ﬁ EasyChair Preprint

Ne 8617

CEGA4N: Counter-Example Guided Neural Network
Quantization Refinement

Joao Batista Pereira Matos Junior, lury Bessa, Edoardo Manino,
Xidan Song and Lucas C. Cordeiro

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 8, 2022

CEG4N: Counter-Example Guided Neural
Network Quantization Refinement

Jodo Batista P. Matos Jr.1[0000—0001-8380—6058] "1y
100000002 —6603—3476 . 2[0000—0003—0028—5440]
i I, Edoardo Manino?! I, Xidan

00007()0037261276296]’ and Lucas C. CordeirOZl[0()0(]700027623574272]

Bessa
Song?!

! Federal University of Amazonas, Manaus-AM, Brazil

jbpmj@icomp.ufam.edu.br and iurybessa@ufam.edu.br

2 Univeristy of Manchester, Machester, United Kingdom
{lucas.cordeiro,eduardo.manino,xidan. song}@manchester.ac.uk

Abstract. Neural networks are essential components of learning-based
software systems. However, their high compute, memory, and power re-
quirements make using them in low resources domains challenging. For
this reason, neural networks are often quantized before deployment. Ex-
isting quantization techniques tend to degrade the network accuracy.
‘We propose Counter-Example Guided Neural Network Quantization Re-
finement (CEG4N). This technique combines search-based quantization
and equivalence verification: the former minimizes the computational re-
quirements, while the latter guarantees that the network’s output does
not change after quantization. We evaluate CEG4N on a diverse set of
benchmarks, including large and small networks. Our technique success-
fully quantizes the networks in our evaluation while producing models
with up to 72% better accuracy than state-of-the-art techniques.

Keywords: Robust Quantization, Neural Network Quantization - Neu-
ral Network Equivalence - Counter Example Guided Optimization

1 Introduction

Neural networks (NNs) are becoming essential in many applications such as
autonomous driving [6], security, medicine, and business [2]. However, current
state-of-the-art NNs often require substantial compute, memory, and power re-
sources, limiting their applicability [9].

In this respect, quantization techniques help reduce the network size and
its computational requirements [9J24/16]). Here, we focus on quantization tech-
niques, which aim at reducing the number of bits required to represent the neural
network weights [I6]. A desirable quantization technique produces the smallest
neural network possible from the quantization perspective. However, at the same
time, quantization affects the functional behavior of the resulting neural network
by making them more prone to erratic behavior due to loss of accuracy [18]. For
this reason, existing techniques monitor the degradation in the accuracy of the
quantized model with statistical measures defined on the training set [16].

2 Matos Jr. et al.

However, statistical accuracy measures do not capture the network’s vulner-
ability to malicious attacks. Indeed, there may exist some specific inputs for
which the network performance degrades significantly [T9I273]. For this reason,
we reformulate the goal of guaranteeing the accuracy of a quantized model un-
der the notion of equivalence [T2[T7ITTI20]. This formal property requires that
two neural network models both produce the same output for every input, thus
ensuring that the two networks are functionally equivalent [2830].

We are the first to explore the combination of quantization techniques and
equivalence checking in the present work. Doing so guarantees that the quantized
model is functionally equivalent to the original one. More specifically, our main
scientific contributions are the following:

— We model the equivalence quantization problem as an iterative optimization-
verification cycle.

— We propose CEG4N, a counter-example guided neural network quantization
technique that provides formal guarantees of NN equivalence.

— We evaluate CEG4N on both large (ACAS Xu [23] and MNIST [26]) and
small (Iris [I3] and Seeds [8]) benchmarks.

— We demonstrate that CEG4N can successfully quantize neural networks and
produce models with similar or better accuracy than a baseline state-of-the-
art quantization technique (up to 72% better accuracy).

2 Preliminaries

2.1 Neural Network

NNs are non-linear mapping functions f : Z C R® — O C R™ consisting of a
set of L linked layers, organized as a direct graph. Each layer [is connected with
the directly preceding layer [— 1, i.e., the output of the layer [— 1 is the input
of the layer [. Exceptions are the first and last layers. The first layer is just a
placeholder for the input for the NN while the last layer holds the NN function
mapping f. A layer [is composed by a matrix of weights W} € R"*™ and a bias
vector by € R™.

The output of a layer is computed by performing the combination of an
affine transformation, followed by the non-linear transformation on its input
x1 € R"(see Eq.) Formally, we can describe the function y; : R™ — R™ that
computes the output of a layer [as follows:

yi(x1) = Wi-x1+ by (1)
and the function that computes the activated output of a layer [as follows:
yi (x1) = o(yi(x)) (2)

where o : R™ — R™ is the activation function. In other words, the output [
is the result of the activation function o applied to the dot product between
weight and input, plus the bias. The most popular activation functions are:

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

namely, ReLU, sigmoid (Sigm), and the re-scaled version of the latter known as
hyperbolic tangent(TanH) [I0]. We focus on the rectified linear unit activation
function ReLU = max{0,y,}.

