between train services highly depend 



on this factor (Wang et al., 2018). In real operations, the number of in-vehicle passengers 

will change dynamically with the change in headways. We next intend to formulate the 

specific constraints to describe this process. First, the number of passengers waiting for the 

train service 𝑟 in the station 𝑖 of the direction 𝑥 can be written as 

𝑔𝑟,𝑖
𝑥 (𝜓) =

{
 
 

 
 ∫ 𝜆𝑖,𝑘

𝑥 (𝜓)𝑑𝑘   
𝑑1,𝑖
𝑥

𝑡𝑠𝑡𝑎𝑟𝑡

   if    𝑟 = 1           

∫ 𝜆𝑖,𝑘
𝑥 (𝜓)𝑑𝑘

𝑑𝑟,𝑖
𝑥

𝑑𝑟−1,𝑖
𝑥

    if   𝑟 ∈ 𝑅𝑥/{1}

  ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑖 ∈ 𝑆 (20) 

where if 𝑟 > 1, 𝑔𝑟,𝑖
𝑥 (𝜓)  refers to the number of passengers entering in station 𝑖  of 

direction 𝑥  between the departure times of train service 𝑟  and 𝑟 − 1 ; if 𝑟 = 1, 𝑔𝑟,𝑖
𝑥 (𝜓) 

refers to the number of passengers entering in station 𝑖 of direction 𝑥 between the departure 

time of train service 1 and 𝑡𝑠𝑡𝑎𝑟𝑡. 
The number of passengers alight from the train service 𝑟 in the station 𝑖 of the direction 

𝑥 is denoted as 𝑓𝑟,𝑖
𝑥 (𝜓), we have  

𝑓𝑟,𝑖
𝑥 (𝜓) = 𝑓1𝑟,𝑖

𝑥 (𝜓) + 𝑓2𝑟,𝑖
𝑥 (𝜓),     ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (21) 

𝑓1𝑟,𝑖
𝑥 (𝜓) =∑(𝑏1𝑟,𝑗

𝑥 (𝜓) ∗ 𝜔1𝑗,𝑖
𝑥 (𝜓))

𝑖−1

𝑗=1

      ∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (22) 

𝑓2𝑟,𝑖
𝑥 (𝜓) =∑(𝑏2𝑟,𝑗

𝑥 (𝜓) ∗ 𝜔2𝑗,𝑖
𝑥 (𝜓))

𝑖−1

𝑗=1

      ∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆  (23) 

where 𝑓1𝑟,𝑖
𝑥 (𝜓) and 𝑓2𝑟,𝑖

𝑥 (𝜓) refer to the number of Type I, Type II alighting from the 

train service 𝑟 in the station 𝑖 of the direction 𝑥, respectively; 𝑏1𝑟,𝑗
𝑥 (𝜓) and 𝑏2𝑟,𝑗

𝑥 (𝜓) refer 

to the number of Type I, Type II boarding the train service 𝑟 in the station 𝑖 of the direction 

𝑥, respectively, can be calculated by 
𝑓1𝑟,𝑖

𝑥 (𝜓) = 𝑔1𝑟,𝑖
𝑥 (𝜓)             ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (24) 

𝑏2𝑟,𝑖
𝑥 (𝜓) = {

𝑤1𝑟,𝑖
𝑥 (𝜓) − 𝑔1𝑟,𝑖

𝑥 (𝜓)        𝜂𝑟 = 0

                 0               𝜂𝑟 = 1
  ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (25) 

𝑏𝑟,𝑖
𝑥 (𝜓) = 𝑤1𝑟,𝑖

𝑥 (𝜓) ∗ (1 − 𝜂𝑟
𝑥) + 𝑔1𝑟,𝑖

𝑥 (𝜓) ∗  𝜂𝑟
𝑥             ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (25) 

