
EasyChair Preprint
№ 4381

A Hybrid Approach based on Reuse Techniques
for Autonomic Adaptation of Business Processes

Jamila Oukharijane, Mohamed Amine Chaabâne,
Imen Ben Said, Eric Andonoff and Rafik Bouaziz

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 12, 2020

A Hybrid Approach based on reuse techniques for

Autonomic Adaptation of Business Processes

Abstract. Complexity of highly dynamic environments in which processes op-

erate makes their adaptation difficult to perform. However, adaptation of an in-

progress process is an essential requirement for any Business Process Manage-

ment System (BPMS). So, several contributions have recommended the use of

the MAPE-K (Monitor, Analyze, Plan, Execute - Knowledge) control loop from

the autonomic computing as a solution to tackle this issue, thus bringing BPMS

with self-adaptation capabilities. However, in these contributions, a comprehen-

sive overview of the generic process self-adaptation has been missing. Moreo-

ver, faced with the high cost and the difficulty of self-adapting processes, the

idea of capitalizing on previous adaptation solutions by implementing reuse

techniques is appealing. In this paper, we recommend a hybrid approach to

adapt running processes using versions, previous adaptation cases and rules as

reuse techniques. Our solution is implemented as an adaptation engine that in-

stantiates the MAPE-K control loop and that can be connected to any BPMN-

based BPMS using appropriate adapters. Our adaptation engine is therefore re-

usable. Finally, we demonstrate the advantages and feasibility of the recom-

mended approach with an example from the crisis domain.

Keywords: Self-Adaptation; MAPE-K; Context; Version; Adaptation Case,

Rule.

1 Introduction

The growing complexity and dynamicity of the operating environment of processes

emphasizes the need for developing autonomic Business Process Management Sys-

tems (BPMS). With the autonomic adaptation of process, it indeed becomes possible

to achieve changes occurring in the operating environment of this process with mini-

mal human intervention, cost reduction for performing required adaptation and real-

time responsiveness [1]. This is a key advantage for companies that need to quickly

and efficiently manage changes to remain competitive. Basically, a fully autonomic

BPMS supports an autonomous reasoning to detect needs for adaptation and eventual-

ly resolve them. This reasoning is based on the analysis of the current situation of the

operating environment and the use conditions of running processes. Autonomic adap-

tation of running processes is usually achieved using a MAPE-K control loop [2],

which is an efficient solution for self-adaptation of systems in autonomic computing.

This loop advocates the use of the four components: (i) Monitor (M), which collects

data on the managed system and its operating environment, filter the data and aggre-

gates them into symptoms, (ii) Analyze (A), which analyzes the symptoms to detect if

changes are required, (iii) Plan (P), which defines the adaptation operations needed to

resolve detected changes and (iv) Execute (E), which performs the defined operations

to adapt the behavior of the managed system. These components (MAPE) share

Knowledge (K) between them. The latter involves repositories that contain the neces-

2

sary information to detect the adaptation needs and resolve them. As this paper deals

with the adaptation need resolution issue, it focuses on the Plan component.

Process adaptation issue has been highly investigated in recent past. On the one

hand, several taxonomies to characterize process adaptation have been proposed in

literature. The most suitable one is given in [3]. This taxonomy has identified the

following adaptation needs for processes: (i) adaptation by variability for handling

different models of processes, called variants, each of which is to be used in a specific

situation, (ii) adaptation by evolution for handling changes in processes, which re-

quire occasional or permanent modifications in their models, (iii) adaptation by de-

viation for handling occasional situations or exceptions, which have not been neces-

sarily foreseen in process models, and (iv) adaptation by looseness for handling pro-

cesses, which have unknown or incompletely known at design-time.

In addition to this taxonomy, two main categories of adaptation techniques have

been introduced to define how to achieve self-adaptation of processes. The first one,

which includes the goal-based technique, is based on the definition of a new process

fragment based on the current situation of the operating environment and the goal

state (desired outputs of the process fragment) when there is an adaptation need. The

second one is based on the reuse techniques to be able to adapt a running process by

reusing knowledge relating to models or parts of models used in a similar situation. In

this paper, we defend the process self-adaptation by reuse techniques because these

techniques can reduce the time, cost and effort required to adapt processes, and we

have an already such constructed knowledge (e.g., process model versions) in our

previous works for adaptation modeling. Generally, there are four reuse techniques

proposed in the literature [4]: (i) rule-based [5], which reuses a set of pre-defined

rules, (ii) case-based [6], which enables to reuse historical process adaptation cases

(change logs), (iii) variant-based [7], which reuses a set of variants of the process

components (i.e., the process itself, its sub-processes and its tasks), each variant being

convenient to a given context, and (iv) version-based [8, 9], which is an extension of

the variant-based as it reuses a set of alternative versions (i.e., variants) or consecutive

versions (i.e., evolution of variants) of the process. Each technique may be considered

as a guide for defining adaptation operations. Generally, these adaptation operations

can impact the different dimensions of a process: (i) its behavioral dimension to adapt

how it is achieved (process activities, including tasks and sub-processes, and their

coordination), (ii) its organizational dimension to adapt the resources invoked by task

execution, and (iii) its informational dimension to adapt the used or produced data by

task executions.