Considering the above, let us denote the input of a NN with L layers as
x €1, and f(z) € O as the output; thus, we have that:

f(x) =0 (yrlo (yr—1(--(o (11(x)))))))) 3)

2.2 Quantization

Quantization is the process of constraining high precision values (e.g., single-
precision floating-point values) to a finite range of lower precision values (e.g.,
a discrete set such as the integers) [IJ16]. The quantization quality is usually
determined by a scalar n (the available number of bits) that defines the lower
and upper bounds of the finite range. Let us define quantization as a mapping
function Q,, : R™*P — ["™*P_formulated as follow:

Q(nVA)__dn)(Lq@iTww,—Q"H2”1—]> (4)

where A € R™* P denotes the continuous value— notice that A can be a single
scalar, a vector, or a matrix; n denotes the number of bits for the quantization,
q(A,n) denotes a function that calculates the scaling factor for A in respect to a
number of bits n, and |-] denotes rounding to the nearest integer. Defining the
scaling factor (see Eq. [is an important aspect of uniform quantization [22125].

The scaling factor is essentially what divides a given range of real values
A into an arbitrary number of partitions. Thus, let us define a scaling factor
function by ¢,(A), a number of bits (bit-width) to be used for the quantization
by n, a clipping range by [a, (], the scaling factor can be defined as follow:

q(A,n) = ()

2n —1

The min/max of the signal are often used to determining the clipping range
values, i.e., « = min A and 8 = max A. But as we are using symmetric quan-
tization, the clipping values are defined as a@ = f = max([| min A, | max A|]).
In practice, the quantization process can produce an integer value that lies out-
side the range of [, §]. To prevent that, the quantization process will have an
additional clip step.

Eq. @ shows the corresponding de-quantization function, which computes
back the original floating-point value. However, we should note that the de-
quantization approximates the original floating-point value.

A=q(A,2)Q (n, A) (6)

4 Matos Jr. et al.

2.3 NN quantization

In this section, we discuss how a convolutional or fully-connected NN layer can
be quantized in the symmetric mode. Considering [to be any given layer in a
NN, let us denote x;, Wi, and by as the original floating-point input vector,
the original floating-point weight matrix, and the original floating-point bias
vector, respectively, of the layer [. And applying the de-quantization function
from Eq. @, where, we assume that A = A. Borrowing from notations used
in Sections [2.1] and We can formalize the quantization of a NN layer [as
follows:

y1(x1) = Wi-x1+ by

~ q(W1,n)Q (ni, Wh) - x1 + (b1, 7)Q (g, br) "

Notice that the bias does not need to be re-scaled to match the scale of the

dot product. Since we consider maximum scaling factor between ¢(Wy,n;) and

q(by,n;)), both the weight and the bias share the same scaling factor in Eq. @

With that in mind, the formalization of a NN f in Eq. can be reused to
formalize a quantized NN as well.

2.4 NN Equivalence

Let F and T be two arbitrary NNs, and let Z € R™ be the common input space of
the two NNs and O € R™ be their common output space. Thus, NN equivalence
verification is the problem of proving that F and 7, or more specifically, their
corresponding mathematical functions f : Z — O, t : T — O are equivalent. In
essence, by proving the equivalence between two neural networks, one can prove
that both NNs produce the same outputs for the same set of inputs. Currently,
the literature reports the following definition of equivalence.

Definition 1 (Top-1-Equivalence [7)30]). Two NNs f and t are Top-1-
equivalent, if argmax f(xz) = argmax t(x), for allz € T.

Let us formalise the notion of Top-1 Fquivalence in first-order logic. This is
necessary for the comprehension of the equivalence verification explained in the
following sections of the paper. But first, we formalize some essential assumptions
for the correctness of the equivalence properties.

Assumption 1 Let f(x) be the output of the NN F in real arithmetic (without
quantization). It is assumed that arg max f(x) =y such that x € H.

Assumption 2 Let f(x) be the output of the NN F in a quantized form. There
is set of numbers of bits N such that arg max f(r) = argmax f%(z) = y for all
reH.

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

Note that the quantization of the NN f that results in the NN f?(z) depends
on the number of bits V. Refer to Eq. @ to understand the relationship between
N and f4.

An instance of a equivalence verification is given by a conjunction of con-
straints on the input ¢, (), the output ¢, (y) and the NNs f and f9.¢(f, f9,z,y) =
Yz (x) = ¥y (y). We denote 1, (y) the equivalence constraint. Let Z = x + & such
that |z + Z|o < €, consider T € H and y € G. Taking from Definition [I} we have
that:

— () is an equivalence property such that ¢, (z) <>z € H
— 1, (y) is an equivalence property such that v, (y) <> argmax f%(z) =y

Note that, to prove the equivalence of f and f¢, one may prove that the
property ¥(f, f9,x,y) holds for any given z and y. This approach may not be
feasible. But proving that ¥(f, f?,z,y) does not hold for some z and y is a more
tractable approach. If we do so, we can provide a counter-example.

2.5 Verification of NN properties

In this paper, we use the classic paradigm of SMT verification. In this paradigm,
the property to check (e.g., equivalence) and the computational model (e.g., the
neural networks) are encoded as a first-order logic formula, which is then checked
for satisfiability. Moreover, to keep the problem decidable, SMT restricts the full
expressive power of first-order logic to a decidable fragment.

