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Intelligent Proactive Maintenance Based on an
Optimized Fuzzy Logic Model for Machine State

Diagnosis

Abstract—Failure Mode and Effect Critical Analysis (FMECA)
method traditionally attempt to identify potential modes and
treat failures before they occur based on experts’ evaluation.
However, this method is extremely cost-intensive in terms of
failure mode since it evaluates each failure mode. Moreover, this
method is not able to properly treat uncertainty during logical
reasoning as it is based on subjective expert judgments and
requires a lot of information. Previous studies propose several
versions of Fuzzy logic but have not explicitly focused on the
combinatorial complexity nor justified the choice of membership
function in Fuzzy logic modeling. In this research, we develop
an optimization-based approach-referred to Integrating Truth
Table and Fuzzy Logic Model (ITTFLM)-generates smartly fuzzy
logic rules using Truth Tables. This approach allows generating
quickly and smartly fuzzy rules by assuring consistency and non-
redundancy through logical evaluation. We propose to implement
ITTFLM for three types of membership functions (Triangular,
Trapezoidal, and Gaussian) to choose the best function that fits
our real data. The ITTFLM was tested on fan data collected
in real time from plant machinery. The experimental evaluation
demonstrates that our model identifies the failure states with
more accurate results and can deal with large numbers of rules
and thus meets the real-time constraints that impact usually user
experience. Future research is expected to expand the size of data
in terms of metrics and compare it with other models.

Index Terms—FMECA, Fuzzy Logic, Truth Table, Combina-
torial Complexity, Real-time, Industrial fan motor, Knowledge,
Data, Artificial Intelligence.

I. INTRODUCTION

For manufacturing sectors, waste reduction, equipment
availability improvement, and product quality optimization are
three critical metrics to measure performance [1] to stay com-
petitive in the markets. Given that such industrial machines’
structure that integrates different components and complex
subsystems can often fail, it has a substantial impact on their
availability and, as a result, the productivity of manufactur-
ing plants and their performance [2] subsequently generating
economic loss and safety issues [3]. In fact, maintenance
costs are very expensive, it can cost a major part of the total
production costs, which can vary from 15% to 60 % of the
cost of goods produced [4]. In order to reach this goal, good
practice of maintenance is required. Basically, maintenance
is performed in two ways, by repairing the machine when
failure has occurred, or by preventing the failure before it
happens [5]. The latter is known as proactive maintenance
which attempts in addition to identify root causes [6]. On the
one hand, the advancement of technologies has encouraged
industries to incorporate Artificial Intelligence (AI) techniques

in PHM (Prognostics and Health Management), which aims
to monitor, diagnose, and prognostic the health status of
industrial equipment [7]. Diagnostics is dealing with fault
detection, isolation, and identification when it occurs. Fault
detection is indicating if something is malfunctioning in
the monitored system, and fault isolation locates the faulty
component, while fault identification is the determination
of the fault nature when it is detected [8]. On the other
hand, a large body of research in the literature exists for
both diagnostics and prognostics. However, many diagnosis
approaches stop at the fault isolation step, and seldom perform
fault identification; and most prognostic approaches assume
some diagnosis has been performed and focus on the prognosis
of a single failure mode. Moreover, none of these studies
provides a complete framework (from data-driven diagnostic
to maintenance decision passing by prognostic). To fill the
gap in the literature, this paper presents a part of a project that
aims to propose a completely optimized proactive maintenance
framework from diagnostic to maintenance decisions passing
through prognostic. The idea is to exploit information from
each previous step. For example, the prognostic step is done
for machines that were diagnosed as a failure, then it is done
for each failure mode identified at the diagnostic step. We start
then by optimizing the diagnostic step, which is the scope of
this paper as described in the figure 1.
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Fig. 1. PHM in a yellow rectangle. The scope of this paper, which is a
diagnostic step, is framed in red color.