On the other hand, several contributions (e.g., [11–14]) have been made to address

the process self-adaptation based on the MAPE-K control loop. However, these con-

tributions are incomplete for the following reasons. First, the adaptation techniques of

these contributions are either variant-based or goal-based, but none of these contribu-

tions combine these techniques in order to find out the best adaptation to perform.

Second, they do not consider all process dimensions to ensure comprehensive adapta-

tion of running processes: they focus on the adaptation of only one or two dimensions

among the behavioral, informational and organizational ones. Finally, they do not

address the issue of autonomic adaptation of processes in a comprehensive and global

3

approach taking into account all the four adaptation needs identified in the Reichert

and Weber’s taxonomy [3]: they only take into account one or two adaptation needs

but never all four at the same time.

To overcome these weaknesses, we recommend a MAPE-K based adaptation en-

gine for self-adapting running processes to changes occurring in their operating envi-

ronment. This adaptation engine is designed separately from the BPMS. This separa-

tion makes the adaptation engine reusable for various BPMS. In addition, this adapta-

tion engine has the following features. First, it recommends the use of the three fol-

lowing reuse techniques: version-based, case-based and rule-based to improve process

adaptation. Second, it advocates a context-based selection of already defined adapta-

tions. In fact, the context notion is used for representing the use condition in which

each adaptation operation has to be executed as well as the current situation of the

operating environment that influences the execution of processes. Matching both con-

texts (i.e., use condition of adaptation operation and current situation) allows (i) the

detection of the adaptation needs when the operating environment of running process

changes and (ii) retrieving the most suitable solution to be adapted for the current

situation.

To sum up, the paper deals with the autonomic adaptation of BPMN processes at

run-time and more precisely the resolution of detected adaptation needs. Its contribu-

tions are as follows. The first one is the recommended adaptation engine architecture,

which instantiates the MAPE-K control loop for self-adaptation of processes. The

second contribution is the hybrid approach recommended for the Plan component,

which is responsible for defining the adaptation operations to be carried out in order

to resolve adaptation needs. Finally, the feasibility and applicability of the recom-

mended approach is demonstrated by a case study from the crisis domain.

The remainder of the paper is organized as follows. Section 2 provides the state-of-

the-art on self-adaptation of processes using the MAPE-K control loop. Section 3

gives an overview of the adaptation engine recommended for self-adaptation of

BPMN processes. Section 4 discusses in detail the hybrid approach proposed for real-

izing the Plan component. Section 5 demonstrates the applicability of the proposed

approach on the case study. Finally, section 6 summarizes paper contributions and

gives some directions for future researches.

2 Related work

In the literature, there are several works that focus on the self-adaptation of processes.

The common point of these works is the use of the MAPE-K control loop for detect-

ing adaptation needs and resolving them at run-time. Due to the specific focus of the

paper on the adaptation need resolution, this section only considers contributions that

really recommend a concrete approach of the related Plan component of the MAPE-K

control loop.

Ayora et al. recommended in [11] a solution that allows variability modeling at de-

sign-time by describing process variants using three models: (i) the base model to

specify process fragments shared by all process variants (i.e., consistent part of pro-

cesses), (ii) the variation model to specify the replacement fragments that alternative-

4

ly can be used for the fragments of the base model, and (iii) the resolution model to

specify the context conditions that define the use conditions for the replacement

fragments. At run-time, the recommended solution provides the completion of each

variation point of the base model with the appropriate alternative fragment that satis-

fies the context of the operating environment.

In [12], the authors defined an approach that enables the modeling of autonomic

processes at design-time and managing them at run-time. At design-time, this ap-

proach makes it possible to model all the necessary elements that guide the self-

adaptation of a process at run-time: which tasks must be monitored, which context

changes impact the execution of the process and how to resolve them. At run-time,

this approach uses the MAPE-K control loop for managing autonomic processes.

More precisely, it checks all the variation points and examines the context of each

variant of these variation points to identify adaptation needs. If adaptations are re-

quired, it selects and executes the suitable variant for each variation point, i.e., the

variant that satisfies the context of the operating environment.

On the other hand, Ferro and Rubira introduced in [13] an adaptation engine for the

completion of the loosely parts of ill-defined processes at run-time. This adaptation

engine, which is based on the MAPE-K approach, ensures the completion of the

loosely part of the process by either (i) selecting existing activities in the process re-

pository or (ii) deriving a new process fragment by analyzing pre-conditions, post-

conditions and interdependences between activities.

Finally, Seiger et al. proposed in [14] a framework that enables the self-adaptation

of processes in cyber-physical systems. This framework allows monitoring and analy-

sis of consistency between the sensed physical world and the assumed cyber world of

each task execution. In case an inconsistency is detected, it replaces the resource in-

volved in the task execution by another resource variant and then executes this task.

