
EasyChair Preprint
№ 14821

Improved Performance of Constraints

Milos Pericic

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 12, 2024

1

Improved Performance of Constraints

Milos Pericic, Veriest, New Belgrade, Serbia (milosp@veriests.com)

Abstract—Constraints in SystemVerilog language are useful for randomization. When there are connections

between randomized variables, then constraints could be used for randomizing everything together. In a larger project,

the number of connections can grow and expand, resulting in complex randomized test scenarios. In those cases,

constraints should be written as good as possible, and their performance should be tested. In this paper, a few useful

techniques will be covered for improving performance of constraints.

Keywords—Constraints, SystemVerilog, Randomizations, Performance, Functional verification

I. INTRODUCTION

Constraints in SystemVerilog are resolved using internal constraint solver. The order of randomizing dependent

values is under constraint solver domain and its own algorithm, but user who write them can also affect order.

When dependencies between randomized values start growing, the way of writing constraints becomes crucial.

Variables can be randomized in constraints by calling functions or tasks, and in that case the order of variables’

randomization is important. If there are lots of randomizations and dependencies between them, then adding new

randomization might be hard, because it could introduce more randomization dependencies. In that case, new

randomization must be added exactly in correct order between other dependent randomization cases to work

properly. To not think about randomization order of all randomization cases or when a lot of dependencies exist

between the variables, then constraint blocks could be used to randomize everything together. Constraint blocks

exist in objects where variables are randomized.

II. RELATED WORK

The paper [2] shows how constraint blocks can be organized in multiple layers and written in objects (classes).

The author from [3] reveals engineering formulas for constraint blocks and their manipulation during simulation

by using containers (wrappers). In the work [4], various kinds of soft constraints are explained with practical

examples for verification engineers. While the previous papers show techniques for improving and organizing

constraint blocks, none of them are fully focused on constraint blocks’ performances and run-time improvements.

In this paper, multiple techniques will be described to accelerate the randomization time of constraint blocks.

III. CONSTRAINTS IMPROVEMENT

A. Engineering formulas definition

Changing parts of specification definitions can be made to simplify engineering formulas and randomizations.

Because everything starts with definitions, some decisions can be assumed without considering real -life usage. If

that is the case, then specific definitions or their parts could be simplified to resolve too complicated constraints. If

that is not the case, then other techniques written below can be tried.

B. Order helpers

SystemVerilog solve-before construct can be useful for explicitly setting order of randomization. It helps

constraint solver to decide which values to randomize first and to significantly reduce decision time for finding the

correct randomization order of given constraints with solve-before construct. Single or multiple solve-before

constructs can be used inside constraint. For example, solve A before B means first randomize value A and then

randomize value B, in that order. If there are other solve-before constructs inside constraint, they are also taken into

consideration and the final ordering decision is made.

Let us define a few variables: sub, mac, req, resp and mid. Type of tests are defined as enumerated type

test_type_t with values BLOCK (block level tests), TOP (top level tests), DIRECT (direct tests) and RANDOM

2

(random tests). Solve-before construct is defined only for random variables with keyword rand. Non-random

variables are not used in solve-before construct because they are not randomized. In the given example, bits

use_long_values and use_short_values are fixed to default values and can be changed from any function or task for

specific tests if needed and they are not used in solve-before construct. The same applies to constant integer value

LONG_FACTOR which is fixed to 256. In constraint packets_data_c, variables sub and mac are randomized

according to use_long_values and test_type variables. Since use_long_values and use_short_values variables are

not random, they are not used inside solve-before construct because their values are evaluated before randomization

starts. Random variable test_type is considered while randomizing sub and mac variables and it must be randomized

first. Solve-before construct solve test_type before sub, mac means randomize test_type variable before sub and

mac variables. Also, req, resp, sub and mid variables are considered while randomizing mac variable and they must

be randomized first. Solve-before construct solve req, resp, sub, mid before mac means randomize req, resp, sub

and mid variables before mac variable. If it is omitted, then mac variable could get wrong non-randomized values

for req, resp, sub and mid variables.

C. Function in constraint

If constraint is implementing complex logic, then it can cause constraint solver slowness. Because syntax for

constraints is specific, sometimes it is not straightforward to write such constraints. The simple but effective

solution is to create a function which will implement that complex logic and return final value as result. Function

would accept functional arguments as inputs and use them inside function for calculations. When the final value is

returned from function, then it can be written to the value inside constraint. It also simplifies constraint definition

and relaxes constraint solver.

rand bit [3:0] sub;

rand bit [63:0] mac;

rand bit [9:0] req;

rand bit [6:0] resp;

rand bit [12:0] mid;

typedef enum bit[1:0] { BLOCK, TOP, DIRECT, RANDOM } test_type_t;

rand test_type_t test_type;

bit use_long_values = 1, use_short_values = 0;

const int LONG_FACTOR = 256;

constraint packets_data_c {

 solve test_type before sub, mac;

 solve req, resp, sub, mid before mac;

 if (use_long_values && test_type inside { TOP, RANDOM }) {

 sub inside { [2 : 14] }; sub % 2 == 0;

 mac == (req – resp) * LONG_FACTOR - sub + mid;

 }

 ...