Failure Mode and Effect Critical Analysis (FMECA) is a
diagnostic knowledge-based model that was originally devel-
oped by the U.S military and attempts to identify potential
modes and treat failures before they occur based on experts’



evaluation. This evaluation is done for each failure mode [9],
which is time-consuming. Furthermore, this method is char-
acterized by the inability to deal with uncertain failure data
including subjective expert judgments and require data. Thus,
Fuzzy Logic (FL), a technique of AI, was developed based
on Fuzzy theory since it can work in the absence of data and
attempts to model and manipulate imprecise and subjective
knowledge imitating human reasoning [10]. FL can be used as
a knowledge model or hybrid model when data are available.
The use of FL-based diagnostic in literature can be classified
into two groups. The first group focuses on FMECA combined
with FL based on the assumptions of data certainty. The
second group address using FL to replace FMECA but there
is no scientific approach to select input members or generate
rules as it generates manually and subjectively by listing all
fuzzy rules. However, none of the two groups addresses the
question of combinatorial complexity. Therefore, there are
seldom investigations about taking into consideration the com-
binatorial complexity while generating fuzzy rules in previous
research and practice. Actually, the number of generated rules
in the worst case corresponds to all combinations of fuzzy
sets. Let’s assume, 2 input variables and 1 output variable with
respectively (n, m, k) fuzzy sets, then there is n×m×k, it is
the Cartesian product of fuzzy sets of all variables. To the best
of our knowledge, this is the first study focusing on studying
the way of generating and evaluating the truth of rules to deal
with time-consuming.

In this paper, we contribute to the literature by developing an
optimization framework to generate automatically and quickly
fuzzy rules. The proposed modeling framework-refereed to as
Integrating Truth Table and Fuzzy Logic Model (ITTFLM)-
generates smartly fuzzy logic rules using Truth Tables. This
approach allows diagnosing the machine state by combining
the two distinct traditions in information engineering: data-
driven modeling and knowledge representation. the methodol-
ogy is based, on one hand, on data extracted from sensors, on
the other hand, the FMECA of machine state is selected as
the knowledge source, to validate our model on real data.
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Fig. 2. Three main contributions with a list of inputs and output.

In the light of above mentioned short comments on the aims
of the study, the contributions may be shortened as follows (see
Figure 2):

1) A new reduction method to specify fuzzy sets of input
memberships

2) A simulation method to demonstrate the choice of mem-
bership function

3) ITTFLM is designed to automatize FMECA processes
based on Vibration data

4) Generating rules in ITTFLM are based on Truth Table.
The remainder of this paper is organized as follows. In

section 2, we review the relevant academic literature. Section
3 describes the model formulation. Section 4 is dedicated to
our experiments. Finally, in section 5 we conclude the paper
and outline directions for future research

II. RELATED WORK

This section first reviews the literature on maintenance
strategies. Second, it reviews the FMECA model. Finally,
it reviews relevant contributions in the field of the fuzzy
logic model as a background for the development of our
optimization model.

a) Maintenance strategies: With the development of
reliability engineering in the 1950s, the concept of pre-
ventive maintenance, and time-based maintenance (TBM)
was introduced [11]. TBM was based on the well-known
”bathtub curve”, which represents the increase in the failure
rate of products over a certain period of operation. In the
1970s, the development of machine diagnostic techniques
brought the concept of condition-based maintenance (CBM),
in which preventive actions are carried out depending on
the detected symptoms of failure [11]. However, The var-
ious maintenance strategies deployed by manufacturers are
continuously evolving, given the increasing complexity of
manufacturing processes and equipment. Depending on the
complexity of the machine and the impact of an unexpected
failure on that machine, Manufacturers select the most appro-
priate maintenance strategy to maintain their asset base [1]
or even use a combination of reactive maintenance (RM),
preventive maintenance (PM), predictive maintenance (PdM)
and proactive maintenance (PaM). Although there is a huge
interest in integrating the PdM method in diverse industries,
the principal disadvantage in the selection of this policy
is that it’s too expensive, complex [12], and obtaining an
accurate and reliable Remaining Useful Life (RUL) prediction
of equipment is difficult [13]. For example, [14] proposed
a new PdM framework, based on prognostics information,
that allows providing reasonable decisions to avoid system
failure, maximizing the system lifetime, and reducing the
inventory cost. Most industries are still adopting preventive
maintenance, For example, [15] presents a study concludes that
the most preferred proactive maintenance strategy for the case
study was preventive maintenance, followed by reliability-
based maintenance while predictive maintenance is the least
preferred maintenance strategy in the rolling mill industry. The
concept of maintenance has significantly evolved, owing to
important contributions in both research and industry area. In
the literature, reactive and proactive maintenance are the two
maintenance strategies described [16].Reactive strategy: also
called corrective maintenance, unplanned maintenance, or run-
to-failure maintenance, it is considered the oldest maintenance
strategy, it is based on ” fix it when it’s broken”, which
means that it is performed only after a failure occurs [17]. The