Table 1 evaluates the previous contributions with respect to the following criteria

defined in [15] and related to process self-adaptation:

• Supervised component: it identifies the granularity level of adaptation, which can

be the process level, the sub-process level and the task level,

• Adapted process dimension: it indicates which process dimensions are considered

in the examined contribution, which can be the behavioral, the organizational

and/or the informational dimensions,

• Process adaptation needs: it indicates which adaptation needs of the taxonomy

defined by [3] are taken into account,

• Adaptation technique: it indicates the technique used to define the needed adapta-

tion operations.

The first observation we can make from Table 1 is that all the examined contribu-

tions partially consider the self-adaptation of process dimensions: (i) in [11] and in

[13], the adaptation may only impact the behavioral dimension; (ii) in [12], it may

impact the informational and organizational dimensions of processes, whereas, in

[14], only the organizational dimension of processes may be adapted. This is mainly

due to the granularity of the supervision. In fact, (i) when the supervised element is a

sub-process or a process, its adaptation may impact the coordination of the process (or

sub-process) tasks, and thus the behavioral dimension of processes; (ii) when the su-

5

pervised element is a task, the process adaptation may impact the resources or the data

involved in the task execution, and thus the informational and the organizational di-

mensions of processes. However, in [14], even if the supervised element is a task,

only the organizational dimension of processes can be impacted by the adaptation as

the contribution deals with malfunction of resources involved in task realization.

Table 1. Related work evaluation

Works

Criteria

Ayora et al.,

[11]

Oliveria et

al., [12]

Ferro et

Rubira [13]

Seiger et al.,

[14]

Supervised compo-

nents
sub-process task sub-process task

Adapted process

dimensions
behavioral

informational

organizational
behavioral organizational

Process adaptation

needs

variability

looseness

variability

deviation
looseness deviation

Adaptation technique variant-based variant-based goal-based variant-based

Second, we can observe that the adaptation needs of Reichert and Weber’s taxon-

omy [3] are partially considered. Adaptation by looseness is supported in [11] and in

[13], while adaptation by deviation is taken into account in [12] and in [14]. As for

adaptation by variability, it is supported in [11] and in [12] at design-time. However,

none of the examined works has dealt with adaptation by evolution. Moreover, the

adaptation techniques of the examined contributions are either variant-based as in [11,

12, 14] or goal-based as in [13], but none of these contributions has recommended the

use of more than one technique in order to find out the best adaptation to perform.

To overcome the limitations of the examined contributions, we recommend an ad-

aptation engine that takes up the interesting features of the examined adaptation en-

gines, namely, the fact to be BPMN-compliant, the MAPE-K control loop, and the

context-based approach, but which differs from them in the following respects:

• The proposed adaptation engine considers the process self-adaptation at the follow-

ing abstraction levels: (i) the process and the sub-process levels, to support adapta-

tion of the behavioral dimension, and (ii) the task level to support adaptation of the

informational and organizational dimensions. Considering these three abstraction

levels makes the self-adaptation of the three dimensions of processes possible.

• It recommends the mixing of reuse techniques, version-based, case-based and rule-

based, in order to improve adaptation and support the different types of process ad-

aptation needs defined in [3].

3 Adaptation Engine Architecture

Fig. 1 below presents the architecture of the adaptation engine we propose to support

an instantiation of the MAPE-K control loop. As argued in [2], self-adaptation in the

general level encompasses various self-* properties in the major level, including self-

configuring, self-healing, self-optimizing and self-protecting. We consider that the

approach presented in this paper falls under self-healing category. Self-healing is the

6

capability of the adaptation engine of discovering, diagnosing and reacting to disrup-

tions [16]. Self-healing can be classified into self-diagnosing and self-repairing,

where the former concerns itself with identifying adaptation needs, and the latter fo-

cuses on the resolution of the identified adaptation needs, namely the definition and

the execution of the adaptation operations. The focus of the proposed adaptation en-

gine is to provide an integrated approach for self-diagnosis and self-repairing using

context, versions, adaptation cases and rules.

The Knowledge (K) is composed of the model repository, the instance repository,

the case repository and the rule repository. The model repository stores versions of

tasks, sub-processes and processes as well as their use conditions, described as con-

texts. The instance repository stores the current situation of the operating environment

of running processes, described also as contexts. We characterize the current situation

by a set of context parameters defined as pairs (context parameter, value), and the use

condition of a version by a set of conditions involving these context parameters.

These conditions are defined as triplets (context parameter, operator, value). As for

the case repository, it stores a set of all cases representing ad hoc changes defined by

the Plan component for managing deviations. Each case consists of a past situation

that has needed adaptation, described as context and the corresponding solution (i.e.,

applied adaptation operations). The rule repository stores a set of a priori defined

rules by domain experts for managing deviations and dependencies between adapta-

tion operations. Each rule is constructed using conditions and actions and it has the

form: if set of conditions then execute actions.

