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Abstract— A key difficulty in achieving self-aware artificial
intelligence (AI) is the achievement of epistemological knowledge,
i.e. a machine that “knows what it knows” and “knows what it
does not know” with respect to some model of itself or its sur-
roundings. Given a nonlinear dynamical system with known alge-
braic structure expressible as differential equations, with sensors
able to create a time-series of measurements of sufficient vari-
ables to create a suitable partial state vector, then novel forms
of evolutionary machine learning and adversarial processes are
sufficient to create a form of AI that is “aware” of its knowl-
edge set regarding this system, and can use a form of differen-
tial Game Theory and adversarial processes to “think” about its
knowledge set to address ambiguities and achieve objectives, in-
cluding moving beyond its original training data. This may itself
constitute a form of “self-awareness”. Results from successful use
of these techniques in medical and engineering problems are out-
lined. This AI architecture does not involve neural networks or
their derivative architectures, but instead is inspired by evolution-
ary ecosystems. Implications for self-aware operating systems are
discussed.

Keywords— evolutionary, epistemological, learning, adversarial,
differential, game, nonlinear, dynamics, ecosystem, operating

I. INTRODUCTION

In discussing achievement of “self-aware” artificial intel-
ligence (AI), the first challenge is deciding what the minimal
criterion for self-awareness actually requires. One can pro-
pose a spectrum exists, between mere sentience (the ability to
feel, perceive or experience subjectively) at one end, and at the
other the capacity to assert, in the words of Descartes, Cogito
ergo sum (“I think, therefore I am”). For the purposes of the
present paper, perhaps the variant provided by Antoine Léonard
Thomas, Dubito, ergo cogito, ergo sum (“I doubt, therefore I
think, therefore I am”) is more germane.

The case studies described in this paper were a result of over a decade of
work, partly funded by the Queensland Government (Medical Devices Finan-
cial Incentive Program 2009; Proof of Concept Grants 2010, 2012; Knowledge
Transfer Partnerships Program 2016, Ignite 2017), JDRF International Innova-
tive grant 2011; Australian Government 2013 T1D Clinical Research Network
Pilot and Feasibility grant ACRNPF FY13 47-2013-626; plus funding from
Rolls-Royce plc, the shareholders of NeuroTech Research, Diabetes Neuro-
mathix and Turbine MachineGenes.

This paper argues that the crucial ingredient to achieve
self-aware AI is what might be described as epistemological
knowledge, the ability of a machine “to know what it knows”
and perhaps more importantly, “to know what it doesn’t know”
in the sense of being aware of ambiguity within its knowledge
set. If epistemological knowledge is achieved and structured
appropriately, then the machine can perform further mathemati-
cal processes upon its knowledge set to refine that set, such that
the refined set better describes the system to be known.

Given the difficulties artificial neural networks (ANN) have
in achieving epistemological knowledge, an alternative basis
for machine learning has been adopted, namely evolutionary
algorithms, with ambiguities in chromosome-based knowledge
then interrogated by adversarial processes. Dynamical systems
are used as the underlying object for self-awareness, rather
than attempting awareness of static patterns or rule recogni-
tion.

Criteria for self-awareness are provided, and preliminary
results outlined from work done building a machine-intelligent
artificial pancreas in diabetes and evolving explicit digital twins
for aviation engines, showing that each of the building-blocks
for self-awareness have been successfully deployed. If instead
of studying an external dynamical system, the dynamics being
studied were associated with the cognitive or computational
processes of the AI itself or its supporting infrastructure, then
the AI could be said to be genuinely self-aware.

This would appear to form the basis of a new form of self-
aware operating system for enhanced management of complex
“systems of systems”, such as modern aircraft and shipping and
medical critical-care systems.

A. Criteria for Self-Awareness
If a particular limited system exists for the machine to

understand, then describe as the knowledge set the set of all
data and consequent models possessed by the machine about
that system.