SMT formulas can capture the complex relationship between variables, hold-
ing real, integer values and other data types. If it is possible to assign values to
such variables that a formula is evaluated as true, then the formula is said to
be satisfiable. On the other hand, if it’s not possible to assign such values, the
formula is said to be unsatisfiable.

Given a NN F and its mathematical function f, a set of safe input instances
H € R”, and a safe domain G C O™— both defined as a set of constraints, safety
verification is concerned with the question of whether there exist an instance
x € H such that f(z) ¢ G. An instance of a safety verification is given by a
conjunction of constraints on the input ¢, (z), the output ¥, (y) and the NN f.
Y(f,x,y) = Yz(x) = ¥, (y) is said to be satisfiable if there exists some z € H
such that f(x) returns y for the input x and ¥(f,x,y) does not hold.

3 Counter-Example Guided Neural Network
Quantization Refinement (CEG4N)

We define robust quantization (RQ) to describe the problem of maximizing the
quantization of a NN while keeping the equivalence between the original model
and the quantized one (see Definition . Borrowing from the notations used in
Section [2| we formally define RC as follows.

6 Matos Jr. et al.

Definition 2 (Robust Quantization). Let [be the reference NN and H €
R™ be a set of inputs instances. We define robust quantization as a process that
performs the quantization of f hence resulting in a quantized model f% such that
argmax f(r) <= argmax f9(z) V x € H.

From the definition discussed in Section we preserve the equivalence
between the mathematical functions f and f? associated with the NNs. In the
RC, we shift the focus from the original NN to the quantized NN, i.e., we assume
that f is safe (or robust) and use it as a reference to define the safety properties
we expect for f?. By checking the equivalence of f and f?, we can state that
f4 is robust, and therefore, we achieve a robust quantization. In more details,
consider a NN f with L layers. The quantization of f assumes there is a set
N = {ny,n9, -+ ,nr}, where n; € N represents the number of bits that should
be used to quantize the [-th layer in f. In our robust quantization problem,
we obtain a sequence A for which each n € N is minimized (e.g., one could
minimize the sum of all n €) and the equality between f and f¢ is satisfied.

3.1 Robust quantization as a minimization problem

We consider the robust quantization of a NN as an iterative minimization prob-
lem. Each iteration is composed of two complementary sub-problems. First, we
need to minimize the quantization bit widths, that is, finding a candidate set
N. Second, we need to verify the equivalence property, that is, checking if a
NN quantized with the bit widths in A/ is equivalent to the original NN. If the
latter fails, we iteratively return to the minimization sub-problem with additional
information. More specifically, we formalize the first optimization sub-problem
as follows.
Optimization sub-problem o:

Objective: N° = argmin Z ny

s.t: argmax f(z) = argmax f9(x), ¥V © € Heg (8)
n>NVn eNC
n; SNVH[eN?

where f is the mathematical function associated with the NN F and f? is the
quantized mathematical function associated with the NN F, Hgp is a set of
counter-examples available at iteration 0. Consider N and N as the minimum and
the maximum bit width allowed to be used in the quantization; these parameters
are constant. N ensures two things, it gives an upper bound to the quantization
bit width, and provides a termination criteria, if a candidate N° such that
n; = N for every n; € N°, the optimization is stopped because it reached
our Assumption 2. In particular, our Assumption 2 ensures the termination
of CEG4N, and it is build over the fact that there is a set of N for which
the quantization introduces a minimal amount of error to NN. In any case, if

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

CEGA4N proposes a quantization solution equal to the N, this solution is verified
as well, and in case the verification returns a counter-example, CEG4N finishes
with failure. Finally, note that H¢y is an iterative parameter, meaning its value
is updated at each iteration o. This is done based on the verification sub-problem
(formalized below).
Verification sub-problem o:

In the verification sub-problem o, we check whether the A/° generated by the
optimization sub-problem o satisfies the following equivalence property:

¢(fa fqvxvy) = 1/&(@ — 1/’3/(?/)

if 9, (x) — 1y (y) holds for the candidate N°, the optimization halts and N is
declared as solution; otherwise, a new counter-example xcg is generated. Itera-
tion o+ 1 starts where iteration o stopped. That is, the optimization sub-problem

0+ 1 receives as parameter a set of H4' such that HaL' = Hep U zck.

3.2 The CEG4N framework implementation

We propose CEG4N framework, which is a counterexample-guided optimization
approach to solve the robust quantization problem. In this approach, we consider
combining two main modules to solve the two sub-problems presented in Section
the optimization of the bit widths for the quantization and the verification of
the NN equivalence. The first module that solves the optimal bit width problem
roughly takes in a NN and generates quantized NN candidates. Then, the second
module takes in the candidates and verifies their equivalence to the original
model.