effects of reactive strategy contribute to high costs. Proactive
Strategy: aims to prevent failures by taking action before a
failure of a machine occurs [18], in order to reduce costs [19],
it differs in preventive and predictive maintenance [20]. Pre-
ventive maintenance is planned and scheduled maintenance, it
involves periodic maintenance of the system to prevent it from
breakdowns and failures [21]. While Predictive maintenance
uses advanced analytics based on the asset’s actual operating
conditions to forecast the future failure which allows mainte-
nance to be planned before the failure occurs [22].

b) FMECA: One of the main reliability analysis methods
used to determine maintenance action priority is Failure Mode
and Effect Critical Analysis (FMECA). It is developed and
applied by NASA in the 1960s to improve and verify the
reliability of space program hardware in Apollo program [23].
This technique is used at diverse steps in the product life
cycle in several fields, such as medical, nuclear, aerospace,
and other manufacturing industries [6]. The FMECA method
aims to identify potential modes and treat failures before they
occur, intending to eliminate them or minimize the associated
risks. It consists of systematically considering, one after the
other, each component of the system studied and analyzing the
causes and effects of their potential failures. Each highlighted
failure is then analyzed to determine its occurrence, severity,
and detectability. The multiplication of these three values
allows calculating the criticality index, which is called the
Risk Priority Number (RPN) [24]. Many authors consider
FMECA and the development of risk analyses as an essential
part of maintenance management strategies [25]. [26] used
the FMECA approach to determine the critical equipment in a
super thermal power plant. In the military sector, it has been
applied for missile equipment maintenance decisions, where
it improves the work efficiency and relevance of maintenance,
and avoids excessive maintenance [27]. [28] applied to analyze
the reliability of metro door system. Despite its wide use,
FMECA is a problem for three main reasons [29]: (i) the
subjectivity of experts’ judgments to determine the three
criteria of RPN. (ii) the inability to deal with uncertain failure
data. (iii) the absence of scientific basis in the RPN calculation
formula, and many duplicates in RPN results. To overcome
these limitations, researchers have proposed models based on
Fuzzy logic.

c) Fuzzy Logic: This model was applied in many areas
in particular in maintenance and has achieved impressive
results. In the literature, we distinguish two types of using
fuzzy logic in diagnostic: integrated fuzzy logic in FMECA
to calculate RPN and using fuzzy logic on vibration data in
the absence of experts. [2] proposed a model in maintenance
decision-making support for textile machines using vibration
monitoring and vibration spectrum [10]. It allows also the
utility operators to achieve more precise outage predictions and
optimize the real-time operation and maintenance schedule in
weather risk analysis in distribution outage management [30],
and for scheduling predictive maintenance on communication
networks [31]. FL proved that it is an appropriate tool also in
the maintenance strategy selection approach to select the best

maintenance strategy for a rolling mill factory [15]. The neuro-
fuzzy tool ANFIS is used to evaluate the performance loss of
the system according to the degradation of components and the
deviations of system input flows integrating knowledge from
two different sources: expertise and real data [32], It has also
worked out on the gap between the two distinct traditions in
information engineering: knowledge representation and data-
driven modeling [33]. However, using Fuzzy logic to diagnose
machines based on vibration data in maintenance applications
has some limitations. On the one hand, there is no method
to define input members. Most researchers used triangular
functions without justifying this choice. On the other hand,
rules are generated manually and no algorithm guarantees the
consistencies and non-redundancies of rules concerning time
complexity.

All this literature constitutes essential background and
methodological foundation on which we build to implement
a descriptive model for diagnostic machines using vibration
data. In this respect, we propose in this paper an intelligent
and fast modeling framework (ITTFLM) that explicitly gen-
erates rules based on truth tables. The choice of membership
functions is done by the simulation method.