}

3

Let us define a few variables: stl, pic, fir, mult, volt, len and rsize. Variable rsize is randomized in complex

constraint rsize_c, while other variables are randomized similar, each in its own complex constraint. Configurations

bits is_low, is_fill and not_empty are set to initial values, but they can be set from test directly before randomization

rand int stl, pic, fir, mult, volt, len, rsize;

bit is_low = 0, is_fill = 1, not_empty = 1;

typedef enum bit[1:0] { ZERO, ONE, TWO, THREE } speed_t;

rand speed_t speed;

typedef enum bit { FAST, SLOW } prec_t;

rand prec_t prec;

typedef enum bit[1:0] { LEFT, RIGHT, UP, DOWN } dir_t;

rand dir_t dir;

rand real round, fir_con, fir_mul;

rand int vrange, eq, pulse, fir_trun;

constraint rsize_c {

 solve dir, stl, pic, fir, prec, speed, mult, volt, len before rsize;

 if ((is_fill || is_low) && (not_empty || (dir inside { LEFT, RIGHT }))) {

 if (speed != ZERO) {

 if (is_low) { pulse == volt; }

 else { pulse == stl; }

 if (mult >= 32) {

 eq == mult * pulse + 10 * pic + 2 * (len + 1) + 32;

 }

 else {

 eq == mult + 3 * pulse + 5 * pic + 12;

 }

 if ((prec == FAST) || (speed == ONE) || (speed == TWO)) {

 rsize == eq;

 }

 else {

 fir_con == 0.8;

 fir_mul == fir_con * fir;

 fir_trun == int'(fir_mul);

 (vrange >= eq) && (vrange <= fir_trun) ||

 (vrange >= fir_trun) && (vrange <= eq);

 round == real'(vrange) + eq * 2;

 rsize == int'(round / 4.0) * 16 + (len + 1);

 }

 }

 ...

 }

 ...

}

4

starts. There are three enumerated types defined, first for speed with type speed_t and values ZERO, ONE, TWO

and THREE, second for precision with type prec_t and values FAST and SLOW, third for direction with type dir_t

and values LEFT, RIGHT, UP and DOWN. Please note that the last few random variables round, fir_con, fir_mul,

vrange, eq, pulse and fir_trun are only used as intermediate values for calculations inside constraint rsize_c and

they are not required in solve-before construct like listed variables. Solve-before construct in constraint rsize_c has

variables which are randomized in their own constraints.

It is not that only randomization for constraint rsize_c is complex, but also variables used inside constraint

rsize_c listed in solve-before construct could be randomized similar, which means that big chains of complex

randomizations are made. Also, constraints for other variables outside of the given constraint could add more

complexity, especially if the total number of active constraints in the entire system is large. After everything is

randomized together, it can slowdown constraint solver randomization a lot.

function int calc_rsize(int m_stl, int m_pic, int m_fir, speed_t m_speed, prec_t m_prec,

bit m_is_low, int m_mult, int m_volt, int m_len);

 int m_rsize, m_eq, m_pulse;

 m_pulse = m_is_low ? m_volt : m_stl;

 if (mult >= 32) begin

 m_eq = m_mult * m_pulse + 10 * m_pic + 2 * (m_len + 1) + 32;

 end

 else begin

 m_eq = m_mult + 3 * m_pulse + 5 * m_pic + 12;

 end

 if ((m_prec == FAST) || (m_speed == ONE) || (m_speed == TWO)) begin

 m_rsize = m_eq;

 end

 else begin

 real m_round, m_fir_con, m_fir_mul;

 int m_vrange, m_fir_trun;

 m_fir_con = 0.8;

 m_fir_mul = m_fir_con * m_fir;

 m_fir_trun = int'(m_fir_mul);

 m_vrange = $urandom_range(m_eq, m_fir_trun);

 m_round = real'(m_vrange) + m_eq * 2;

 m_rsize = int'(m_round / 4.0) * 16 + (m_len + 1);

 end

 return m_rsize;

endfunction : calc_rsize

5

Constraint logic is moved to the function calc_rsize. Equal sign = is used normally like in any other function.