Figure [I] illustrates the overall architecture of the CEG4N framework. It
also shows how each framework’s module interacts with the other and in what
sequence. The GA module is an instance of a Genetic Algorithm. The GA module
expects two main parameters, NN and a set of counter-examples Hp We can
also specify a maximum number of generations the algorithm is allowed to run
and lower and upper bounds to restrict the possible number of bits. Once the
GA module produces a candidate, that is, a sequence of bit widths, for each
layer of the neural network, CEG4N generates the C-Abstraction code for the
original model and the quantized candidate and then checks their equivalence.
Each check for this equivalence property is exported to a unique verification test
case. Then, it triggers the execution of the verifier for each verification test case
and awaits the verifier output. Here, Verifier module is an instance of a formal
verifier (i.e., a Bounded Model Checker (BMC), namely, ESBMC [15]). This step
is done sequentially, meaning each verification is run once the last verification
terminates.

Once all verification test cases terminate, CEG4N collect and process all
outputs and checks whether any counter-example has been found. If so, it up-
dates the set of counter-examples H; and triggers the GA module execution
again, thus initiating a new iteration of CEG4N. If no counter-example is found,
CEG4N considers the verification successful and terminates the quantization
process outputting the found solution.

Inputs
f- a neural network

Hpp a set of counter-

examples

v

_.---=» GA Module —=

bit width N

produce a set of Module

Updated Inputs
f a neural network
Hp a set of counter-
examples, where

Matos Jr. et al.

Robust Quantization with CEG4N

Automated Step

B Generate C abstractions

! _.»and encodings for 1(z) to
assume and ¥(y) to

assert

Equivalence Property:
v (f, f',z,y)
= ¥(z) — ¥(y)

When the verification is
not successiul, the verifier
produces a set of counter-
examples:

A

2N
> .,

LT N
."' " = N
LT s verification ™

“-._successful? -
2 e
. -

.

S

4_____._._-—-——/:

Outputs

The set of bit widths Ng
produces an equivalent
model.

Jo = HgU J‘fcv

Fig. 1. CEGA4N architecture overview, highlighting the relationship between the main
modules, and their inputs and outputs.

We work with two functional versions of the NN. The GA module works
with a functional NN written in Python, while the verifier module works with
a functional version of the NN written in C. The two models are equivalent
since they share the same parameters; the python model loads the parameters
to a framework built over Pytorch [29]. The C version loads the weights into a
framework designed and developed in C to work correctly with the verifier idioms
and annotations. We provide more details regarding the C implementations of
the NNs in Section [A2]

4 Experimental Evaluation

This section describes our experimental setup and benchmarks, defines our ob-
jectives, and presents the results.

4.1 Description of the Benchmarks

We evaluate our methodology on a set of feedforward NN classification models
extracted from the literature [T0J23I26]. We chose these specific ones based on
their popularity in previous NN robustness and equivalence verification studies

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

[30/10]. Additionally, we include a few other NN models to cover a broader range
of NN architectures (e.g., NN size, number of neurons).

ACAS Xu The airborne collision avoidance system for unmanned aircraft
ACAS Xu dataset [23] is derived from 8 specifications (features boundaries
and expected outputs). ACAS Xu features are sensor data indicating the speed,
present course of the aircraft, and the position and speed of any nearby intruder
aircraft. An ACAS Xu NN is expected to give appropriate navigation advi-
sories for a given input sensor data. The expected outputs indicate that either
the aircraft is clear-of-conflict, or it should take soft or hard turns to avoid the
collision. We evaluated CEG4N on 5 pre-trained NNs, each containing 8 lay-
ers and 300 ReLU nodes each. The pre-trained NNs were obtained from the
VNN-COMP2021 [5] benchmarks’|

MNIST MNIST is a popular dataset [26] for image classification. The dataset
contains 70,000 gray-scale images with uniform size of 28x28 pixels, where the
original pixel values from the integer range [0, 255] are rescaled to the floating-
point range [0, 1]. We evaluated CEG4N on two NNs with 2 layers, one with 10
ReLU nodes each and another with 25 and 10 ReLLU nodes. The NNs followed
the architecture of models described by the work of Eleftheriadis et al. [I0].

Seeds The Seeds dataset [8] consists of 210 samples of wheat grain belong-
ing to three different species, namely Kama, Rosa and Canadian. The input
features are seven measurements of the wheat kernel geometry scaled between
[0,1]. We evaluated CEG4N on 2 NNs, containing 1 layer, one containing 15
ReLU nodes, and the other containing 2 ReLU nodes. Both NNs were trained
for the CEG4N evaluation.

Iris The Iris flower dataset [I3] consists of 50 samples from three species of Iris
flower (Iris setosa, Iris virginica and Iris versicolor). The dataset is a popular
benchmark in machine learning for classification, and the data is composed of
records of real value measurements of the width and length of sepals and petals
of the flowers. The data was scaled to [0,1]. We evaluated CEG4N on 2 NNs, one
of them containing 2 layers with 20 ReLU nodes and the other having only one
layer with 3 ReLU nodes. Both NNs were trained for the CEG4N evaluation.

4.2 Setup

Genetic Algorithm. As explained in Section [3.1] we quantize the NNs with
a NSGA-II Genetic Algorithm module. We set the upper and lower bounds for
the allowed bit widths to 2 and 52 in all experiments. The lower bound was

3 The pre-trained weight for the ACAS Xu benchmarks can be found in the following
repository: https://github.com/stanleybak/vnncomp2021

https://github.com/stanleybak/vnncomp2021

10 Matos Jr. et al.

chosen because 2 is the first valid integer that does not break our quantization
formulas. The upper bound was chosen to match the significand of the double-
precision float format IEEE 754-1985 [2I]. The upper bound value could be
higher depending on the precision of weights parameters of the NN, as the scaling
factor could lead the quantization to large integer values. However, as we wanted
the framework to work on every NN in our experimentation setup without further
steps, we restricted the clipping range to a comfortable number to avoid integer
overflow.