Execute

(E)

Plan

(P)

Analyze

(A)

(K)

Instance repository Model repository

Monitor

(M)

Case repository

Engine
Adapter

Task

Analyzer

Task

Analyzer

Task

Analyzer

Activiti
engine

jBPM
engine

Activiti
Adapter

jBPM
Adapter

Task

Planner

Task

Planner

Task

Planner

Process

Planner

Sub-process

Planner

Rule repository

Camunda
engine

Camunda
Adapter

......

Fig. 1. Adaptation engine architecture

 The Monitor component implements the M of the MAPE-K control loop. It aims

at getting an accurate picture of the operating environment of running processes (in-

cluding their sub-processes and tasks). It receives data from sensors and process en-

gine listeners, filters, aggregates and interprets these data and records them in the

instance repository.

7

The Analyze component, which implements the A of the MAPE-K control loop, is

responsible for the detection of the adaptation needs since it generates several task

analyzers (as many as activated tasks in the process) to compare the context featuring

the current situation, described in the instance repository, with the use conditions of

the versions of each concerned task, described in the model repository. Thus, if an

adaptation need is detected, the Plan component is triggered. It should be noted that

our solution to the Monitor and Analyze components implementing the self-

diagnosing approach is under publication.

The Plan component implements the P of the MAPE-K control loop. It receives as

input the different adaptation needs (when there is at least one task that has identified

a need for adaptation) and produces as output an adapted process instance model that

meet these adaptation needs. The Plan component is composed of several planners

that define needed operations to implement the identified adaptation: one process

planner, as many sub-process planners as sub-processes in the supervised process

instance and as many task planners as tasks in the supervised process instance. Each

planner deals with its own adaptation and defines the operations required to carry it

out by reusing defined solutions stored in the knowledge base. Thus, a process plan-

ner has a better global vision of the adaptation needs and defines the adaptation op-

erations for the process and its components (sub-processes, tasks, resources and data),

while at the lower level, i.e., a task or a sub-process planner solves a local adaptation

need at the concerned activity (task or sub-process) when there is no adaptation opera-

tions defined by the process planner. Notifications between planners are visualized in

Fig. 1 as thin arrows. More details about the Plan component are presented in Section

4. It should be noted that the dotted arrows of Fig. 1 visualize the read/write opera-

tions in K of the Monitor, Analyze, and Plan components.

Finally, the Execute component implements the E of the MAPE-K control loop. It

(i) receives from the Plan component the adapted process instance model, (ii) gener-

ates the generic operations to be carried out to migrate the considered process instance

model to the adapted one, (iii) maps these operations into operations of the target

process engine, since each process engine has different operation signatures and ways

of performing each same adaptation operation, and (iv) performs them by invoking

the process engine by means of a native Application Programming Interface (API).

Since each process engine (e.g., Activiti, Camunda, jBPM) has its own specificities,

we have defined several engine adapters, such as jBPM Adapter. Each engine adapter

is suitable for a process engine; it has to map the operations defined by the Plan com-

ponent onto operations that can be understood by this process engine. Ultimately the

Execute component triggers the execution of these mapped adaptation operations in

the target process engine. We do not detail this component implementation in this

paper as we adopt the access layer of the academic generic BPMS proposed in [17],

that supports communications with the target process engines allowing the realization

of the generic operations mapped in concrete ones, and maps the generic operations to

operations that conform to the target process engine. For more details about this ge-

neric BPMS implementation, the reader can refer to [17] and [18].

We detail below the recommended approach for defining adaptation operations re-

quired for resolving adaptation needs.

8

4 Detailing the recommended Approach for Adaptation

definition

This section details the hybrid approach recommended for the definition of adaptation

operations by the Plan component to resolve process adaptation needs. This approach

recommends the use (i) of versions, previous adaptation cases and rules for adaptation

achievement and (ii) context-based selection of versions as well as previous adapta-

tion cases. As shown in Fig. 2, once an adaptation need is received from the Analyze

component, three major steps are possibly performed.

The first step “Search compliant process model version using contexts” consists

of querying the model repository, which contains the process model versions and their

use contexts, with the aim of retrieving the process model version satisfying the cur-

rent situation of the operating environment. More precisely, it searches the appropri-

ate process model version by comparing the current situation that provokes need for

adaptation and that is defined in the instance repository, with the use conditions of the

versions of this process instance, defined in the model repository. More precisely, this

step goes through the following actions. The first action is dedicated to the identifica-

tion of the possible model versions of the considered process. It is implemented as

queries on the model repository. The second action calculates, for each identified

version, the similarity between the current situation and their use condition. This ac-

tion is implemented by Algorithm 1, which takes as input the set of versions identified

in the previous action and the current situation described in the instance repository. It

uses the following functions:

─ getUseCondition (v) returns the use condition of the version v,

─ checkCondition (c, cs) returns true if the condition c is verified in the current

situation cs, otherwise false,

─ add (v) adds the version v to the set of versions to be returned,

─ card (uc) returns the number of conditions involved in the use condition uc.