Ternary operator ? is used for quick if-else one-line condition and it is also allowed in function. Please note that

vrange variable is randomized in previous example with relational operators >= and <= because system calls are

not allowed in constraints, but in function they are possible. Also condition (vrange >= eq) && (vrange <=

fir_trun) || (vrange >= fir_trun) && (vrange <= eq) is randomizing vrange variable between eq and fur_trun

values, and during randomization one will be minimum, one maximum value, so relations >= and <= are written in

both directions. But in function, $urandom_range system call can be used with any order of minimum and

maximum system call arguments. Finally, the function returns the result for final randomized value which is written

in rsize variable in constraint rsize_c. When writing complex randomizations inside functions instead of directly in

constraints, performance of constraint solver is improved a lot, especially when there are many variables

randomized with complex formulas.

Functions are useful for debugging, because any kind of print is allowed such as $display or ̀ uvm_info. Values

for variables can be easily printed to debug complex randomizations when they do not work as expected. Function

called inside constraint can call another function, and complex randomization could be broken down into multiple

parts, each part grouped into single function, so functional nesting is allowed.

D. Unique values

Pulling unique values outside of constraints and pre-randomizing them. They can be randomized before

randomization starts in pre_randomize function of uvm_object if their calculations do not require other values, but

they are still used by other constraints. For example, constant values, enumerated values, fixed or discrete ranges

of numeric values can be pre-randomized. When randomization starts, they are already randomized and can be used

by other constraints. The constraint solver is relaxed in this case because values are pre-randomized before

constraint solver starts. Randomization in pre_randomize function does not consume time like constraint solver

does.

constraint rsize_c {

 solve dir, stl, pic, fir, prec, speed, mult, volt, len before rsize;

 if ((is_fill || is_low) && (not_empty || (dir inside { LEFT, RIGHT }))) {

 if (speed != ZERO) {

 rsize == calc_rsize(stl, pic, fir, speed, prec, is_low, mult, volt, len);

 }

 ...

 }

 ...

}

6

Constraint phy_c is randomizing phy variable. Few flags are used for constraint conditions free_addr, skew_part

and max_part, which are set with default values, but can be changed from test before randomization starts. Since

phy variable is randomized with only constant values which does not depend on any other randomization, then it

can be pre randomized before randomization starts. The whole randomization part can be moved to pre_randomize

function of the configuration object (uvm_object) and randomized there. When pulling out values from constraints,

any value which is not dependent on other values could be pulled. Sometimes whole constraint can be pulled,

sometimes only parts.

Variable phy is pre randomized in pre_randomize function of eth_config configuration object. Since eth_config

is uvm_object, function pre_randomize is already built in. Pre randomized value is written to phy_pre_rand variable

which is not random because it is not randomized inside constraint. For pre randomizing phy_pre_rand variable,

standard package std is used and randomize function is called using with block and constraint like syntax. Because

rand bit [6:0] phy;

bit free_addr = 1, skew_part = 1, max_part = 0;

constraint phy_c {

 if (free_addr) {

 phy inside { 2, 8, 14, 20, 26, 32 };

 if (skew_part) {

 phy inside { 2, 20, 32 };

 }

 else if (max_part) {

 phy == 32;

 }

 }

 ...

}

rand bit [6:0] phy;

bit [6:0] phy_pre_rand;

bit free_addr = 1, skew_part = 1, max_part = 0;

function void eth_config::pre_randomize();

 ...

 std::randomize(phy_pre_rand) with {

 phy_pre_rand inside { 2, 8, 14, 20, 26, 32 };

 if (skew_part) {

 phy_pre_rand inside { 2, 20, 32 };

 }

 else if (max_part) {

 phy_pre_rand == 32;

 }

 }

 ...

endfunction : pre_randomize

constraint phy_c {

 if (free_addr) { phy == phy_pre_rand; }

 ...

}

7

pre_randomize function is called before actual randomization, when randomization starts, then pre randomized

value already exists in variable phy_pre_rand. In modified constraint phy_c, pre randomized value from

phy_pre_rand variable is simply assigned to original phy variable without any constraint solver effort. When pre

randomizing is done for many variables or values, then it improves constraint solver performance.

E. Delayed randomization

Post randomization of independent values. These values can be randomized after randomization is finished in

post_randomize function of uvm_object if they are not used by other constraints. The constraint solver is relaxed in

this case with delayed randomizations because they are randomized outside of constraints. Also, because given

randomized values are independent, they can be randomized in any function, but for convenience, post_randomize

function is used. Randomization in post_randomize function is instant and does not consume time.

Delayed randomization is like pre randomization from Unique values, but the difference between them is that

values which are post randomized in post_randomize function are totally independent and they are not used

anywhere in any other constraint. Pre randomized values are used in other constraints and that is the reason they

must be pre randomized before randomization starts. For post randomized values, they can be completely moved

from randomization to post randomization to relax constraint solver. Each randomization not used anywhere in any

other constraint can be moved to post-randomization. If there are many independent variables or values in the

randomization chain, then post randomization improves constraint solver performance.