III. FUZZY MODELING

In this section, we present the framework of the proposed
Model (ITTFLM). To overcome the limitations previously
explained, a new methodology is developed based on the
Fuzzy Logic Models and Truth Table method to simplify rules
generation. Fuzzy Logic consists of four steps as mentioned
in Figure 3.

Fuzzy Logic
Algorithm

Initialization

Define the lin-
guistic vari-
ables

Construct
Membership
Function

Construct the
Rule base

Fuzzification

Convert crisp
input data to
fuzzy values
using member-
ship functions

Inference

Evaluate the
rules in the
rule base

Combine the
results of each
rule

Defuzzification

Determine the
de-fuzzifier
method

Convert the
output data
to non-fuzzy
values

Fig. 3. Steps of Fuzzy Logic Algorithm.

We present then our proposed modeling related to the three
blocks of the initialization step: As a tableII, the data used
is containing 160000 observations for each variable every 4
hours, during approximately 170 days for each one of the four
sensors, and FMECA results are saved at the same time. this
caused us issues with calculation time and costs. Integrating
the Fuzzy Logic Model allows us to overcome this issue, we
grouped the data by Machine State Class, then we took each
class and we determined an interval by taking the minimum



value and the maximum value of the data array. The following
algorithms give a simple way how to identify the Min and Max
values of each array:

Algorithm 1 Data reduction - Intervals definition
1: for i = 0 to array length− 1 do
2: for each element in the array do
3: Set Max to array[i]
4: Set Min to array[i]
5: if array[i] ≥ Max then
6: Set Max to array[i]
7: else
8: if array[i] ≤ Min then
9: Set Min to array[i]

10: end if
11: end if
12: end for
13: end for

The linguistic variables correspond to the state of ma-
chines. After defining of intervals (membership functions),
we checked each interval if it includes other intervals, the
following algorithm gives a simple way how to check the
inclusion between intervals:

Algorithm 2 Intervals inclusion detection
for i = 0 to arr1 length− 1 do

2: for j = 0 to arr2 length− 1 do
for each element in the arr1 do

4: if arr1[0] ≥ arr2[0] and arr1[length − 1] ≥
arr2[length− 1] then

Replace arr2 with arr1
6: end if

end for
8: end for

end for

Intervals inclusion can help with optimizing FL rules. Given
that we are aiming to generate more than only one output, our
model can generate possible machine states in real-time, and
let the decision-making step for the agents, this will minimize
time, costs, and resources. Moreover, it is an important factor
to not eliminate the human factor, but it will be a collaboration
between Human and machine capabilities. In our algorithm,
each rule is generated as a combination of the degree of each
input and output variable at each step. Each row of the truth
table represents a rule of Fuzzy Inference, it contains one
possible configuration of the input and output variables in the
table according to linguistic terms defined for each variable,
which are machine state. The idea is to optimize the generation
process by ensuring complete and fast fuzzy rules based on
logical evaluation rather than the linguistic rule. To the best of
the authors’ knowledge, this is the initial attempt that merges
Truth Tables and FL as performed in this study.

IV. EXPERIMENTS

A. Data Collection
1) Data Acquisition: The process of collecting and storing

data from a physical process in a system is known as data
acquisition [3], it has become more affordable and achievable
due to the fast progress of data acquisition technology [8].
There is a huge variety of signals such as vibrations, oil analy-
sis, temperature, acoustics, and pressure. To collect these data,
many sensors have been developed such as ultrasonic sen-
sors, accelerometers, gyroscopes, rain sensors, etc. Nowadays
technologies provide ways to improve sensors and computers,
which implies an easier way of storing data.