𝑤1𝑟,𝑖
𝑥 (𝜓) = {

𝑔1𝑟,𝑖
𝑥 (𝜓) + 𝑔2𝑟,𝑖

𝑥 (𝜓)                𝑟 = 1

𝑔1𝑟,𝑖
𝑥 (𝜓) + 𝑔2𝑟,𝑖

𝑥 (𝜓) + 𝑤2𝑟−1,𝑖
𝑥 (𝜓)       𝑟 ∈ 𝑅𝑥/{1}

      ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑖 ∈ 𝑆 (26) 

𝑤2𝑟,𝑖
𝑥 (𝜓) = 𝑤1𝑟,𝑖

𝑥 (𝜓) − 𝑏𝑟,𝑖
𝑥 (𝜓)             ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (27) 

where 𝑤1𝑟,𝑖
𝑥 (𝜓)  refers to the number of passengers waiting in the platform of the 

station 𝑖 of the direction 𝑥 before train service 𝑟 left; 𝑤2𝑟,𝑖
𝑥 (𝜓) is the number of passengers 

remain in the platform of the station 𝑖 of the direction 𝑥 after train service 𝑟 left. 

Therefore, we can calculate the number of in-vehicle passengers of train service 𝑟 

between stations 𝑖 and 𝑖 + 1 (𝑖 ∈ 𝑆/{𝑁}) of the direction 𝑥, which is denoted as 𝑣𝑟,𝑖
𝑥 (𝜓): 

𝑣𝑟,𝑖
𝑥 (𝜓) = {

𝑏𝑟,𝑖
𝑥 (𝜓) 𝑖 = 1,

𝑣𝑟,𝑖−1
𝑥 (𝜓) − 𝑓𝑟,𝑖

𝑥 (𝜓) + 𝑏𝑟,𝑖
𝑥 (𝜓), 𝑖 > 1,

      ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (28) 

As shown in Section 2.3, some passengers (Type III) of Type II will take the short-

turning train services to the last station of the short-turning region, and wait for the full-

length train services to their destination stations. Therefore, we should modify the above 

constraints about the coupling relationship between passengers and train services 

considering the uncertainty of passenger vehicle selection. For the short-turning train 

services, the number of in-vehicle passengers will increase; in contrast, the number of 

passengers for full-length train services will reduce. Therefore, this study should modify 

Constraint (28). Take the downward direction as an example, which can be written as 



follows: 

𝑣2𝑟,𝑖
𝑑𝑛(𝜓) =

{
 
 

 
 

𝑣𝑟,𝑖
𝑑𝑛(𝜓) +∑(𝜉𝜓 ∗ 𝑏2𝑟,𝑖

𝑑𝑛(𝜓)) 

𝑖

𝑗=1

      𝜂𝑟
𝑑𝑛 = 1

𝑣𝑟,𝑖
𝑑𝑛(𝜓) −∑(𝜉𝜓 ∗ 𝑏2𝑟−1,𝑖

𝑑𝑛 (𝜓) ∗ 𝜂𝑟−1
𝑑𝑛 ) 

𝑖

𝑗=1

    𝜂𝑟
𝑑𝑛 = 0

     ∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑑𝑛, 𝑖 ∈ [𝑎, 𝑏 − 1]  (29) 

𝑣2𝑟,𝑖
𝑑𝑛(𝜓) = {

        0           𝜂𝑟
𝑑𝑛 = 1

𝑣𝑟,𝑖
𝑑𝑛(𝜓)    𝜂𝑟

𝑑𝑛 = 0
        ∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑑𝑛, 𝑖 ∉ [𝑎, 𝑏 − 1]  (30) 

where 𝑣2𝑟,𝑖
𝑑𝑛(𝜓) refers to the number of in-vehicle passengers of train service 𝑟 between 

stations 𝑖 and 𝑖 + 1 (𝑖 ∈ 𝑆/{𝑁}) of the direction 𝑥, considering passenger vehicle selection 

for the full-length and short-turning train services.  

