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Abstract—Phishing is a malicious, criminal activity executed 

by obtaining the credentials of system user by unethical means. 

Phishing has always been a menace in world of internet as it 

threatens the privacy as well as security of the user. It is 

executed by multiple means like creating unauthentic webpages, 

user logins, made-up emails targeting banking sector as well as 

the ecommerce sector of digital industry. Since the booming of 

digital market in society the threat of Phishing is eminent. This 

document explains the existing work and additional work done 

to counter such conditions and secure the use of internet for the 

users. Modern day data mining techniques and use of machine 

learning is used to counter such attacks. We are putting dynamic 

extension to use for easy access and user protection is enabled 

for user and is highly optimal. 

Keywords— Phishing, Security, Machine learning, Dynamic 

Extension. 

I. INTRODUCTION  

Phishing is defined as malicious, criminal attack carried 
out on users for the sole purpose of obtaining their credentials 
unethically and using it to steal their information or mess with 
their bank accounts. It is done by various methods and many 
tricks in books are used to carry out such attacks. Phishing is 
basically creating fake webpages or website that resemble the 
original websites and then redirecting the credentials to 
personal database of attacker. This can be done by many 
means such as creating fake links or URLs that redirect to 
phoney webpages and rest is history. Attackers choose areas 
such as ecommerce websites, gaming websites or webpages 
that show unbelievable deals on various things that will attract 
users. Once the user fills the detail information and tries to log 
in the information is relayed back to database of attacker 
which is accessible to him then he uses that same information 
to log in to your account and steal whatever is available to him. 
Detecting phishing websites often include lookup in a 
directory of malicious sites since most of the phishing 
websites are short lived the directory cannot always keep track 
of all including new phishing websites. The attackers can use 
these credentials to even steal money from bank accounts or 
steal important information from your accounts. Only way for 
an end user to benefit from this is to implement detection in a 
browser plugin. So that the user can be warned in real time as 
he browses a phishing site. However, browser extensions have 
restrictions such as they can be written only in JavaScript and 
they have limited access to page URLs and resources. Existing 
plugins send the URL to a server, so that the classification can 
be done in the server and the result is returned to the plugin. 
With this approach, user privacy is questioned and also the 
detection may be delayed due to network latency and the 
plugin may fail to warn the user in right time. As it is an 
important security problem and also considering the privacy 
aspects, we decided to implement this on a chrome browser 

plugin which can do the classification without an external 
server. To develop a browser plugin which once installed, 
should warn the user on the event of he/she visiting a phishing 
website. The plugin should not contact any external web 
service for this which may leak the user’s browsing data. The 
detection should be instant so that the user will be warned 
before entering any sensitive information on the phishing 
website. In the first half of 2019 businesses and residents of 
India were hit with more than 93,570 phishing events in a 
month span. With increase in number of internet users, there 
is a prominent need for security solutions again attacks such 
as phishing. Hence this plugin would be a good contribution 
for the chrome users. This is the first implementation of 
phishing website detection in browser plugin without use of 
an external web service. This makes use of existing works 
done on phishing detection and implements them in a manner 
that it will benefit end users. This involves porting the existing 
python classifier (random forest) to JavaScript. The plugin 
with a one-time download of the learned model, will be able 
to classify websites dynamically. This involves developing 
such a model (random forest) in JavaScript, as browser plugin 
supports only JavaScript. Thus, this project contributes to 
better privacy and rapid detection of phishing. 

II. LITERATURE SURVEY 

A. Direcory Based Approaches 

This chapter gives a survey of the possible approaches to 
phishing website detection. This survey helps to identify 
various existing approaches and to find the drawbacks in 
them. The difficulty in most of the approaches is that they are 
not implemented in real time so that an end user will benefit 
from it. Most popular one of this kind is Phish Tank. 
According to Phish-Tank , it is a collective group of data and 
information about phishing on the Internet. Phish Tank also 
gives an open Application Programming Interface for 
developers as well as researchers to install anti-phishing data 
into their Apps for free. Thus Phish Tank is a directory of all 
phishing websites that are found and reported by people across 
the web so that developers can use their API for detecting 
phishing websites. Google has a Application Programming 
Interface called Google Safe Browsing API which also 
follows directory based approach and also provides open API 
similar to Phish Tank. This kind of approach clearly can’t be 
effective as new phishing web sites are continuously 
developed and the directory can’t be kept up to date always. 
This also leaks users browsing behaviour as the URLs are sent 
to the Phish Tank API. 