2) Data processing: The acquired data may contain some
inconsistent, missing, or noisy values. Given that quality of the
data has a significant impact on the results achieved. Therefore,
preprocessing approaches can be applied to improve these
results. It can be considered one of the most critical processes,
which deals with the preparation and transformation of the
original data. Data preparation techniques can be classified
into three grades:

a) Data Cleaning: Data manipulation (filtering, trans-
forming, removing noise) is necessary before using the data for
any purpose, in fact, these data are usually noisy, incomplete,
or inconsistent, especially the manually entered data, and
in general, many factors including human factors can cause
these errors. To improve data quality, it is necessary to detect
and remove these errors [34]. There is no simple way of
cleaning. Some techniques are based on human observation
and inspection. Using the mean or median values to fill
unknown values with zeros. Moreover, many other methods
such as regression techniques can be used for missing values
estimating [35].

b) Data Transformation: Data transformation provides a
more appropriate form of data for the next step in the modeling
phase. It can include normalization, which involves scaling
data to a narrow range to make different signals comparable.
Also, smoothing techniques are used to separate the signal
from the noise in the data. [36] gives a short overview of
different smoothing methods.

P1 g2 fftv3 fftg4 MSC5 FCC6

P1-P2
P3-P4

Data Data Data Normal Normal

P1-P2
P3-P4

Data Data Data Imbalance Rotor

P1-P2
P3-P4

Data Data Data Structural
fault Frame

P1-P2
P3-P4

Data Data Data Misalignment Link

P1-P2
P3-P4

Data Data Data Mechanical
looseness Looseness

P1-P2
P3-P4

Data Data Data Bearing lu-
brication Lubrication fault

P1-P2
P3-P4

Data Data Data Gear fault Gear

1 Sensor position; 2 Acceleration time waveform; 3 Velocity spectrum.
4 Acceleration spectrum; 5 Machine State Class; 6 Failure Cause Class.

TABLE I
FAILURE CLASS GENERATED BY FMECA

c) Data Reduction: A large volume of data might be
an issue for machine decision-making due to the high com-



putational cost. As the amount of data rises, so will the
time spent by the hardware. Some approaches have been
developed to overcome this issue and maintain the computing
cost low while keeping the volume of data sufficient. The
most well-known is principal component analysis [37]. Other
data reduction methods are proposed in [38], [39], [40] and
[41]. The data used are numerical data uploaded from sensors,
attached to the results of the FMECA method including Failure
nature and cause, done by experts manually every four hours,
corresponding to vibration and velocity data, collected during
approximately 170 days. There are 7 failure cause classes
corresponding to seven failure classes generated by applying
FMECA manually by experts every 4 hours.

Given that The Root Mean Square (RMS) value of velocity
is one of the important factors for machinery status diagnosis,
we calculate the RMS of fftv and fftg in each sensor position
for each machine state class identified by the FMECA method
using the following formula:

xRMS =

√
1

n
(x2

1 + x2
2 + · · ·+ x2

n)

We started by grouping the data we have by machine state
class, which gave us a lot of data corresponding to each
state, then we selected only the minimum value Xmin and
the maximum Xmax of each variable fftv and fftg, which
allows us to create intervals Iv = [Xvmin,Xvmax], and Ig =
[Xgmin,Xgmax] for each machine state as follows: To better

fftv1 fftg2 MSC3 FCC4

Iv1 Ig1 Normal Normal
Iv2 Ig2 Imbalance Rotor
Iv3 Ig3 Structural fault Frame
Iv4 Ig4 Misalignment Link
Iv5 Ig5 Mechanical looseness Looseness
Iv6 Ig6 Bearing lubrication Lubrication fault
Iv7 Ig7 Gear fault Gear

1 Velocity spectrum; 2 Acceleration spectrum.
3 Machine State Class; 4 Failure Cause Class.

TABLE II
FAILURE CLASS OF EACH INTERVAL

illustrate the results of the data reduction method. We plot
it as a histogram. Figure 4 analyzes the relation between the
intervals of Iv and MSC (Machine State Class). The green
color corresponds to the minimum RMS of fftv while the
purple color is the maximum.

Fig. 4. MSC representation according to RMS measure of fftv when
generating Iv intervals.

Respectively, the figure 5 represents Ig for the metric fftg

Fig. 5. MSC representation according to RMS measure of fftg when
generating Ig intervals.