Furthermore, we allow the GA to run for 110 generations for each layer in the
NN. This number of generations was defined after extensive preliminary tests,
which confirmed that GA could reach the optimal solution in most cases (see
Table [3[in Appendix . Lastly, we randomly select the initial set of counter-
examples H from the benchmark set of each case study. The samples in H do
not necessarily have to be counter-exramples, and any valid concrete input can
be specified. Our choice is justified by the practical aspect of using samples from
the benchmark set.

Equivalence Properties. One input sample was selected for each output class
and used to define the equivalence properties. Due to the high dimensional num-
ber of the features in the MNIST study case, we proposed a different approach
when specifying the equivalence properties for the equivalence verification. We
considered three different approaches: 1) one in which we considered all features
in the input domain; 2) another one in which we considered only a subset of 10
out of the 784 features in the input domain; 3) a last one in which we considered
only a subset of 4 out of the 784 features in the input domain. The subset of
features in cases 2 and 3 was randomly selected.

Availability of Data and Tools. Our experiments are based on a set of
publicly available benchmarks. All tools, benchmarks, and results of our evalua-
tion are available on a supplementary web page https://zenodo.org/record/
6791964.

4.3 Objectives

Considering the benchmarks given in Section[41] our evaluation has the following
two experimental goals:

EG1 (robustness) Show that the CEG4N framework can generate robust
quantized NNs.

EG2 (accuracy) Show that the quantized NNs do not have a significant
drop in accuracy compared to other quantization techniques.

https://zenodo.org/record/6791964
https://zenodo.org/record/6791964

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

4.4 Results

In our first set of experiments, we want to achieve our first experimental goal
EG1. We want to show that our technique CEG4N can successfully generate
quantized NNs that are verifiably equivalent to the original NNs. As a sec-
ondary goal, we want to perform an empirical scalability study to help us eval-
uate the computational demands for quantizing and verifying the equivalence of
NNs models. Our findings are summarized in Table

Table 1. Summary of the CEG4N executions, including the models, number of fea-
tures, the number of bits per layer, and the status.

Model Features Equivalence Properties Iterations Bits Status
iris_3 4 3 1 4,3 completed
seeds_2 7 3 1 4,3 completed
seeds_15 7 3 1 4,2 completed
acasxu-1 5 6 1 6,8, 7,7,9, 7,6 completed
acasxu_2 5 7 1 10,9,9,9,7, 7,10 completed
acasxu_3 5 7 1 5,9,10,7, 8,8, 5 completed
acasxu-4 5 7 1 8,9,14,9, 10, 10, 7 completed
acasxu_b 5 7 1 6, 12, 8, 8, 10, 10, 10 completed
5 10 1 4,3 completed
mnist_10 10 10 1 4,3 completed
784 10 0 4,3 timeout
5 10 1 3,3 completed
mnist_25 10 10 1 3,3 completed
784 10 0 3,3 timeout

All the CEG4N runs that were completed successfully took only 1 iteration to
find a solution. However, we observed that four of the CEG4N attempts to find a
solution for MNIST models resulted in a timeout. We attribute this observation
to a mix of factors. First is the high number of features in the MNIST problem.
Second, the network’s overall architecture requires many arithmetic operations
to compute the model’s output. Finally, we also observed that it took only a few
minutes for CEG4Nto find a solution to the Iris, Seeds, and Acas Xu benchmarks.
In contrast, on MNIST, it took hours to either find a solution or fail with a
timeout.

These results answer our EG1: overall, these experiments show that
CEGA4N can successfully produce robust quantized models. Although, one
should notice that for larger NNs models, scalability should be a point of
concern due to our verifier stage.

In our second set of experiments, we want to achieve our second experimen-
tal goal EG2. We primarily want to understand the impact of the quantization

12 Matos Jr. et al.

performed by CEG4N on the accuracy of the NNs compared to other quan-
tization techniques. Due to our research’s novelty, no existing techniques lend
themselves to a fair comparison. For this reason, we take a recent post-training
quantization technique called GPFQ [3T] and modify it to our needs. GPFQ [31]
is a greedy path-following quantization technique that also produces quantized
models with floating/double-precision values. It works by iterating over each
layer of the NN and quantizing each neuron sequentially. More specifically, a
greedy algorithm minimizes the error between the original neural output and
the quantized neuron.

Table [2| summarizes the accuracy of the models quantized using CEG4N and
GPFQ. Note that we do not report the accuracy of the Acas Xu models because
the original training and test datasets are not public.