Constraint (29) is for the sections in the short-turning region, if train 𝑟 is short-turning 

service, 𝜂𝑟
𝑑𝑛 = 1, 𝑣𝑟,𝑖

𝑑𝑛(𝜓) should add the number of Type III boarding at and before station 

𝑖, which can be calculated by ∑ (𝜉𝜓 ∗ 𝑏2𝑟,𝑖
𝑑𝑛(𝜓)) 𝑖

𝑗=1 ; if train 𝑟 is full-length service, 𝜂𝑟
𝑑𝑛 =

0, we should judge whether train 𝑟 − 1 is full-length service. If train 𝑟 − 1 is full-length 

service, 𝑣𝑟,𝑖
𝑑𝑛(𝜓) should reduce the number of Type III boarding at train 𝑟 − 1; otherwise, 

𝑣2𝑟,𝑖
𝑑𝑛(𝜓) is equal to 𝑣𝑟,𝑖

𝑑𝑛(𝜓). Constraint (30) is for the sections not in the short-turning 

region, if train 𝑟 is short-turning service, 𝑣2𝑟,𝑖
𝑑𝑛(𝜓) equals 0. If train 𝑟 is full-length service, 

𝑣2𝑟,𝑖
𝑑𝑛(𝜓) is equal to 𝑣𝑟,𝑖

𝑑𝑛(𝜓). The similar constraints for the upward direction are shown in 

Constraints (31)-(32). 

𝑣2𝑟,𝑖
𝑢𝑝
(𝜓) =

{
 
 

 
 

𝑣𝑟,𝑖
𝑢𝑝
(𝜓) +∑(𝜉𝜓 ∗ 𝑏2𝑟,𝑖

𝑢𝑝
(𝜓)) 

𝑖

𝑗=1

      𝜂𝑟
𝑢𝑝
= 1

𝑣𝑟,𝑖
𝑢𝑝
(𝜓) −∑(𝜉𝜓 ∗ 𝑏2𝑟−1,𝑖

𝑢𝑝
(𝜓) ∗ 𝜂𝑟−1

𝑢𝑝
) 

𝑖

𝑗=1

    𝜂𝑟
𝑢𝑝
= 0

∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑢𝑝, 𝑖 ∈ [𝑁 − 𝑏 + 1,𝑁 − 𝑎] (31) 

𝑣2𝑟,𝑖
𝑢𝑝
(𝜓) = {

        0           𝜂𝑟
𝑢𝑝
= 1

𝑣𝑟,𝑖
𝑢𝑝
(𝜓)    𝜂𝑟

𝑢𝑝
= 0

        ∀ 𝜓 ∈ 𝐺, 𝑟 ∈ 𝑅𝑢𝑝, 𝑖 ∉ [𝑁 − 𝑏 + 1,𝑁 − 𝑎] (32) 

The load factor of the train service 𝑟 of the direction 𝑥 between stations 𝑖 and 𝑖 + 1 

can be written as: 
𝜃𝑟,𝑖
𝑥 (𝜓) = 𝑣2𝑟,𝑖

𝑢𝑝
(𝜓)/𝐶, ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (33) 

Similar to (Gong et al., 2021), the train load factor must be no more than the maximum 

load factor during the operational period in each scenario, as formulated below: 
𝜃𝑟,𝑖
𝑥 (𝜓) ≤ 𝛷𝑚𝑎𝑥 , ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (34) 

However, it’s difficult for every scenario to satisfy constraint (34) in the robust 

solution, so we introduce the risk coefficient 𝜒𝑟,𝑖
𝑥 (𝜓), which refers to the risk degree of train 

load factor over the maximum load factor, and modify constraint (34) to constraint (35): 
𝜃𝑟,𝑖
𝑥 (𝜓) ≤ 𝛷𝑚𝑎𝑥 + 𝜒𝑟,𝑖

𝑥 (𝜓), ∀ 𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (35) 

𝜒𝑟,𝑖
𝑥 (𝜓) ≥ 0, ∀𝜓 ∈ 𝐺, 𝑥 ∈ 𝐷, 𝑟 ∈ 𝑅𝑥 , 𝑖 ∈ 𝑆 (36) 

 

3.4 Objective Function 

In this study, the goals of the train timetabling are to reduce the load factor variation 

and improve the utilization of the rolling stocks. We take the utilization of the rolling stocks 

as an 𝜀-constraint (Rabiee et al., 2014) and focus on reducing the load factor variation. The 