Three scenarios can occur:

• Scenario 1.1- There is exactly one process model version that satisfies the current

situation, i.e., the current situation acquired from the instance repository exactly

matches the use condition of the returned version. So in this case, the check state-

related compliance is performed for verifying if the considered process instance is

compliant with the returned process model version or it is not compliant. This al-

lows ensuring that the resulting execution states of the considered process instance

also remain correct and consistent states in the returned version. The goal of this

check is to ensure the correctness of process instance migration to the returned

process model version. Moreover, the state-related compliance check is done ac-

cording to the state compliance conditions proposed in [19], which allow checking

if a process instance model version (Si) is compliant with a process model (S’). In

case a state-related incompliance is detected, i.e., it is not possible to migrate the

running process instance to the returned process model version, the process plan-

ner searches for a suitable previous adaptation in the case repository.

9

• Scenario 1.2- There are many retrieved process model versions satisfying the cur-

rent situation. In this case, the process planner determines the proximity between

the process instance model version and each returned process model version using

the proximity calculation algorithm proposed in [20]. The goal of this proximity

calculation is to order the returned process model versions based on their proximity

to the process instance model version. Afterward, the process planner checks the

state-related compliance of this version with the ordered process model versions,

starting with the closer process model version to this instance model version, to

find a process model version that satisfies the state-related compliance conditions.

When there are no process model versions ensuring the state-related compliance,

then the search of suitable adaptation cases in the case repository is triggered.

• Scenario 1.3- There is no suitable process model version to the current situation.

Let us remember that to consider a model version suitable, each condition involved

in the use condition of this version must satisfy the current situation. So in this sce-

nario, the step “Search compliant adaptation cases using contexts” is performed

for reusing previous adaptations used in a similar situation and defined in the case

repository.

Algorithm 1: Similarity Calculation

Function SimilarityCalculation (versions: set (Version),

cs: Current Situation): set (Version)

Local

sim: Integer, rvs: set (Version) = ∅, v: Version, c: Con-
dition,

uc: set (Condition)

Begin

For each v in versions

uc = getUseCondition (v)

sim = 0

For each c in uc

If checkCondition (c, cs) Then

sim ++

End If

End For

If (sim/card (uc) = =1) Then

rvs.add(v)

End If

End For

Return rvs

End Function

The second step “Search compliant adaptation cases using contexts” is triggered

when either (i) there is no process model version satisfying the state-related compli-

ance from the returned ones in the first or the second scenario, or (ii) there is no suita-

ble process model version returned in the third scenario of the first step. In this second

step, the process planner looks for previously defined adaptation cases in similar

situation by the lower level planners (planners of tasks and/or sub-processes), in the

case repository. More precisely, it searches to retrieve the most relevant adaptation

cases from the case repository by comparing the current situation of the considered

10

process instance with the situation of the adaptation cases, as well as the process in-

stance model version with the process model versions of the adaptation cases. Two

possible scenarios can then occur:

• Scenario 2.1- There is no retrieved adaptation case corresponding to the model

version of the current process instance and satisfying the current situation of the

operating environment. So, in this case, the rule-based adaptation is triggered to

define a new solution resolving the need for adaptation.

• Scenario 2.2- There is one or more retrieved adaptation cases corresponding to the

model version of the current process instance and satisfying the current situation.

As indicated in Algorithm 2, these adaptation cases are then examined one by one.

For each of them, the defined adaptation operations in the considered adaptation

case are applied to the process instance model version in order to adapt it. Then,

the check state-related compliance is triggered to check the state-related compli-

ance of the process instance model version with the resulting one. When there is no

resulting process model version verifying the state-related compliance conditions,

the rule-based adaptation is performed to define a new solution resolving the need

for adaptation; otherwise, the resulting process model version is to approve by a

domain expert.

Algorithm 2: adaptation Cases Application

Procedure adaptationCasesApplication (cases: set (Adaptation

case), pi: Process instance model version)

Local

c: Adaptation case; V’, Vtemp: Process model version

Begin

V’ = pi

For each c in cases

/* Calculate the new process instance model version Vtemp=

V’+ △case */
Stemp = generateAdaptedmodel (V’, c)

// Checks state-related compliance

CpRes= stateComplianceChecks (pi, Vtemp)

If (CpRes is Compliant) Then

V’ = Vtemp

End If

End For

If (V’ = = pi) Then

/* Case of the process instance is not compliant with all

retrieved adaptation cases */

Rule-basedAdaptation ()

Else

adaptationApprovement (V’)

End If

End Procedure

The third step “Define new adaptation case using rules and contexts” is trig-

gered when there is no solution defined as a version and no adaptation case that deals

with the adaptation of the considered process instance. This step uses the a priori de-

fined adaptation rules stored in the rule repository and the current situation described

in the instance repository to define a new adaptation case that resolves the identified