Table 2. Comparison of Top-1 accuracy for NNs quantized using CEG4N and GPFQ

Model Method Ref Acc (%) Quant Acc (%) Acc Drop (%)

iris_3 CGEPC]?;%\T 93.33 2223 ;88
seeds_2 %EP(;Zg 88.09 Zigé 22?;-3881
seeds_15 %EP(;g\I 90.04 i?)z; 449?537
mnist_10 CGEPC];;%\I 91.98 981§é79 8:(252
mnist_25 CGEP(;Z%\T 93.68 gggg i(l)é

Our findings show that the highest drops in accuracy happen on the Iris
benchmark (10% for CEG4N and 70% drop for GPFQ). In contrast, the lowest
drops in accuracy happen on mnist_25 for CEG4N and on mnist_10 for GPFQ.
Overall, the accuracy of models quantized with CEG4N are better on the Iris
and Seeds benchmarks, while the accuracy of models quantized with GPFQ are
better on the mnist benchmarks, but only by a small margin. Our understanding
is that GPFQ shows high drops in accuracy for smaller NNs because the number
of neurons in each layer is small. As GPFQ focuses on each neuron individually,
it may not be able to find a good global quantization.

These results answer our EG2: overall, these experiments show that
CEGA4N can successfully produce quantized models with superior or sim-
ilar accuracy to other state-of-the-art techniques.

CEGA4N: Counter-Example Guided Neural Network Quantization Refinement 13

4.5 Limitations

Although we showed in our evaluation that the CEG4N framework can generate
a quantized neural network while keeping the equivalence between the original
NN and the quantized NN, we note that the architecture of the NN used in the
evaluation does not fully reflect state-of-the-art NN architectures. The NNs used
in our evaluation have few layers and only hundreds of ReLLU nodes, while state-
of-the-art NNs may have hundreds of layers and thousands of ReLU nodes. The
main bottleneck is state-of-the-art verification algorithms, which currently do
not scale to large neural networks. As it is, our technique could only quantized
80% of the NN in our experimental evaluation.

In addition, the field of research on NN equivalence is relatively new and
there is no well-established set of benchmarks that works in this field could
benefit from [10]. Furthermore, our work is the first to propose a framework that
mixes NN quantization and NN equivalence verification. There is no comparable
methodology in the literature we could compare our approach with.

5 Conclusion

We presented a new method for NN quantization, called CEG4N, a post-training
NN quantization technique that provides formal guarantees of NN equivalence.
This approach leverages a counter-example guided optimization technique, where
an optimization-based quantizer produces quantized model candidates. A state-
of-the-art C verifier then checks these candidates to prove the equivalence of
the quantized candidates and the original models or refute that equivalence by
providing a counter-example. This counter-example is then passed back to the
quantized to guide it to search for a feasible candidate.

We evaluate the CEG4N method on four benchmarks, including large models
(ACAS Xu and MNIST) and smaller models (Iris and Seeds). We successfully
demonstrate the application of the CEG4N for NN quantization, where it could
successfully quantize the networks while producing models with up to 72% better
accuracy than state-of-the-art techniques. However, CEG4N can only handle a
restricted set of NNs models, and further work needs to scale the CEG4N appli-
cability on a broader set of NNs models (e.g., NNs models with a more significant
number of layers and neurons and higher numbers of input features).

For future work, we could explore other quantization techniques, which are
not limited to search-based quantization and other promising equivalence verifi-
cation techniques using a MILP approach [30] or an SMT-based approach [10].
Combining different quantization and equivalence verification techniques can en-
able CEG4N to achieve better scalability and quantization rates. Another inter-
esting future work relates to the possibility of mixing quantization approaches
that generate quantized models, which operate entirely on integer arithmetic;
this can potentially improve the verification step scalability of the CEG4N.

14

Matos Jr. et al.

Acknowledgment

The work is partially funded by EPSRC grant EP/T026995/1 entitled “EnnCore:
End-to-End Conceptual Guarding of Neural Architectures” under Security for
all in an Al-enabled society.

References

10.

11.

12.

Abate, A., Bessa, 1., Cattaruzza, D., Cordeiro, L.C., David, C., Kesseli, P.,
Kroening, D.: Sound and automated synthesis of digital stabilizing controllers
for continuous plants. In: Frehse, G., Mitra, S. (eds.) Proceedings of the 20th
International Conference on Hybrid Systems: Computation and Control, HSCC
2017, Pittsburgh, PA, USA, April 18-20, 2017. pp. 197-206. ACM (2017). https:
//doi.org/10.1145/3049797.3049802

. Abiodun, O.I.,, Jantan, A., Omolara, A.E., Dada, K.V., Mohamed,

N.A., Arshad, H.. State-of-the-art in artificial neural network applica-
tions: A survey. Heliyon 4(11), 00938 (2018). https://doi.org/https:
//doi.org/10.1016/j.heliyon.2018.e00938, https://www.sciencedirect.
com/science/article/pii/S2405844018332067

Albarghouthi, A.: Introduction to mneural network verification. ArXiv
abs/2109.10317 (2021)

Bai, J., Lu, F., Zhang, K., et al.: Onnx: Open neural network exchange. https:
//github.com/onnx/onnx (2019)

Bak, S., Liu, C., Johnson, T.: The second international verification of neural net-
works competition (vnn-comp 2021): Summary and results (2021)