B. Rule Based Approaches 

 An existing chrome plugin named PhishDetector uses a 
rule based approach so that it can detect phishing without 
external web service. Although rule based approaches support 
easier implementation on client side, they can’t be accurate 
compared to ML based approaches. Similar work by 
Shreeram.V on detection of phishing attacks using genetic 
algorithm uses a rule that is generated by a genetic algorithm 
for detection.PhishNet is one such Predictive blacklisting 
approach. It used rules that can match with TLD, directory 
structure, IP address, HTTP header response and some other. 
SpoofGuard by Stanford is a chrome plugin which used 
similar rule based approach by considering DNS, URL, 
images and links. 

C. ML Based Approaches 

Intelligent phishing website detection using random 

forest classifier (IEEE-2017) by Abdulhamit Subasi, Esraa 

Molah, Fatin Almkallawi and Touseef J. Chaudhery 

discusses the use the random forest classifier for phishing 

detection.[2] PhishBox: An Approach for Phishing 

Validation and Detection (IEEE-2017) by Jhen-Hao Li, and 

Sheng-De Wang[5] discusses ensemble models for phishing 

detection. As a result, the false-positive rate of phishing 

detection is dropped by 43.7% in average. They were able to 

come up with a detection mechanism that scans various types 

of phishing attacks maintaining a low rate of false alarms. 

Netcraft is one popular phishing detection plugin for chrome 

that uses server-side prediction. 

D. Drawbacks 

Based on the above-mentioned related works, it can be 

seen that the plugins either use rule-based approach or server-

side ML based approach. Rule based approach doesn’t seem 

to perform well compared to ML based approaches and on 

the other side ML based approaches need libraries support 

and so they are not implemented in client-side plugin. All the 

existing plugins send the target URL to an external web 

server for classification. This project aims to implement the 

same in browser plugin removing the need of external web 

service and improving user privacy. 

III. PRPOSED WORK 

A. Functional Requirements 

The plugin warns the user when he/she visits a phishing 

website. The plugin should be fast enough to prevent the user 

from submitting any sensitive information to the phishing 

website. The plugin should not use any external web service 

or API which can leak user’s browsing pattern. The plugin 

should be able to detect newly created phishing websites. The 

plugin should have a mechanism of updating itself to 

emerging phishing techniques.  

B. Non Functional Requirements 

There must be a simple and easy to use user interface 
where the user should be able to quickly identify the phishing 
website. The input should be automatically taken from the 
webpage in the current tab and the output should be clearly 
identifiable. Further the user should be interrupted on the 
event of phishing. No special hardware interface is required 
for the successful implementation of the system. The plugin 
should be always available and should make fast detection 
with low false negatives. 

Figure 1:System Architecture 



C. Constraints and Assumptions 

Certain techniques use features such as SSL, page rank 

etc. Such information cannot be obtained from client-side 

plugin without external API. Thus, those features can’t be 

used for prediction. Heavy techniques can’t use considering 

the processing power of client machines and the page load 

time of the website. Only JavaScript can be used to develop 

chrome plugins. Machine learning libraries support for 

JavaScript is far less compared to python and R. The plugin 

is provided with the needed permissions in the chrome 

environment. The user has a basic knowledge about phishing 

and extensions. 

IV. IMPLEMENTATION 

Random Forest classifier[10] is trained on phishing sites 
dataset using python scikit-learn. The implementation of 
Architecture is shown in Figure 1. A JSON format to represent 
the RFC has been devised and the learned classifier is 
exported to the same. A browser script has been implemented 
which uses the exported model JSON to classify the website 
being loaded in the active browser tab. The system aims at 
warning the user in the event of phishing. Random Forest 
classifier on features of a website is used to classify whether 
the site is phishing or legitimate. The dataset arff file is loaded 
using python arff library and features are chosen from the 
existing features. Features are selected on basis that they can 
be extracted completely offline without being dependent on a 
web service or third party. The dataset with chosen features 
are then separated for training and testing. Then the Random 
Forest is trained on the training data and exported to the above 
mentioned JSON format. The JSON file is hosted on a URL. 
The client side chrome plugin is made to execute a script on 
each page load and it starts to extract and encode the above 
selected features. Once the features are encoded, the plugin 
then checks for the exported model JSON in cache and 
downloads it again in case it is not there in cache. With the 
encoded feature vector and model JSON, the script can run the 
classification. Then a warning is displayed to the user, in case 
the website is classified as phishing. The entire system is 
designed lightweight so that the detection will be rapid. 