Here the key criteria for self-aware AI are taken to be as
follows. If the machine has the abilities:
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• To measure, via sensors, time-series data of at least part
of the state vector of the system to be studied, and “know”
it possesses these data;

• To perform mathematical processes upon these data to
extract one or more descriptions of the system, in this case
mathematical models of the system;

• To be able to test the predicted behavior of these models
against the original sensor data and quantify the errors
between the predictions and the measurements;

• To be able, upon observing a sufficiently large error, to
perform mathematical processes upon the models to re-
duce this error; and be able to observe the consequent
change in error resulting from these processes;

• To be “aware” of persistent ambiguities within its knowl-
edge set (typically, a combination of persistent irreducible
errors within its knowledge set associated with models
describing the system, and/or a plurality of distinct models
within its knowledge set that describe the system equally
well);

• To be able, if confronted by such “known” persistent am-
biguities, autonomously to manipulate its knowledge set
and/or the external system to endeavor to reduce these
ambiguities;

• To be able, by virtue of its ability to quantify the errors
between its models and the system, to “know” whether
it has improved its knowledge set and the processes that
have achieved this, and can reproduce this behavior in the
future when needed;

• To be able to synthesize a novel strategy, despite that
strategy appearing nowhere in prior data, enhance the
quality of that strategy via internal processes, and then
deploy that strategy to manipulate the system, to achieve a
new specified outcome previously unachieved,

then it can be said, in sum of all this, to think, and know
that it thinks.

These building-blocks have all been successfully achieved, as
performed in two real-world projects outlined in this paper.

B. Defining Synthesizing Artificial Intelligence (sAI)
When discussing “self-aware” AI the second challenge re-

sides in the usual taxonomy employed for AI, whereby machine
learning is a subset of AI and is itself often assumed to be predi-
cated on architectures using ANN. Although this may be logical
from a Computer Science perspective, it is problematical from a
mathematical viewpoint. The terminology of classical Control
Theory provides a different way to view AI: “identification” is
the process analogous to machine learning, whereby the ma-
chine uses time-series sensor data to reconstruct appropriate
parameter values for a model to track a dynamical system, and
“control synthesis” is the process whereby a strategy is then gen-
erated, enabling the model to be manipulated in a desired way,
and hence the real system itself to be controlled to a desired
outcome.

When discussing self-awareness in a machine, this paper
follows classical Control Theory in suggesting there are two dis-
tinct processes (possibly repeated): first, machine learning, the
creation of models whereby the machine comes to “understand”
the system, and second, the synthesis of strategies, whereby the
machine employs that understanding to modify either its own
state or that of the system. It is in the manifestation of this sec-
ond process that the “awareness” of the machine of its own state
(such as its knowledge of the system) can be tested.

Consequently, we refer to the second process as synthesiz-
ing AI (sAI). In this paper sAI is a process distinct from the
machine learning process.

II. DESIGN OF COMPONENTS OF THE AI ARCHITECTURE

A. The Dynamical System
The dynamical system studied by the AI is assumed nonlin-

ear, typically high-dimensional and not amenable to lineariza-
tion. Note that this system is defined over a continuum of states
rather than a countable set of finite states.

Its dynamics are described by ordinary differential equa-
tions (ODEs) continuously differentiable over the relevant do-
main, obeying

ẋ = f (x,u,λ , t). (1)

In (1) the state variable is denoted x ∈ ∆ ⊂ RN , the control
variable is u ∈U ⊂ RR and the parameter vector is λ ∈ Λ ⊂
RP, for some non-trivial compact and convex set Λ . These
ODEs possess control variables which operate over compact
intervals. Each chromosome ci carries estimates of values for
the initial conditions x(t0) and parameter vector λ , so (denoting
vector concatenation by the symbol | ) we write the evolutionary
approximation

ci ≈ λ |x(t0). (2)

Filipov’s Theorem, [1], is obeyed, so non-trivial control strate-
gies p(ci) : ∆ →U generated by the chromosome exist, gener-
ating solution trajectories

x(t) = ϕ
(
x(t0), p(ci),λ , t

)
. (3)

Such control strategies are called permissible.

Sensors generate time-series measurements (either noise-
polluted or noiseless) of some state variables of the system,
provided to the machine. These sensors are assumed inade-
quate to enable unique identification of the system (and hence
the system is formally under-determined). In the real-world
case-studies presented below, the systems are severely under-
determined. Sensor noise, where present, is assumed symmetri-
cally distributed but might not be Gaussian.