The machine state depends on the evolution of Xv and Xg
in the intervals Iv and Ig. Applying the truth table for the
two inputs variables using Logical conjunction gave us n =
27 results, only 7 are possible, the table follows shows the
possible results :



fftv1 fftg2 Nr3 Im4 St5 Mi6 Ml7 Bl8 Gf9

Iv1 Ig1 1 0 0 0 0 0 0
Iv2 Ig2 0 1 0 0 0 0 0
Iv3 Ig3 0 0 1 0 0 0 0
Iv4 Ig4 0 0 0 1 0 0 0
Iv5 Ig5 0 0 0 0 1 0 0
Iv6 Ig6 0 0 0 0 0 1 0
Iv7 Ig7 0 0 0 0 0 0 1

1 Velocity spectrum; 2 Acceleration spectrum; 3 Normal state.
4 Imbalance; 5 Structural fault; 6 Misalignment.

7 Mechanical looseness; 8 Imbalance; 9 Gear fault.
TABLE III

TRUTH TABLE FOR POSSIBLE MACHINE STATE USING
LOGICAL CONJUNCTION

Noting that after analyzing the figures 4 and 5, as well
as the data in the tableIII, we noticed some inclusions and
intersections between intervals, considering only the inclusions
for the moments, it’s defiantly can help with Fuzzy logic rules
optimization, which is a more logical and practical solution to
adopt, in results we obtain represented in table V.

Our experiment protocol aims to answer the following
questions:

1) Can the inclusions and intersections impact the outputs
of the fuzzy logic controller?

2) How can we generate optimized fuzzy logic rules intel-
ligently?

3) Which one of the Fuzzy logic sets is the best for our
case?

fftv1 fftg2 Nr3 Im4 St5 Mi6 Ml7 Bl8 Gf9

Iv1 Ig1 1 0 0 0 0 0 0
Iv2 Ig1 0 1 0 0 0 0 0
Iv4 Ig1 0 0 1 1 0 0 0
Iv5 Ig5 0 0 0 0 0 0 1
Iv7 Ig5 0 0 0 0 1 1 0

1 Velocity spectrum; 2 Acceleration spectrum; 3 Normal state.
4 Imbalance; 5 Structural fault; 6 Misalignment.

7 Mechanical looseness; 8 Imbalance; 9 Gear fault.
TABLE IV

OPTIMIZED TRUTH TABLE FOR EACH MACHINE STATE

B. Fuzzy Logic Controller

1) Input membership function: Table helped V in inte-
grating linguistic terms in the identification of the inputs
memberships (Fuzzification), for each system, the output of
the systems are represented in figure 6 three fuzzy decision
systems were built, using the trapezoidal, triangular, and Gaus-
sian membership functions for the input linguistic variables Xv
and Xg.

2) Fuzzy Rules: The fuzzy rules base consisted of 7 opti-
mized rules based on table V, as follows:

Fig. 6. The output linguistic variable - Defuzzification.

rule Iv1 Ig2 MSC3

1 if Iv1 and Ig1 then Normal state
2 if Iv2 and Ig1 then Imbalance fault
3 if Iv4 and Ig1 then Structural Fault
4 if Iv4 and Ig1 then Misalignment fault
5 if Iv5 and Ig5 then Mechanical looseness fault
6 if Iv7 and Ig5 then Bearing Lubrication fault
7 if Iv7 and Ig5 then Gear fault

1 Intervals of fftv; 2 Intervals of fftg; 3 Machine State Class.
TABLE V

FUZZY LOGIC RULES

3) Results: We ran three experiments in order to com-
pare the three types of FL sets, the triangular membership
functions(triMF), Gaussian membership functions (gaussMF),
and trapezoidal membership functions (trapMF). We sat two
variables from each interval, one is near the minimum value,
and the other is near the maximum value of each interval. vmin

for the minimum value of one of Iv’s intervals, vmax for the
maximum value of one of Iv’s intervals, gmin for the minimum
value of one of Ig’s intervals, gmax for the maximum value
of one of Ig’s intervals. The following figures represent some
output examples of the three fuzzy logic systems:

Fig. 7. trapMF - Normal state output.



Fig. 8. triMF - Imbalance fault output.

Fig. 9. GaussMF - Structucal fault output.

The obtained results are represented in Table VI where Exc
corresponds to Excellent andAve to Average.