11

adaptation needs and accordingly stores it in the case repository. Two main types of

adaptation rules are supported: (i) the reactive rules, which react to a given situation,

and (ii) the dependency rules, which manage the impact of adaptation operations as

indicated in [21]. It should be noted that both types of adaptation rules define adapta-

tion operations using either adaptation patterns or primitives like suspending or redo-

ing a task version. This step is as follows. First, the process planner creates a planner

per task that has identified a need for adaptation. Each task planner deals with the

definition of the adaptation operations using reactive rules for resolving the local

adaptation need. Once the adaptation operations are defined, they are forwarded to the

planner of the component in which the considered task is involved, and which is ei-

ther a sub-process planner or a process planner. This latter has to analyze the de-

pendency of the defined adaptation operations using dependency rules. After that, the

adaptation operations are suggested to a domain expert, who will approve the solution

or further adapt it. Finally the solution (i.e., process instance model version, the ap-

proved adaptation operations and their situations) will be stored by the process plan-

ner in the case repository as a new adaptation case that can be reused in a situation

similar to the current one.

Fig. 2. Process instance adaptation definition steps

12

Note that we use the version-based technique at the beginning for the following

reasons. First, this technique always guarantees the process model correctness, be-

cause all the process model versions are verified and validated by a process designer

at design-time. Second, in the version-based technique, the process instance is always

compliant to a process model version, which is stored in the model repository.

5 Case study: the flood management process

This section illustrates the applicability of the recommended approach through the

case study Flood Management Process (FMP). First it shows how to model at design-

time the required knowledge for flood management process adaptation using versions

and rules. Then it uses this case study to demonstrate the execution of a sample adap-

tation.

5.1 Rules and versions modeling at design-time

This sub-section introduces the FMP case study, which is a simplification of a more

complete case study in the context of the flooding of a major French river “the Loire”

on the city of Blois, and more particularly on the district of Mareuil, which is protect-

ed by a dyke. This district is the object of a very particular attention at the time of

floods of the Loire River: a rise in water levels caused by heavy rainfall upstream, or

on the affluent of the Loire, may cause important damages on the potentially impacted

area.

Like any other process, the FMP might be subject to different operating environ-

ment variations that could interrupt its functioning. Indeed, changes relative to the

water level, precipitation amount, lack of resources, impacted roads, etc., impose the

process to self-adapt to take into account these changes. For this reason, we have

defined several versions of the model of this process and of its components, namely

several versions of its tasks and sub-processes, one per situation. The first version

defines the process of watching over the state of the dike while the second defines the

process of lowering the water level of the Loire by opening the Boullie spillway up-

stream. In addition, the three other versions, which are triggered when the situation is

of serious concern, define what to do when an evacuation decision is made. Accord-

ing to the crisis cell, these five process model versions depend upon the following

context parameters among others:

• Water level, which indicates the level of water rising in the Loire,

• Impacted area, which features the size of the population potentially impacted,

• Road state, which can be not flooded, flooded and drivable or flooded and

blocked. When the roads are not flooded, so peoples evacuate themselves when the

water level is not above 4,5 m; otherwise, when the roads are flooded but still driv-

able, so the people evacuation is carried out using specific vehicles with help of

gendarmes. While, when the roads are blocked because they are highly flooded,

people evacuation must be carried out by firefighters with zodiacs.

• water growth, which indicates the rapidity of water rising.

13

Table 2 shows these different versions and their corresponding use conditions (i.e.,

in which situation condition the process model version must be used). The different

conditions defined in the use condition of each process model version are connected

to each other by the logical operator “and”.

Table 2. Use conditions for flood management process model versions

Version

id

Version Use condition

Water level Impacted area Road state Water growth

FMP.V1 < 2 = “Urbanized” = “Not flooded”
= “Slow” or =

“Moderately fast”

FMP.V2 >=2 and < 3 = “Urbanized” = “Not flooded”
= “Slow” or =

“Moderately fast”

FMP.V3
>=3 and <=

4,5
= “Urbanized” = “Not flooded”

= “Slow” or =

“Moderately fast”

FMP.V4 > 4,5 = “Urbanized”
= “Flooded and

drivable”

= “Slow” or =

“Moderately fast”

FMP.V5 > 4,5 = “Urbanized”
= “Flooded and

blocked”

= “Slow” or =

“Moderately fast”

Due to lack of space, we explain below only the third model version of this process

among the five ones. As shown in Fig. 3, this version is triggered in urbanized im-

pacted area when the water level of the river “Loire” in France rises above 3 m and

the roads state is not flooded. In response to this event, the crisis cell decides whether

or not to evacuate people from the flooded zones by assessing the flooding situation.

In case an evacuation is needed, the Prefect emits an evacuation order, then the COD,

which is the operational committee set up within the crisis cell, informs the popula-

tion about the flood. After that the gendarmes proceed to the evacuation of people

from the flooded zones using vehicles. Finally, the crisis cell reports on the evacua-

tion, and the Prefect sends the report to the interior ministry.