B. Phi-Textured Evolutionary Algorithms (ϕ-TEA)
Epistemological knowledge requires complete “explainabil-

ity” (explicability), not from an AI to a human but from the AI
to itself. This requirement appears to exclude the use of current
forms of ANN and their numerical patterning, so a new form
of evolutionary machine learning was developed.



Fig. 1. Plot of gene histograms indicating “certainty” for a parameter value (top),
“ambiguity” (middle) and known “ignorance” (bottom). These plots are from the
initial simulation study for the diabetes study, hence show the hidden “correct”
parameter value on the x axis (green dot), minimum plausible value (blue dot) and
maximum plausible value (red dot). The upper bound of the evolutionary search
interval is also shown when distinct (white dot).
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Genetic algorithms (GAs) are a form of heuristic optimiza-
tion (first introduced by Holland, [2]; see also [3], [4]) for
solution-finding in complex problems. By expressing the prob-
lem in the form of “chromosomes” evolving to increase “fitness”
they mimic evolutionary processes of crossover, mutation and
inheritance to search for approximate optima. In the 1970s–
1990s they were proposed as a form of explicit model-based
machine learning, modeling nonlinear deterministic dynamical
systems. The chromosome formulation can encode aspects of
explicit mathematical models to force convergence between
model output and observed system output and hence (provided
the model equations are sufficiently accurate) force conver-
gence between the model and the system. This has been suc-
cessfully achieved with moderately nonlinear systems, such as
reconstructing aspects of stellar dynamics, [5].

Unfortunately, when applied in this way GAs suffer from
two key deficiencies. First is the so-called stagnation prob-
lem: when analyzing sufficiently high-dimensional nonlinear
systems under partial information, the evolutionary process
stagnates: that is, it plateaus and further convergence fails. Var-
ious efforts (e.g. [6], [7], [8]) have been made to understand
and overcome this problem using techniques such as niching,

but it persists, an overarching constraint on the use of GAs as a
mechanism for machine learning.

By re-structuring the axioms of evolution and by adding a
further component described as trajectory-based “texturing” of
fitness, we appear to have overcome the stagnation problem
of evolutionary machine learning, at least for a large class of
real-world problems. (For a deeper discussion of ϕ-TEA, see
Greenwood, [9]; also [10], [11], reporting the results from [12],
[13], [14].)

The second deficiency could be called the interpretability
problem: candidate gene values for a specific parameter form
histogram distributions. In the case these have multiple peaks
(see Figure 1, middle and bottom), these have the following
properties:

• Every candidate parameter value is valid for the specified
sensor data and model equations, inasmuch as the asso-
ciated chromosome generates model behavior that tracks
the sensor data within the specified accuracy.

• For histograms with multiple peaks, the relative distribu-
tion of values that cause these peaks is at least partially
an artifact of the evolutionary heuristic process, hence
conventional statistical analysis is not useful in deciding a
“best” candidate value.

As outlined in greater depth in [9], [11], we have resolved this
problem using two steps: first, by structuring the information
within the machine’s knowledge set using 3-tuples combining
the chromosomes with their associated algebraic and geometric
properties; and second, by using a novel form of adversarial sAI
that employs differential Game Theory to explore the behavior
of these trinities.

C. Structuring of Information within the Knowledge Set
As introduced in [9], given a set of known ODEs that de-

scribe the system, for which the associated parameters and
initial conditions are unknown but may be found within a (typi-
cally, extremely large) compact parametric hypercube, the asso-
ciated data for the AI’s knowledge set are notionally structured
as trinities, defined as 3-tuples comprising:

• The algebraic model M, namely the set of ODEs of (1) in
algebraic form assumed to be describing the system.

• A chromosome c, a vector, each of the components (the
genes) of which represents a candidate value for one of
the parameters or state initial conditions associated with
the algebraic equations, as in (2). Each chromosome also
has additional genes appended, for metrics describing the
behavior of the trajectories, below.

• Trajectories ϕ in state-space obeying (3), generated by
substituting the information carried by a chromosome
c into the model M. Depending on the structure of M
there may be more than one trajectory thus generated per
chromosome.