𝜀-constraint is expressed as 

|𝑅𝑑𝑛| + |𝑅𝑢𝑝| −∑∑(𝜅𝑟,𝑟′
𝑑𝑛 + 𝜅

𝑟′,𝑟

𝑢𝑝
)

𝑅𝑢𝑝

𝑟′=1

𝑅𝑑𝑛

𝑟=1

≤ 𝜀 (37) 

where ∑ ∑ (𝜅𝑟,𝑟′
𝑑𝑛 + 𝜅

𝑟′,𝑟
𝑢𝑝
)𝑅𝑢𝑝

𝑟′=1
𝑅𝑑𝑛
𝑟=1  refers to the connection number of different directions’ train 

services, so the left side of Constraint (37) the total rolling stock number of the train 



timetable, the right side restricts the total rolling stock number to not exceed a certain level. 

Hence, the model transforms the dual objective problem into a single objective problem, 

which focuses on reducing the load factor variation under limited transportation resources. 

In this study, the objective function is formulated as follows: 
𝜕1𝑟,𝑖

𝑥 (𝜓) = 𝑚𝑎𝑥{0, 𝜃𝑟,𝑖
𝑥 (𝜓) − 𝛷} (38) 

𝜕2𝑟,𝑖
𝑥 (𝜓) = 𝑚𝑎𝑥{0,𝛷 − 𝜃𝑟,𝑖

𝑥 (𝜓)} (39) 

𝑚𝑖𝑛 𝑍(𝜓) =∑∑∑(𝛿1 ∗ 𝜕1𝑟,𝑖
𝑥 (𝜓) + 𝛿2 ∗ 𝜕2𝑟,𝑖

𝑥 (𝜓)  +  𝛿3 ∗ 𝜒𝑟,𝑖
𝑥 (𝜓))

𝑖∈𝑆𝑟∈𝑅𝑥𝑥∈𝐷

 (40) 

where 𝛷  and 𝛷  refer to the upper and lower bounds of the “comfortable” load factor, 

respectively. 𝜕1𝑟,𝑖
𝑥 (𝜓, 𝜈) and 𝜕2𝑟,𝑖

𝑥 (𝜓, 𝜈) are the load factor variation values, which refer to 

the degree of train capacity oversaturation and waste, respectively. if 𝜃𝑟,𝑖
𝑥 (𝜓) is within 

[𝛷, 𝛷], 𝜕1𝑟,𝑖
𝑥 (𝜓) = 0, 𝜕2𝑟,𝑖

𝑥 (𝜓) = 0; if 𝜃𝑟,𝑖
𝑥 (𝜓) is above 𝛷, 𝜕1𝑟,𝑖

𝑥 (𝜓) > 0, 𝜕2𝑟,𝑖
𝑥 (𝜓) = 0; if 

𝜃𝑟,𝑖
𝑥 (𝜓)  is less than 𝛷 , 𝜕1𝑟,𝑖

𝑥 (𝜓) = 0 ,  𝜕2𝑟,𝑖
𝑥 (𝜓) > 0 . The objective function considers 

reducing the degree of train capacity oversaturation and waste, so as to reduce the load 

factor variation. If 𝜃𝑟,𝑖
𝑥 (𝜓)  is above 𝛷𝑚𝑎𝑥 , there are some passengers stranded in the 

platform, and the number of stranded passengers is the value of 𝜒𝑟,𝑖
𝑥 (𝜓) multiplied by train 

standard capacity. 𝛿1 ,  𝛿2  and 𝛿3  are the corresponding weight coefficients to reach a 

balance between train capacity oversaturation, waste and risk. As discussed above, the 

robust optimization model for train timetabling and the short-turning strategy is shown as 

follows: 

min𝑍 = ∑(𝑍(𝜓) ∗ 𝐸𝜓)

𝜓∈𝐺

 (41) 

s. t. Constraints: (1) − (33), (35) − (40). 