Bojarski, M., del Testa, D.W., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.,
Jackel, L.D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., Zieba, K.:
End to end learning for self-driving cars. ArXiv abs/1604.07316 (2016)

Biining, M.K., Kern, P., Sinz, C.: Verifying equivalence properties of neural net-
works with relu activation functions. In: Simonis, H. (ed.) Principles and Practice
of Constraint Programming - 26th International Conference, CP 2020, Louvain-la-
Neuve, Belgium, September 7-11, 2020, Proceedings. Lecture Notes in Computer
Science, vol. 12333, pp. 868-884. Springer (2020). https://doi.org/10.1007/
978-3-030-58475-7_50, https://doi.org/10.1007/978-3-030-58475-7_50
Charytanowicz, M., Niewczas, J., Kulczycki, P., Kowalski, P.A., Lukasik, S., Zak,
S.: Complete Gradient Clustering Algorithm for Features Analysis of X-Ray Im-
ages, pp. 15-24. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

Cheng, Y., Wang, D., Zhou, P., Zhang, T.: A survey of model compression and
acceleration for deep neural networks. ArXiv abs/1710.09282 (2017)
Eleftheriadis, C., Kekatos, N., Katsaros, P., Tripakis, S.: On neural network equiv-
alence checking using smt solvers. ArXiv abs/2203.11629 (2022)

Esser, S.K., Appuswamy, R., Merolla, P., Arthur, J.V., Modha, D.S.: Backpropa-
gation for energy-efficient neuromorphic computing. In: Cortes, C., Lawrence, N.,
Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Pro-
cessing Systems. vol. 28. Curran Associates, Inc. (2015), https://proceedings.
neurips.cc/paper/2015/file/10abab2db37feedfdeaabl92ead4acOe-Paper.pdf
Farabet, C., LeCun, Y., Kavukcuoglu, K., Martini, B., Akselrod, P., Talay, S.,
Culurciello, E.: Large-scale fpga-based convolutional networks (2011)

https://doi.org/10.1145/3049797.3049802
https://doi.org/10.1145/3049797.3049802
https://doi.org/10.1145/3049797.3049802
https://doi.org/10.1145/3049797.3049802
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://doi.org/https://doi.org/10.1016/j.heliyon.2018.e00938
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://www.sciencedirect.com/science/article/pii/S2405844018332067
https://github.com/onnx/onnx
https://github.com/onnx/onnx
https://doi.org/10.1007/978-3-030-58475-7_50
https://doi.org/10.1007/978-3-030-58475-7_50
https://doi.org/10.1007/978-3-030-58475-7_50
https://doi.org/10.1007/978-3-030-58475-7_50
https://doi.org/10.1007/978-3-030-58475-7_50
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

Fisher, R.A.: The use of multiple measurements in taxonomic problems. Annals of
Eugenics 7, 179-188 (1936)

Gadelha, M.R., Menezes, R.S., Cordeiro, L.C.: ESBMC 6.1: automated test case
generation using bounded model checking. Int. J. Softw. Tools Technol. Transf.
23(6), 857-861 (2021). https://doi.org/10.1007/s10009-020-00571-2
Gadelha, M.R., Monteiro, F.R., Morse, J., Cordeiro, L.C., Fischer, B., Nicole, D.A.:
Esbme 5.0: An industrial-strength ¢ model checker. In: 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE). pp. 888-891
(2018). https://doi.org/10.1145/3238147.3240481

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M.W., Keutzer, K.: A
survey of quantization methods for efficient neural network inference. ArXiv
abs/2103.13630 (2022)

Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for
efficient neural network. ArXiv abs/1506.02626 (2015)

Hooker, S., Courville, A.C., Dauphin, Y., Frome, A.: Selective brain damage: Mea-
suring the disparate impact of model pruning. ArXiv abs/1911.05248 (2019)
Huang, X., Kroening, D., Kwiatkowska, M., Ruan, W., Sun, Y., Thamo, E., Wu,
M., Yi, X.: Safety and trustworthiness of deep neural networks: A survey. ArXiv
abs/1812.08342 (2018)

Hubara, 1., Courbariaux, M., Soudry, D., El-Yaniv, R., Bengio, Y.: Quantized neu-
ral networks: Training neural networks with low precision weights and activations.
ArXiv abs/1609.07061 (2017)

IEEE: Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008) pp. 1-84 (2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A.G., Adam, H.,
Kalenichenko, D.: Quantization and training of neural networks for efficient integer-
arithmetic-only inference. CoRR abs/1712.05877 (2017), http://arxiv.org/
abs/1712.05877

Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy com-
pression for aircraft collision avoidance systems. In: 2016 IEEE/ATAA 35th Digi-
tal Avionics Systems Conference (DASC). pp. 1-10 (2016). https://doi.org/10.
1109/DASC.2016.7778091

Kirchhoffer, H., Haase, P., Samek, W., Miiller, K., Rezazadegan-Tavakoli, H.,
Cricri, F., Aksu, E., Hannuksela, M.M., Jiang, W., Wang, W., Liu, S., Jain, S.,
Hamidi-Rad, S., Racapé, F., Bailer, W.: Overview of the neural network com-
pression and representation (nnr) standard. IEEE Transactions on Circuits and
Systems for Video Technology pp. 1-1 (2021). https://doi.org/10.1109/TCSVT.
2021.3095970