2 4 5 61

1: Decision making for evacuation (DET)
2: Emit evacuation order (EOT)
3: Inform population (IP)
4: People evacuation (PET)

5: Report on evacuation (ERT)
6: Send evacuation report to
the interior ministry (SERT)

3

Fig. 3. The third model version of the flood management process “FMP.V3”

Moreover, we define for each process component (process, sub-process or task)

rules, that manage component deviation, and their dependency. We give below two

rules related to People evacuation task in the form of if-then statements. The first rule

is used when the road state is not flooded and the water keeps rising very fast, so there

is a risk that the road state will be flooded. In this case, people’s evacuation must be

carried out by gendarmes with specific vehicles; it adds resources (i.e., gendarmes) to

the People evacuation task. While the second rule is used to manage dependency of

the people evacuation. For instance, when the People evacuation task is carried out by

14

gendarmes, then it is necessary to insert the new task Evacuation supervision that

allows the supervision of peoples during the evacuation. It should be noted that these

rules are modeled using Drools rule engine.

R1: if Water_growth = “Very fast” Then AddTaskResource (Running process,

People evacuation task, gendarme).

R2: if AddTaskResource (Running process, People evacuation task, gendarme)

Then InsertSerialTask (Running process, Evacuation supervision task, People evacua-

tion task, Report on evacuation).

5.2 Process self-adaptation at run-time

The goal of autonomic adaptation of processes is to modify the process instance mod-

el version in response to changes in its operating environment. To demonstrate this,

we suppose that the third model version of the flood management process (FMP.V3

from Table 2) is running for Mareuil district affected by Loire’s floods and that the

people evacuation task is activated. For this illustration, we refer to the following

context parameters and values, which feature the current situation of the operating

environment: Water level = 4 m and Impacted area = “Urbanized” and Road state =

“Not flooded” and water growth = “Very fast”. In response to this situation, the Plan

component, precisely the process planner of the running process model version pro-

ceeds to the “Search compliant model version using contexts” step. First it identifies

the corresponding model versions and their use conditions, second it calculates, for

each of these model versions, the similarity between the model version use condition

and the current situation. The result of this step is that there is no existing version that

deals with the current situation. Given that there is no solution modeled as a model

version, the process planner performs the “Search compliant adaptation cases using

contexts” step, which also returns that there is no stored adaptation case that ad-

dressed the current situation. So in this case, the task planner of the People evacua-

tion task is triggered to search rules that match with the current situation. The result of

this search is the rule R1, which allocates gendarmes to the activated model version of

the People evacuation task. Then the process planner is triggered to manage depend-

ency of this change using rule R2. The final result of this adaptation is illustrated in

Fig.4.

5 6

1: Decision making for evacuation (DET)
2: Emit evacuation order (EOT)
3: Inform population
4: People evacuation (PET)
4': People evacuation by gendarmes (PET)

5: Report on evacuation (ERT)
6: Send evacuation report to
the interior ministry (SERT)
7: Evacuation supervision (ES)

2 7 5 61

3

3

(b) Adapted process instance

(a) Process instance on FMP.V3

: completed

: activated

1 2 4

4'

Fig. 4. Adapted process instance

15

6 Conclusion and Future Work

Adapting processes to the frequent changes of their operating environment remains a

challenging and complex task. To tackle this issue, this paper recommends an Adapta-

tion Engine based on the MAPE-K approach of autonomic computing so that super-

vised processes self-adapt to changes occurring in their operating environment. More

precisely, the paper focuses on the definition of the adaptation operations required to

resolve adaptation needs using contexts and reuse techniques: version-based, case-

based and rule-based.

Benefits of our solution are as follows. First the recommended solution benefits from

the MAPE-K control loop advantages. This loop from the autonomic computing field

makes possible the implementation of adaptation for monitored processes with mini-

mal human intervention. Second, the separation between the adaptation engine and

the process engine with which it interacts makes the adaptation engine reusable for

various process engines (BPMS). Third, the combined use of version-based, case-

based and rule-based techniques makes possible to take the different adaptation needs

identified in Reichert and Weber’s taxonomy for well-defined processes into account.

Thus our recommended solution supports in a coherent framework the adaptation by

deviation, evolution, variability and looseness. Third, adaptation of processes at the

three abstraction levels makes the self-adaptation of all the dimensions of processes

possible. Finally, the use of several adapters for connecting process engines aims to

overcome the drawbacks of embedding the adaptation logic within the process engine,

thus it improves the reusability and independency of the adaptation engine.

As future works, we plan to continue improving this adaptation engine in two main

directions:

• Improvement by performing an analysis of the impact of the defined adaptations by

the Plan component before they are transmitted to the Execute component. In other

words, we need to assess the quality of the adapted process instance model version

in terms of comprehensibility and modifiability such as in [22].