4 Case Study 

A case study of the Xi’an Metro Line 3 in Shaanxi, China, in 2021 is used to test the 

proposed method. The Xi’an Metro Line 3 consists of 26 stations. The downward direction 

is defined as the train operating from Bonded Zone Station (the 1st station in the downward 

direction) to Yuhuazhai Station (the 26th station in the downward direction). This area is 

also the full-length services region. The short-turning services region is between 

Xianghuwan Station (the 6th station in the downward direction) and Yuhuazhai Station. 

These three stations are connected with the depots. Note that different service types (full-

length, short-turning) of downward and upward train services can be connected (share the 

rolling stocks) at Yuhuazhai Station. 

The period from 7:00 a.m. to 9:00 a.m. is considered the planning horizon, and 24 train 

services are operated in each direction. The maximum rolling stocks number is set to 30, 

which means there are at least 18 train services connections. The maximum and minimum 

headways are 360 s and 120 s, respectively. Each station's standard running and dwell times 

are adopted in this study according to the original timetable, which and available in the 

public domain, as announced by the Xi’an metro. The minimum turn-around time in these 

three depots is 180 s. Moreover, the standard and maximum capacity of train service are 

1380 and 2070 persons (the maximum load factor is 1.5), respectively, for both short-

turning and full-length services. The optimization model is implemented using MATLAB 

R2020a with Intel Core 2.40 GHz CPUs computer, and the Yalmip toolbox with Gurobi 

version 9.5.0. 

Firstly, we set a passenger scenario set named 𝐺1 , which includes five scenarios 

(Scenario 1-5). The total number of passengers is 225137 (Scenario 1), 224674 (Scenario 



2), 233418 (Scenario 3), 236718 (Scenario 4), and 247389 (Scenario 5), respectively. We 

set the probability of each scenario equally as 0.2 (i.e., 𝐸𝜓= 0.2, 𝜓 ∈ 𝐺1). In each scenario 

of 𝐺1, we do not consider the uncertainty of passenger vehicle selection. For these scenarios, 

the total demand of all stations in the downward and upward directions is shown in Fig. 5. 

It can be seen that passenger demand from 7:00 to 9:00 maintains a relatively higher level 

than that from 6:00 to 7:00 and 9:00 to 10:00, and shows a decreasing trend after 8:00. 

 

  
(a) downward direction                                             (b) upward direction 

Fig. 5 Passenger demand of the Xi’an Metro Line 3. 
 

Then, we set another passenger scenario set, named 𝐺2, which includes six scenarios 

(Scenario 6-11). Different from 𝐺1, we consider the uncertainty of passenger demand and 

vehicle selection in 𝐺2 . In Scenario 6,7,8, the spatiotemporal passenger demands are 

consistent with that of Scenario 2 in 𝐺1 , and 𝜉𝜔  set to 0.1,0.2 and 0.3, respectively. In 

Scenario 9,10,11, the spatiotemporal passenger demands are consistent with that of 

Scenario 5 in 𝐺1, and 𝜉𝜔 is set to 0.1,0.2 and 0.3, respectively. 

Three simulation experiments are conducted in this section. Experiment 1 compared 

the results of different cases with short-turning services under the passenger scenario set 𝐺1. 

Experiment 2 analyzes the effectiveness of the robust optimization considering the 

uncertainty of the passenger demand, under the passenger scenario set 𝐺1. Experiment 3 

analyzes the effectiveness of the robust optimization considering the uncertainty of the 

passenger demand and vehicle selection, under the passenger scenario set 𝐺2. 

 
4.1 Experiment 1: Optimal cases comparison 

In Experiment 1, we compared optimal cases, including two all full-length services 

cases (Cases I and II) and three short-turning services cases (Cases III, IV and V). For the 

two full-length services cases, Case I uses the fixed departure frequency strategy (The 

interval between two adjacent trains is the same), and Case II uses the flexible departure 

frequency strategy (The interval between two adjacent trains is different). For short-turning 

services strategies, the proportion of full-length services and short-turning services is set to 

3 (Case III), 2 (Case IV), and 1 (Case V), in which the proportion of 2 indicates that the two 

train services after a short-turning service are full-length services. The rolling stock 

application mode is the Mixed-mode in the optimal timetables with the short-turning 

services strategy. The optimization results of those five cases are listed in Table 4. 
Table 4. Comparison results with different strategies. 