The information carried in each trinity is completely explain-
able, to the machine itself or to a human user.



D. Differential Game Theory
The preferred form of sAI is chosen to be a process that

could employ differential Game Theory, the mathematical anal-
ysis of dynamical systems and the generation of strategies to
achieve specific objectives. This would provide a valid algo-
rithmic basis for the machine to “think”, once it was furnished
with a suitable knowledge set about some specified dynamical
system.

It is sometimes assumed that the use of adversarial processes
for machine intelligence began with Generative Adversarial
Networks (GAN), first demonstrated in December 2014, [15].
However differential Game Theory, the mathematical theory of
employing adversarial processes for navigating and controlling
continuous dynamical processes under conditions of conflict or
uncertainty, is much older.

First introduced by Isaacs, [16], who employed low-
dimensional geometrical techniques, differential Game Theory
subsequently underwent a transformation (see e.g. [17], [18],
[19], [20]) when Lyapunov functions were adopted to model
conflict and generate control strategies for high-dimensional
nonlinear systems, particularly for multi-player conflict describ-
able using zero-sum games. These are adversarial techniques
designed fundamentally differently from GAN.

An important example of this is the so-called “Game against
Nature”. Instead of describing conflict between two or more
players. the Game against Nature is usually intended to model
a single player exploring the implications of poorly-understood
externalities. In this formulation these externalities (parameters
or variables) are manipulated as control variables by an entity,
Nature, and the other player has to design strategies robust
against these hostile actions. One version of this has Nature’s
choice of control values being random, analogous to a form
of Monte Carlo simulation (e.g. [21]). However an alternative
formulation (e.g. [18], [19], [20]) has Nature actively hostile
and intelligent, itself using Lyapunov control theory to generate
strategies algorithmically.

The form of adversarial AI used in ϕ-TEA on trinities was
successfully demonstrated in 2011–12, in simulation-based
trials of ϕ-TEA as the basis for a machine-intelligent artificial
pancreas. This work was published as Greenwood and Gunton,
[22] in July 2014, once the provisional patent for [9] had been
drafted and lodged, hence also pre-dates GAN.

III. DEMONSTRATION OBJECTIVES

What will be shown is the synthesis of results from two
very different highly-nonlinear, high-dimensionality dynamical
systems, to provide a contribution to the field of self-aware
AI:

• A time-series vector of noise-polluted, formally incom-
plete sensor data, possibly with significant gaps for various
components, is provided to the machine.

• Given known algebraic structure of the system, computa-
tional models are built via evolutionary processes using
ϕ-TEA. Missing structure is reconstructed and stability
emerges, until stable candidate models exist.

• Awareness of incomplete learning exists: by overlay-
ing candidate trajectories onto the equivalent sensor data,
the machine can determine whether its model behavior
matches the observed system behavior to within a speci-
fied threshold.

• If “yes”, then the corresponding chromosome and model
within that trinity represent a valid model, within the con-
straints of available information;

If “no”, then the machine can continue to run evolution
across further generations, to test whether further conver-
gence occurs.

◦ If “yes”, then the knowledge set was simply imma-
ture.

◦ If “no”, then a structural flaw is “known” to exist
within the assumed algebraic knowledge of the sys-
tem. Depending on the size of the discrepancy it
can be reported to a human user, the AI explores
alternative algebraic models or the discrepancy can
be ignored.

The process is outlined in Figure 2, while actual examples of
evolved trajectories on sensor data are shown in Figure 3.

Fig. 2. Flowchart of the evolutionary machine learning process, including algorithmic
awareness of incomplete learning. The symbol g denotes evolutionary generation,
with maximum value g+; p denotes chromosome population, with maximum value
p+.The solution trajectory ϕi(t) and chromosome ci belong to the ith trinity, assum-
ing all trinities here share the same model M. “Report discrepancy” pertains to an
executive process of the AI, whereby alternative algebraic structure for M is explored
if the initial equations prove unsatisfactory.
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• Assume the machine is eventually “satisfied” that evolu-
tionary machine learning has been completed with respect
to available information. This happens when, superim-
posed over relevant sensor data, a sufficient number of
trajectories track the sensor data within an acceptable tol-
erance (see Figure 3). The corresponding evolved trinities
are retained (this is the “knowledge set”), while all others
are deleted. The machine then examines the state of its
knowledge:

◦ By aligning the chromosomes of its surviving trini-
ties, it constructs histograms for each gene. Example
histograms are shown in Figure 1.