• Improvement by considering the collaborative aspects of the adaptation engine, as

BPMN allows the definition of collaborative processes within collaboration and

choreography diagrams.

References

1. J. Oukharijane, I. Ben Said, M. A. Chaâbane, E. Andonoff, and R. Bouaziz, “Towards a

New Adaptation Engine for Self-Adaptation of BPMN Processes Instances”, in 14th Inter-

national Conference on Evaluation of Novel Approaches to Software Engineering, 2019,

pp. 218–225.

2. IBM, “An architectural blueprint for autonomic computing”, IBM White Paper, vol. 31,

2006.

3. M. Reichert and B. Weber, “Enabling flexibility in process-aware information systems:

challenges, methods, technologies”, Springer Science & Business Media, 2012.

4. M. Fantinato, M.B.F.d. Toledo, L.H. Thom, I.M.d.S. Gimenes, R.d.S. Rocha, and D.Z.G.

Garcia, “A survey on reuse in the business process management domain”, International

Journal Business Process Integration and Management, vol. 6, no. 1, pp. 52–76, 2012.

16

5. R. Müller, U. Greiner, and E. Rahm, “Agentwork: a workflow system supporting rule-

based workflow adaptation”, Data Knowledge Engineering, vol. 51, no. 2, pp. 223–256,

2004.

6. M. Minor, R. Bergmann, and S. Görg, “Case-based adaptation of workflows”, Information

Systems, vol. 40, pp. 142–152, 2014.

7. F. Milani, M. Dumas, N. Ahmed, and R. Matulevičius, “Modelling families of business

process variants: a decomposition driven method”, Information Systems, vol. 56, pp. 55–

72, 2016.

8. F. Ellouze, M. A. Chaâbane, E. Andonoff, and R. Bouaziz, “Onto-VP2M: A New Ap-

proach to Model and Manage Collaborative Process Versions using Contexts and Ontolo-

gies”, International Journal e-Collaboration, vol. 13, no. 3, pp. 39–62, 2017.

9. I. Ben Said, M. A. Chaâbane, E. Andonoff, and R. Bouaziz, “BPMN4VC-modeller: easy-

handling of versions of collaborative processes using adaptation patterns”, International

Journal of Information System and Change Management, vol. 10, no. 2, pp. 140–189,

2018.

10. H. Ariouat, E. Andonoff, and C. Hanachi, “From Declarative Knowledge to Process-based

Crisis Resolution: application to Flood Management”, in Hawaii International Conference

on System Sciences, 2019, pp. 1–10.

11. C. Ayora, V. Torres, V. Pelechano, and G. H. Alférez, “Applying CVL to business process

variability management”, in VARiability for You Workshop: Variability Modeling Made

Useful for Everyone, 2012, pp. 26–31.

12. K. Oliveira, J. Castro, S. España, and O. Pastor, “Multi-level autonomic business process

management”, in International Conference on Enterprise, Business-Process and Infor-

mation Systems Modeling, 2013, pp. 184–198.

13. S. Ferro and C. Rubira, “An architecture for dynamic self-adaptation in workflows”, in In-

ternational Conference on Software Engineering Research and Practice (SERP), 2015, pp.

35–41.

14. R. Seiger, S. Huber, P. Heisig, and U. Assmann, “Enabling Self-adaptive Workflows for

Cyber-physical Systems”, Software and System Modeling, vol. 18, no. 2, pp. 1117–1134,

2019.

15. J. Oukharijane, I. Ben Said, M. A. Chaâbane, R. Bouaziz, and E. Andonoff, “A Survey of

Self-Adaptive Business Processes,” in 32nd International Business Information Manage-

ment Conference, 2018, pp. 1388–1403.

16. M. Salehie and L. Tahvildari, “Self-adaptive software: Landscape and research challeng-

es”, ACM transactions on autonomous and adaptive systems, vol. 4, no. 2, pp. 1–42, 2009.

17. A. Delgado and D. Calegari, “A generic BPMS user portal for business processes execu-

tion interoperability”, in Latin American Computer Conference, 2019, pp. 1–10.

18. D. Rodriguez, B. Remedi, and A. Guggeri, “Generic BPMS user portal”, 2018.

https://gitlab.fing.edu.uy/opencoal/portalbpms.

19. S. Rinderle, “Schema evolution in process management systems”, Thesis, Université de

Ulm, 2004.

20. M. A. Châabane, “De la modélisation à la spécification des processus flexibles : Une ap-

proche basée sur les versions”, Thesis, Université Toulouse 1, Septembre 2012.

21. M. O. Kherbouche, “Contribution à la gestion de l'évolution des processus métiers”, The-

sis, Université du Littoral Côté d'Opale, 2013.

22. J. Oukharijane, F. Yahya, K. Boukadi, and H. Ben-Abdallah, “Towards an approach for

the evaluation of the quality of business process models”, in International Conference on

Computer Systems and Applications, 2018.