Case Objective Oversaturation  Waste Risk RSN 

I 291.86 56.69 415.29 5.50 28 

II 256.00 40.32 406.29 2.50 30 

III 218.95 46.23 340.75 4.66 30 
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IV 231.94 60.60 315.79 2.68 29 

V 197.46 52.80 283.96 5.33 28 

Oversaturation: degree of train capacity oversaturation; Waste: degree of train capacity waste; 

Risk: degree of train capacity risk; RSN: number of rolling stocks needed. 

 

The optimization results of these five cases are listed in Table 4. Case V is superior to 

other cases concerning the objective values and the rolling stock number. Compared with 

Case I, the degrees of train capacity oversaturation and waste decrease in Case II. Because 

the flexible departure frequency strategy can adjust the allocation of train capacity in the 

time dimension according to the passenger demand distribution, although the full-length 

service can serve all stations, it wastes the train capacity in these sections with small 

passenger demand. Compared with Case II, the objective values of Case III, IV, and V 

reduce. The short-turning service can adjust the allocation of train capacity in the space 

dimension, to reduce the waste of train capacity in these sections. In addition, the trains of 

short-turning services take a shorter time for circulation, so it only needs 28 rolling stocks, 

which are needed 30 in Case II, III, and 29 in Case IV, respectively. 

The optimal timetable with 24 train services in both directions obtained from Case V 

is shown in Fig. 6. The optimal timetables for the other four situations are shown in 

Appendix B. It can be seen that there are 4, 7 and 9 train connections in Bonded Zone 

Station, Xianghuwan Station, and Yuhuazhai Station, respectively. We also use the 

Independent-mode to calculate the rolling stock circulation plan under the optimal timetable. 

As shown in Appendix C, there are only eight train connections in Yuhuazhai Station, so 

it needs 29 rolling stocks. In other words, the Mixed-mode can improve the utilization of 

rolling stocks because the trains of different service types can share the rolling stocks, and 

the rolling stock circulation time can reduce. 

 
Fig. 6 Optimal train timetable with Case V (Mixed-mode). 

 

4.2 Experiment 2: Uncertainty of the passenger demand 

Based on Case V in Experiment 1, this experiment analyzes the effectiveness of the 

robust optimization considering the uncertainty of the passenger demand under the 

passenger scenario set 𝐺1. Firstly, each demand scenario's satisfactory (best) train timetable 

is generated according to passenger demand, denoted as 𝑆1, 𝑆2, …, and 𝑆5, respectively. 

Secondly, these satisfactory train timetables are implemented in all demand scenarios. 

Thirdly, the robust train timetable obtained from Case V in Experiment I is implemented 

on all demand scenarios, denoted as 𝑆𝑟𝑜𝑏𝑢𝑠𝑡. Note the probability of each scenario in 𝐺1 is 

0.2. 

The indicators corresponding to the six optimal timetables are shown in Table 5. The 

results show that if a train timetable is selected among these satisfactory timetables and 



implemented in all demand scenarios, the average objective value will be larger than for the 

robust train timetable. It proves that the robust train timetable can more effectively satisfy 

multi-scenario passenger demand than the satisfactory train timetable generated by 

independent optimization of each demand scenario.  
Table 5. Comparison of indicators under different passenger demand scenarios in Experiment 1 

Optimal 

timetable 

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Average objective 

𝑺𝟏 186.15 187.30 203.57 208.45 217.34 200.56 

𝑺𝟐 187.81 185.24 204.01 208.37 216.42 200.37 

𝑺𝟑 189.27 188.63 198.38 205.07 211.79 198.62 

𝑺𝟒 189.98 189.18 202.86 199.65 214.88 199.31 

𝑺𝟓 189.58 188.29 200.45 204.65 208.74 198.34 

𝑺𝒓𝒐𝒃𝒖𝒔𝒕 188.13 187.07 199.59 202.70 209.80 197.45 

 

Fig. 7 shows the train load factor and stranded passenger number in the downward 

direction for the original train timetable and the robust train timetable under Scenario 5. 