◦ By interrogating these histograms, for a sufficiently
large set of trinities the machine becomes “aware”,
for each gene value, of:

Certainty: a histogram with a unique cluster of can-
didate values forming a single interval within an
ε-neighborhood of some mean value;

Ambiguity: a histogram with either multiple clusters
of candidate values, or a single broad interval of val-
ues, where the total union of intervals of candidate
values is nonetheless small relative to the total spec-
trum width of possible values;

Ignorance: a histogram exhibits noise across most
or all of its spectrum. Machine knowledge of its
own ignorance is actually a valuable outcome, as it
can then engage in further activities to modify its
knowledge set, e.g. by perturbing the system.

• Confronted by ambiguity among the genes, the machine
then “doubts”. Specifically, it establishes two subordinate
AIs in conflict. Both have access to the remaining trini-
ties; hence both have full knowledge of the histograms.
Assuming that the system is to be steered to a desirable
target state T in state space,

◦ The first AI, the Prime, employs differential Game
Theory to generate a control strategy relevant to a
particular chromosome ci:

p1(ci) : ∆ →U, (4)

such that for some t1 > t0,

ϕ
(
x(t0), p1(ci),λ , t1

)
∈ T. (5)

◦ The second AI, the Adversary, seeks to find another
chromosome c j 6= ci among the surviving trinities
such that it achieves

ϕ
(
x(t0), p1(c j),λ , t

)
6∈ T ∀t > t0 (6)

and indeed, preferably, achieve for some t2 > t0

ϕ
(
x(t0), p1(c j),λ , t2

)
∈ T ′ (7)

where T ′ is some highly undesirable anti-target set
in state space

• This conflict typically results in a differential game be-
tween the Prime and Adversary, across the set of evolved
trinities and admissible control strategies. As demon-
strated for the type-1 diabetes case study below, Figure 5,
this resulted in the synthesis of a new insulin strategy that
was not only superior to anything in the training data of
the medical history, but was dosed in a completely dif-
ferent way from the insulin doses in the medical history:
see [11].

IV. CASE STUDIES

Results have been generated for two case studies of
severely-underdetermined nonlinear dynamical systems requir-
ing evolutionary reconstruction and machine interpretation,
namely:

1) A data-mining-based demonstration of organ-scale
medicine for type-1 diabetes was performed for the IBM Wat-
son AI XPRIZE (2016–2020). This involved evolving explicit
models using actual (de-identified) medical histories of peo-
ple with highly unstable glucose-insulin dynamics provided by
Westmead Hospital, followed by successfully demonstrating
the simulated use of our new form of adversarial AI, gener-
ating novel insulin strategies on an Edge device (in this case,
an isolated laptop) in a clinically appropriate timescale. The
adversarial sAI generated a radically superior and novel insulin
strategy over the training data. This was originally reported in
[12], [13], [14]; results to be published as [10], [11].

The dynamics were based on those of [22], with corrections
for the meal modeling and glycogen release appropriate for
unstable type-1 diabetes. The system had at least 16 state vari-
ables, of which only five could be measured, including blood
glucose (BG) via fingerstick, interstitial fluid glucose (ISFG)
via continuous glucose monitor (CGM) every five minutes, and
fasting plasma insulin measured in a single time-series. The
system had at least 36 associated parameters, none of which
could be directly measured, forming a compact hypercube.

2) Demonstrating evolutionary reconstruction of the ther-
modynamics and physical dynamics of the main gas path of a
single-spool aviation jet turbine engine from simulated partial
time-series sensor data (2015–2018). Although the compu-
tationally arduous nature of evolving engine models across
generations meant that the project had to be halted before con-
vergence had been completed, the process of evolutionary con-
vergence had been successfully demonstrated to work, as well
as key features relevant to the present discussion of machine
awareness. This study was reported in [23], [24].