Krishnamoorthi, R.: Quantizing deep convolutional networks for efficient infer-
ence: A whitepaper. CoRR abs/1806.08342 (2018), http://arxiv.org/abs/
1806.08342

LeCun, Y., Cortes, C.: The mnist database of handwritten digits (2005)

Liu, C., Arnon, T., Lazarus, C., Barrett, C.W., Kochenderfer, M.J.: Algorithms
for verifying deep neural networks. Found. Trends Optim. 4, 244-404 (2021)
Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, S., Walsh, T.: Verifying
properties of binarized deep neural networks. In: AAAT (2018)

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,

15

https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
http://arxiv.org/abs/1712.05877
http://arxiv.org/abs/1712.05877
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/DASC.2016.7778091
https://doi.org/10.1109/TCSVT.2021.3095970
https://doi.org/10.1109/TCSVT.2021.3095970
https://doi.org/10.1109/TCSVT.2021.3095970
https://doi.org/10.1109/TCSVT.2021.3095970
http://arxiv.org/abs/1806.08342
http://arxiv.org/abs/1806.08342

16 Matos Jr. et al.

J., Chintala, S.: Pytorch: An imperative style, high-performance deep learning
library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d'Alché-Buc, F., Fox, E.,
Garnett, R. (eds.) Advances in Neural Information Processing Systems 32, pp.
8024-8035. Curran Associates, Inc. (2019), http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

30. Teuber, S., Buning, M.K., Kern, P., Sinz, C.: Geometric path enumera-
tion for equivalence verification of neural networks. 2021 IEEE 33rd In-
ternational Conference on Tools with Artificial Intelligence (ICTAI) (Nov
2021). https://doi.org/10.1109/ictaib2525.2021.00035, http://dx.doi.org/
10.1109/ICTAI52525.2021.00035

31. Zhang, J., Zhou, Y., Saab, R.: Post-training quantization for neural networks with
provable guarantees. arXiv preprint arXiv:2201.11113 (2022)

A Appendices

A.1 Implementation of NNs in Python.

The NNs were built and trained using the Pytorch library [29]. Weights of the
trained models were then exported to the ONNX [4] format, which can be inter-
preted by Pytorch and used to run predictions without any compromise in the
NNs performance.

A.2 TImplementation of NNs abstract models in C.

In the present work, we use the C language to implement the abstract represen-
tation of the NNs. It allows us to explicitly model the NN operations in their
original and quantized forms and apply existing software verification tools (e.g.,
ESBMC [I4]). The operational C-abstraction models perform double-precision
arithmetic. Although, we must notice that the original and quantized only di-
verge on the precision of the weight and bias vectors that are embedded in the
abstractions code.

A.3 Encoding of Equivalence Properties

Suppose, a NN F, for which x € H is a safe input and y € G is the expected
output of f the input. We now show how one can specify the equivalence prop-
erties. For this example, consider that the function f can produce the outputs of
F' in floating-point arithmetic, while fq produces the outputs of F in fixed-point
arithmetic (i.e. quantization). First, the concrete NN input z is replaced by a
non-deterministic one, which is achieved using the command nondet_float from
the ESBMC.

Listing 1.1. Definition of concrete and symbolic input domain in EBMC.

float x0 = —1.0;
float x1 = 1.0;
float s0 = nondet_float ();
float s1 = nondet_float ();

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1109/ictai52525.2021.00035
https://doi.org/10.1109/ictai52525.2021.00035
http://dx.doi.org/10.1109/ICTAI52525.2021.00035
http://dx.doi.org/10.1109/ICTAI52525.2021.00035

CEG4N: Counter-Example Guided Neural Network Quantization Refinement

Listing 1.2. Definition of input constraints in EBMC.

const float EPS = 0.5;
__ESBMC_assume (x0 — EPS <= s0 && s0 <= x0 + EPS);
__ESBMC_assume(x1 — EPS <= sl && sl <= x1 + EPS);

Listing 1.3. Definition of output constraints in EBMC.
__ESBMC_assert (f(s0, s1) = fq(s0, sl));

A.4 Genetic Algorithm Parameters Definition

In Table 3] we report a summary of experiments conducted to tune the param-
eters of the Genetic Algorithm, more precisely, the number of generations. For
example, a NN with 2 layers would require a brute force algorithm to search
for 522 combinations of bits widths for the quantization. Similarly, a NN with
7 layers would require a brute force algorithm to search for 527 combinations
of bits widths. We conducted a set of experiments where we ran the GA one
hundred times with a different number of generations options ranging from 50
to 1000. In addition, we fixed the population size to 5. From our findings, the
GA needs about 100 to 110 generations per layer to find the optimal bit width
solution for each run.

Table 3. Summary of experiments for tuning Genetic Algorithm Parameters.

Number of Layers Generations Population Percentage of optimal solutions

7 800 5 100
7 750 5 100
7 700 5 98
7 50 5 0
2 250 5 100
2 200 5 100
2 150 5 96
2 50 5 30

17

	CEG4N: Counter-Example Guided Neural Network Quantization Refinement