C. Discussion

For the Gaussian membership functions (gaussMF), it
couldn’t generate many outputs, while the other results show
a lack of accuracy in the identification of the machine state,
this might be due to the nature of the data we have and the
fact that the input values are not connected which make the
system is too sparse. Note that in some cases it could identify
some states with average accuracy. The triangular membership
functions(triMF), could identify with good accuracy many
machine states, and with poor accuracy in others, this is
because this type of fuzzy logic set is considering the median
of the value as the point where a state is 100% exist, while
the values we choose are near the borders of each interval,
mentioning that a value of each state could be anywhere
between the borders, not necessarily in the middle. Therefore,
the trapezoidal membership functions (trapMF) gave better
results, and better accuracy, in some cases we considered the
accuracy is poor and this is due to the inclusion between
intervals, the values that are near the maximum value in an
interval gave excellent accuracy, giving that the maximum
value of each interval can be included in another one, while
the maximum value is not.

V. CONCLUSION & FUTURE WORKS

In this paper, we demonstrate that AI techniques can give
more accurate results in machine state diagnosing. We propose
to generate fastly and smartly FL rules based on Truth Tables.
Moreover, we propose to justify choice of membership func-
tion by simulation method. In terms of business context, this
study has achieved two major goals. The first one is that it
proves that it is possible to conserve old FMECA results, and
used them as references in real-time diagnostics. the second
achievement is combining experts’ knowledge with numerical
data using AI, which gave more accurate and reliable results,
that will minimize the time of all interventions, it will allow
the agents to go straight to the source of the problem and solve
it, in a short time, fewer resources, and avoid bigger issues that
could stop the whole production process. The obtained results
show that the trapezoidal membership functions (trapMF) give
better results, and better accuracy compared to the other sets,
and it can be explained by the fact that it gives a bigger
range in which a variable can belong, and it’s more realistic
and practical for our case. Later, we aim to evaluate the
robustness of our model by including more data (metrics and
observations) and also comparing it to other models such as
FNN (Fuzzy Neural Network). The next step will be machine
state prognostic based on the result of the diagnostic step. This
will not only the upcoming failure but a detailed machine state.
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[2] M. Băban, C. F. Băban, and M. D. Şuteu, “Maintenance decision-making
support for textile machines: A knowledge-based approach using fuzzy
logic and vibration monitoring,” Ieee Access, vol. 7, pp. 83 504–83 514,
2019.

[3] A. Jimenez-Cortadi, I. Irigoien, F. Boto, B. Sierra, and G. Rodriguez,
“Predictive maintenance on the machining process and machine tool,”
Applied Sciences, vol. 10, no. 1, p. 224, 2019.

[4] R. K. Mobley, An introduction to predictive maintenance. Elsevier,
2002.

[5] C. Senthil and R. Sudhakara Pandian, “Proactive maintenance model
using reinforcement learning algorithm in rubber industry,” Processes,
vol. 10, no. 2, p. 371, 2022.

[6] L. S. Lipol and J. Haq, “Risk analysis method: Fmea/fmeca in the
organizations,” International Journal of Basic & Applied Sciences,
vol. 11, no. 5, pp. 74–82, 2011.

[7] E. T. Bekar, P. Nyqvist, and A. Skoogh, “An intelligent approach for data
pre-processing and analysis in predictive maintenance with an industrial
case study,” Advances in Mechanical Engineering, vol. 12, no. 5, p.
1687814020919207, 2020.

[8] A. K. Jardine, D. Lin, and D. Banjevic, “A review on machinery di-
agnostics and prognostics implementing condition-based maintenance,”
Mechanical systems and signal processing, vol. 20, no. 7, pp. 1483–
1510, 2006.

[9] J. J. M. Jimenez, S. Schwartz, R. Vingerhoeds, B. Grabot, and M. Salaün,
“Towards multi-model approaches to predictive maintenance: A sys-
tematic literature survey on diagnostics and prognostics,” Journal of
Manufacturing Systems, vol. 56, pp. 539–557, 2020.



N° fftv fftg ExpS1 TrapSc2 TrapS3 TrapA4 TriSc5 TriS6 TriA7 GaussSc8 GaussS9 GaussA10
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