F. Soft constraints

Since they are not directly causing constraints slowness, they often result in unexpected randomizations.

Coverage gaps in randomizations are such an example. Soft constraints can be misinterpreted as default values for

randomizations, which is true for some cases. When the range of values are randomized for variable and that

variable has soft constraint on value which is inside randomization range, soft value will be applied instead of range.

Looks simply, but in more complex randomizations, they can cause confusion and unexpected results. If soft

constraint must be used in environment, then it can be disabled with disable soft construct in another constraint

which randomize the same value for specific case, just to make sure that it will not take soft constraint value instead

of randomized value. Soft constraints are best to use when they are really needed.

Code examples in this paper are verified in Synopsys VCS Verdi [5] and Cadence Xcelium Logic [6] simulators.

IV. CIRCLE RANDOMIZATION

It is randomization where each variable is related to another variable, and they end up in the circle of

dependencies. For example, circle definition would be A <– B <– C <– D <– A. To randomize B, A must be

randomized before B, to randomize C, B must be randomized before C, etc., and finally to randomize A, D must

be randomized before A. Current randomization cannot be solved because to randomize B, C and D, case A must

be randomized first, but A also depends on D which implicitly depends on A over C and B.

In real-life scenarios, each constraint can use more than one variable for randomization and the number of

dependencies can be large. However, when circular randomization is detected (usually by tool), then randomization

definitions could be changed using Engineering formulas definition. To solve circular randomization, simple

definition change will help.

V. RESULTS

Before and after applying constraints techniques, simulation performance is examined. The tools used are

simulators Synopsys VCS Verdi [5] and Cadence Xcelium Logic [6]. The following three cases are analyzed in Table

I. Constraints performances. In the first case, constraints are causing timeouts and constraint solver could not solve

them properly. The first case does not include any technique explained in the Constraints Improvement chapter. In

the second case, constraints are solved, but with large slowness. The second case includes the first three points from

Constraints Improvement chapter (Engineering formulas definition, Order helpers and Function in constraint). In

the last case, constraints are solved with improved run-time performance. The last case includes all points from the

8

Constraints Improvement chapter. Please note there is a significant difference between using a few or all techniques

explained in Constraints Improvement chapter and if it is possible, the best case is to use them all or most of them

in conjunction because every improvement matters. All performance cases are measured for test case with most

constraints involved and with longest constraints solver running. Total number of constraints involved are 3 for

each agent, 22 for environment, 109 for main configuration object, 8 for sub configuration of main configuration,

2 for additional configuration object, and 322 for tests.

Table I. Constraints performances

Tools
Constraints improvements casesa

Initial implementation First optimization Final optimization

Synopsys VCS Verdi [5] 4464 2640 5

Cadence Xcelium Logic [6] 4356 2400 4

a. Time measured in seconds [s]

VI. CONCLUSIONS

Advanced randomization challenges in SystemVerilog constraints are solved using specific techniques from

chapter Constraints Improvement. Given practical solutions to complex randomization problems can be used in any

project where randomization is written using SystemVerilog constraints. Randomization timeouts are solved, and

slow randomization cases are improved with given detailed techniques. Also, randomization process in complex

verification environments is significantly accelerated, and logical errors are prevented. Even if issues do not exist

now, systematic approaches to write SystemVerilog constraints can help in the future, and they can save a lot of

debugging time.

REFERENCES

[1] IEEE 1800-2023: IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification Language,

https://standards.ieee.org/ieee/1800/7743/

[2] John Dickol, SystemVerilog Constraint Layering via Reusable Randomization Policy Classes, Austin TX, DVCon US 2015

[3] Jeremy Ridgeway, Engineered SystemVerilog Constraints, Fort Collins, CO 80525 , DVCon US 2015

[4] Mark Strickland, Joseph Hanli Zhang, Jason Chen, Dhiraj Goswami, Alex Wakefield , Soft Constraints in SystemVerilog: Semantics and

Challenges, DVCon US 2012

[5] Synopsys Inc. VCS Simulator, Available: https://www.synopsys.com/verification/simulation/vcs.html

[6] Cadence Design Systems, Xcelium Logic Simulator, Available: https://www.cadence.com/en_US/home/tools/system-design-and-

verification/simulation-and-testbench-verification/xcelium-simulator.html

[7] Cadence Design Systems, Simulation Performance Coding Guidelines for SystemVerilog, Xcelium 19.03, March 19, 2019, Available:

https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1Od000000050LUEAY&pageName=ArticleContent

https://standards.ieee.org/ieee/1800/7743/
https://www.synopsys.com/verification/simulation/vcs.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/simulation-and-testbench-verification/xcelium-simulator.html
https://support.cadence.com/apex/ArticleAttachmentPortal?id=a1Od000000050LUEAY&pageName=ArticleContent