Pre-processing dataset is downloaded from UCI repository 
and loaded into a NumPy array. The dataset consists of 8 
features, which needs to be reduced so that they can be 
extracted on the browser. Each feature[1] is experimented on 
the browser so that it will be feasible to extract it without using 
any external web service or third party. Based on the 
experiments, 8 features have been chosen out of 30 without 
much loss in the accuracy on the test data. More number of 
features increases the accuracy and reduces the ability to 
detect rapidly considering the feature extraction time. Thus a 
subset of features is chosen in a way that the trade-off is 
balanced. Then the dataset is split into testing set and training 
with 30% for testing. Both the training and testing data are 
saved to disk 

A. Trainig 

The training data from the preprocessing module is loaded 

from the disk. A random forest classifier is trained on the data 

using scikit learn library. Random Forest is an ensemble 

learning technique and thus an ensemble of 10 decision tree 

estimators is used. Each decision tree follows CART 

algorithm and tries to reduce the Gini impurity. 

 
The cross-validation score is also calculated on the training 

data. The F1 score is calculated on the testing data. Then the 

trained model is exported to JSON using the next module. 

The formula for the f1 score is f1 = 2 * precision * recall / 

precision + recall the precision recall and f1 score of the 

phishing classifier is calculated manually using JavaScript on 

the test data set 

B. Exporting Model 

Every machine learning algorithm learns its parameter 

values during training. In Random Forest, each decision tree 

is an independent learner and each decision tree learns node 

threshold values and the leaf nodes learn class probabilities. 

Thus, a format needs to be devised to represent the Random 

Forest in JSON. The overall JSON structure consists of keys 

such as number of estimators, number of classes and etc. 

Further it contains an array in which each value is an 

estimator represented in JSON. Each decision tree is encoded 

as a JSON tree with nested objects containing threshold for 

that node and left and right node objects recursively. 

C. Classification 

The feature vector obtained from the content script is ran 

through the Random Forest for classification. The Random 

Forest parameters JSON is downloaded and cached in disk. 

The script tries to load the JSON from disk and incase of 

cache miss, the JSON is downloaded again. it contains an 

array in which each value is an estimator represented in JSON 

More number of features increases the accuracy and reduces 

the ability to detect rapidly considering the feature extraction 

time. A JavaScript library has been developed to mimic the 

Random Forest behavior using the JSON by comparing 

feature vector against the threshold of the nodes. The output 

binary classification is based on the leaf node values and the 

user is warned if the webpage is classified as phishing. 

 

V. RESULTS AND DISCUSSION 

 
We used Kaggle Datasets in this study to check the 

performance of our project to test various accuracies with 
different datamining techniques. The result is displayed in 
figure 2. The test set consists of data points separated from the 
dataset by ratio 70:30. Also the plugin is tested with websites 
that are listed in dataset. New phishy sites are also added to 
dataset as soon as they are found. The 8 features[1] extracted 
for the webpage are logged in to the console. The features are 
stored as key value pairs and the values are encoded from -1 
to 1  



VI. CONCLUSION 

A. Summary 

This is a phishing website detection system that focuses 

on client side implementation with rapid detection so that the 

users will be warned before getting phished. The main 

implementation is porting of Random Forest classifier to 

javascript. Similar works often use webpage features that are 

not feasible to extract on the client side and this results in the 

detection being dependent on the network. On the other side, 

this system uses only features that are possible to extract on 

the client side and thus it is able to provide rapid detection 

and better privacy. Although using lesser features results in 

mild drop in accuracy, it increases the usability of the system. 

This work has identified a subset of webpage feature that can 

be implemented on the client side without much effect in 

accuracy. The port from python to JavaScript and own 

implementation of Random Forest in JavaScript further 

helped in rapid detection as the JSON representation of the 

model and the classification script is designed with time 

complexity in mind. The plugin is detecting the 

phishing even before the page loads completely. 

B. Criticism 

The system has a lower accuracy but it is more usable and 

the trade-off between accuracy and rapid detection is handled 

well enough. The chrome extension API restrictions has a 

small effect on the plugin. Since the features are extracted in 

content script which is injected on page load, this plugin can’t 

prevent a malicious javascript code from executing. Further 

the accuracy reduces while porting from python to javascript 

and this needs to be investigated. Javascript doesn’t support 

multithreading and browser execute only javascript. Thus the 

classification can’t be made faster by using parallel threads. 

Currently the results are not cached on the plugin and it’s 

computed repeatedly even for frequently visited sites. 

C. Future Work 

The classifier is currently trained on 8 features which can 

be increased provided that, they don’t make the detection 

slower or result in loss of privacy. The extension can made to 

cache results of frequently visited sites and hence reducing 

computation. But this may yield in phishing attack being 

undetected. A solution needs to be devised for caching of 

results without losing the ability to detect phishing. The 

classification in JavaScript can be done using Worker 

Threads which may result in better classification time. Thus, 

a lot of improvements and enhancements are possible this 

system offers a more usable solution in the 

field of phishing detection. 
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