Green means that the section has train capacity waste, and red means that the section has 

train capacity oversaturation. It can be observed that the train capacity waste in the sections 

of the zone between Bonded Zone Station and Xianghuwan Station is obvious. The robust 

train timetable with short-turning strategy can reduce train capacity waste by reducing the 

train running number in these sections. The number of the sections with train capacity 

oversaturation and waste reduce from 334 to 238 and 170 to 158, respectively. In addition, 

the stranded passenger number reduces obviously, and the maximum number of stranded 

passengers on the platform is reduced from 605 to 233. In conclusion, the robust train 

timetable can effectively improve the coupling degree between passengers and train 

services by reducing train capacity oversaturation and waste, and decrease the number of 

stranded passengers. 

 
(a) Original train timetable 



(b) Robust train timetable 
Fig. 7 Comparison of train load factor and stranded passenger in the downward direction 

 

4.3 Experiment 3: Uncertainty of the passenger demand and vehicle selection 

Based on Case V in Experiment 1, this experiment analyzes the effectiveness of the 

robust optimization considering the uncertainty of the passenger demand and vehicle 

selection, under the passenger scenario set 𝐺2. Similar to Experiment 2, the satisfactory 

(best) train timetable of each passenger scenario is generated according to passenger 

demand and vehicle selection, denoted as S6, S7, …, and S11, respectively, and we 

calculate the robust train timetable according to the passenger scenarios set 𝐺2, denoted as 

𝑆𝑟𝑜𝑏𝑢𝑠𝑡2 . These six satisfactory train timetables and the robust train timetable are also 

implemented in all passenger scenarios of 𝐺2, and the corresponding indicators are shown 

in Table 6. Note the probability of each scenario in 𝐺2 is 1/6. 

The results also show that if a train timetable is selected among these satisfactory 

timetables and implemented in all demand scenarios, the average objective value will be 

larger than for the robust train timetable. In other words, the robust train timetable can more 

effectively satisfy multi-scenario passenger demand than the satisfactory train timetable 

generated by independent optimization of each demand scenario. 
 

Table 6 Comparison of indicators under different passenger demand scenarios in Experiment 2 
Optimal 

timetable 

Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 

10 

Scenario 

11 

Average 

objective 

𝑺𝟔 183.01 180.81 178.64 214.10 211.86 209.71 196.36 

𝑺𝟕 183.02 180.81 178.63 214.00 211.74 209.55 196.29 

𝑺𝟖 183.03 180.81 178.62 214.01 211.75 209.56 196.30 

𝑺𝟗 186.01 183.75 181.53 206.40 206.40 201.85 194.32 

𝑺𝟏𝟎 186.03 183.78 181.55 206.40 204.10 201.86 193.95 

𝑺𝟏𝟏 186.06 183.78 181.54 206.43 204.11 201.83 193.96 

𝑺𝒓𝒐𝒃𝒖𝒔𝒕𝟐 184.98 182.74 180.56 206.76 204.50 202.27 193.64 

 

Then, we analyze the influence of passenger vehicle selection for the objective value. 

As shown in Table 6, for each optimal timetable, the objective value is smaller when the 

proportion of Type III in Type II is larger. For instance, the proportion of Type III in Type 

II are 0.1, 0.2, and 0.3 in Scenario 6, 7, and 8, respectively, and the objective values of each 



optimal timetable gradually decrease in these three scenarios. Furthermore, 𝑆𝑟𝑜𝑏𝑢𝑠𝑡2 is also 

implemented in Scenario 5 of 𝐺1, which doesn’t consider passenger vehicle selection, and 

the train load factors in the upward direction are shown in Fig.8(a). The train load factors 

in the upward direction of 𝑆𝑟𝑜𝑏𝑢𝑠𝑡2 implemented in Scenario 11 are displayed in Fig.8(b). 