The was modeled using a similar technique to that of the NASA
Numerical Propulsion System Simulation (NPSS) as per [25].
A key difference was that the algebraic engine model used by
ϕ-TEA avoided linearization, retaining the underlying highly
nonlinear dynamics. The simulated system had 121 state vari-
ables, of which at most 33 were measurable by sensors, and
over 630 parameters, almost none of which were measurable
but lay within an extremely large closed, bounded hypercube.



V. ILLUSTRATION OF RESULTS

For brevity the results are presented in graphical form. Read-
ers desiring more detail are directed to [9], [10] and [11].

Fig. 3. Plot of evolved trajectories overlaid on simulated engine sensor data, (top)
showing trajectory components (colored lines) “known” by the AI to be tracking
sensor data (black) accurately subject to noise, and (bottom) trajectory components
exhibiting both immature tracking (needing further evolution to improve tracking)
and a sensor transient being ignored by the evolving trinities.
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Fig. 4. Plot (top) of actual CGM data from patient at Westmead Hospital (pink and
black squares) measuring ISFG levels. Meals denoted on x-axis (green squares).
(Bottom) Plot of actual BG data, same subject and 30-hour interval, showing evolution
of unified personalized models was successful (colored trajectories). Fingerstick
measurements shown with±10% errorbars (red and black squares). Desirable ranges
for BG and ISFG are shown (green rectangle) as are undesirable/dangerous zones
(crosshatched pink). Narrow spikes in the BG trajectories are machine-generated
possible events that would not be detected by the CGM; they may be filtered out if
desired.
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Figure 3 shows segments of engine sensor data, illustrating
the mechanism whereby the AI can be “aware” of whether sat-
isfactory evolutionary machine learning is completed.

Figure 4 shows evolutionary fitting of an actual medical
history of a subject suffering highly unstable (“brittle”) type-1
diabetes, provided by Westmead Hospital. Unified personal-
ized organ-scale models have been evolved, with trajectories
overlaying data (each color corresponds with a distinct trinity).
As is evident from Figure 4, the subject has extreme difficulty
achieving stable BG and ISFG levels.

Figure 5 shows the results of an adversarial process,
whereby the AI sets the Prime and Adversary in conflict. The
Prime uses trinities generated from the evolutionary modeling
process of Figure 4 to design an insulin control strategy to steer
BG and ISFG levels to a desired target interval (80–140 mg/dl)
while avoiding dangerous values (below 70 mg/dl or above 200
mg/dl). The Adversary attempts to play alternative trinities to
achieve adverse outcomes, which the Prime counters in a differ-
ential game. The result is synthesis of a novel, effective insulin
strategy that existed nowhere in the training data.

Fig. 5. Plots of the same 30-hour interval, same trinities as in Figure 4, but simulated
using an insulin strategy generated by the adversarial sAI playing differential games
after the data in Figure 4. Plots of predicted ISFG (top) and predicted BG levels
(bottom) are shown. Note the avoidance of unsafe zones and the enhanced time of
trajectories within the desired range.
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0 6 12 18 24 30
0

200

400

600

800800

Time (hr)

Pl
as

m
a

G
lu

co
se

(m
g/

dl
)

(b) Blood Glucose under Neuromathix control

VI. CONCLUSION

Evolutionary generation of computational models from
noisy incomplete data enables epistemological knowledge of
evolved trinities, including certainties, ambiguities and igno-
rance. The application of adversarial AI using differential Game
Theory across these trinities, playing to collide with or avoid
designated sets in state space, then enables the generation of
new knowledge not present in the training data. And then the
machine can further build on its results.



The two case studies presented represented what might
be called an external locus: the AI is trying to understand
some external dynamical system. Already, based on the argu-
ments outlined, one might say that the relevant ingredients for
self-awareness are present. If, instead of this external locus,
the relevant dynamical system pertained to the dynamics of
the computational infrastructure and local environment of the
AI itself, then a deeper argument for self-awareness could be
made.

It should be clear that this work offers intriguing possibili-
ties for self-aware operating systems controlling processes or
machines involving nonlinear dynamics and partial informa-
tion, for mission-critical “systems of systems” with known or
guessable algebraic structure.

It also offers possible avenues for AI creativity: the ma-
chine synthesis of new strategies not present in the training
data.
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