 

 
(a) Scenario 5 (not consider passenger vehicle selection) 

 
(b) Scenario 11 (Consider passenger vehicle selection) 

Fig. 8 Comparison of train load factor in the upward direction 

 

The train load factors for the upward direction are similar in these two scenarios. In 

Scenario 5, the load factors of short-turning train services are much lower than full-length 

train services, because short-turning train services do not pass through all stations along this 

line, and can’t carry Type II. However, in Scenario 11, 30% of Type II will take the short-

turning train services to Xianghuwan Station, and transfer to the full-length train services. 

This unique vehicle selection behavior will transform some passengers from the full-length 

train services to the short-turning train services, and reduce the load factor variation 

between them, so the objective value in Scenario 11(202.27) is lower than Scenario 5 

(209.28). 



5 Conclusion 

In this study, we proposed a robust optimization approach for train timetables and 

rolling stock circulation with short-turning strategy that involve uncertain passenger 

demand and vehicle selection. A robust optimization model was established by reducing the 

load factor variation as the optimization objective. In this model, we constructed several 

passenger scenarios to capture the uncertainty feature of passenger demand and vehicle 

selection. Furthermore, we divided the passengers into three types, and used the proportion 

of Type III (passengers who take the short-turning train services to the last station of the 

short-turning region, and transfer to the full-length train services to their destination stations) 

to represent the vehicle selection behavior in the short-turning region. 

The Xi’an Metro Line 3 in China was adopted as a case study to test the effectiveness 

of the proposed method. Our results confirmed that the robust train timetable with short-

turning strategy outperformed all full-length services timetables concerning the objective 

values and the rolling stock number. The robust train timetable can more effectively satisfy 

multi-scenario passenger demand than the satisfactory train timetable generated by 

independent optimization of each demand scenario, since if a train timetable is selected 

among these satisfactory timetables and implemented in all demand scenarios, the average 

objective value will be larger than for the robust train timetable. It can effectively improve 

the coupling degree between passengers and train services by reducing train capacity 

oversaturation and waste, and decrease the number of stranded passengers. In addition, we 

found the vehicle selection behavior (take the short-turning train services and transfer to the 

full-length train services) will transform some passengers from the full-length train services 

to the short-turning train services, and reduce the load factor variation between them. 

Appendix A  

 
Fig A.1 A bidirectional train line with multi deports 

 

We define two variables, 𝛷 and 𝛷, which refer to the upper and lower bounds of the 

“comfortable” load factor, respectively. 𝜕1𝑟,𝑖
𝑥 (𝜓, 𝜈)  and 𝜕2𝑟,𝑖

𝑥 (𝜓, 𝜈)  are the load factor 

variation values, which refer to the degree of train capacity oversaturation and waste, 

respectively. if 𝜃𝑟,𝑖
𝑥 (𝜓) is within [𝛷,𝛷], 𝜕1𝑟,𝑖

𝑥 (𝜓) = 0, 𝜕2𝑟,𝑖
𝑥 (𝜓) = 0; if 𝜃𝑟,𝑖

𝑥 (𝜓) is above 𝛷, 

𝜕1𝑟,𝑖
𝑥 (𝜓) > 0, 𝜕2𝑟,𝑖

𝑥 (𝜓) = 0; if 𝜃𝑟,𝑖
𝑥 (𝜓) is less than 𝛷, 𝜕1𝑟,𝑖

𝑥 (𝜓) = 0, 𝜕2𝑟,𝑖
𝑥 (𝜓) > 0.  

 



Appendix B  

 
Fig A.1 Case I in Experiment 1 

 
 Fig A.2 Case II in Experiment 1 

 
Fig A.3 Case III in Experiment 1                



 
Fig A.4 Case VI in Experiment 1 

Appendix C 

 
Fig B.1 Case V in Experiment 2 (Independent-mode). 
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