ﬁ EasyChair Preprint

Ne 1402

From One To Many: Checking A Set Of Models

Rohit Dureja and Kristin Yvonne Rozier

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 17, 2019



From One To Many: Checking A Set Of Models

Student: Rohit Dureja and Advisor: Kristin Yvonne Rozier
Towa State University, Ames, USA

Abstract—Whether the objective is to narrow in on the final
system design, check capabilities of system versions with varying
features, or regression testing to make a design more robust,
several models of the system under development have to be an-
alyzed. Model checking can compare different models; however,
applying model checking off-the-shelf may not scale due to the
large size of the design space for today’s complex systems. There
is a need to develop new algorithms that intelligently use inherent
properties of models in a design space to increase scalability of
checking the complete model-set. We report on our investigation
of the model-set checking problem, highlight preliminary results,
and discuss ongoing work and future research directions.

I. INTRODUCTION

The design of complex systems often requires analyzing
several models of the system under development. The set of
models constitute the design space of the system. Models in
a set may represent different design options for the system,
features, or bug fixes; different models differ in terms of
core capabilities, behavioral implementations, and component
configurations. The design space of a modern microprocessor
with configurable cache size, number of registers, and pipeline
depth, etc., is one such example. Model checking can be used
to aid system development via a thorough comparison of the
set of models. In the classical approach, each model in the set
is checked one-by-one against a set of properties representing
system requirements. However, for large and complex design
spaces, such an approach can be inefficient and even fail to
scale to handle the combinatorial size of the design space.
Nevertheless, model checking remains the most widely used
method in industry when dealing with such systems [/1} 9]

Model-Set Checking Problem. Given a model M and a
property ¢, a classical model checker checks whether M |= ¢?
If the answer is yes, the checker returns a proof, otherwise, a
counterexample is returned. We lift classical one-model check-
ing to model-set checking. The model-set checking problem is
“given a set of competing models for a system and a property,
check whether each model in the set satisfies the property”.
Stated formally, for a set of models M, and property ¢, check
for each M € M whether M |= .

Related Work. Product line verification techniques, e.g., with
Software Product Lines (SPL), also verify models describing
large design spaces [5]. The several instances of feature
transition systems (FTS) [4] describe a set of models. Our
work allows models in a set, that cannot be combined as a FTS,
to be checked. Model-sets are also generated in regression
verification [|10]], where a new version of a design is re-verified

Thanks to NSF CAREER Award CNS-1552934 for supporting this work.

with the same (or similar) property. Parameter synthesis [3|]
can generate configurations for models that satisfy a property,
whereas, we are interested in all models in a set. The parame-
terized model checking problem (PMCP) [8]] deals with infinite
families of homogeneous systems. In our case, the models are
finite and heterogeneous.

II. PRELIMINARY RESULTS

An important observation is that different models in the
design space are related, i.e., they have overlapping state
spaces. Fig. [I| shows the reachable state space for a model-set
M = {M;, My, M3, M} as a Venn diagram. In the classical
scenario, a model checking algorithm does not take advantage
of this information and ends-up re-verifying overlapping state
spaces across models. For large models this is wasteful as
every model checking run re-explores already known reachable
states. Therefore, as the number of models grow, learning and
reusing information from solving related models becomes very
important for future checking efforts; like reusing variable or-
dering in BDD-based model checking. For example, assuming
M is checked before M5 in Fig. [1} the checker run for M,
can reuse the already explored and verified state space of M.

. (

g Ms

« s)

[}

3 2

n M, M- w

< < ! 2 g
o+

2 g

E M

g 4

=\

Fig. 1. Venn diagram representation of reachable states for a set of models
M = {M;y, My, M3, M} and bad states —p. Model My [~ ¢ since
reachable states of Mo intersect bad states —p.

In [7], we extend one of the fastest bit-level verification
methods, IC3 [2], to deal with a set of models. The algo-
rithm, FuselC3, automatically reuses information from earlier
model-checking runs to minimize time spent in exploring
the state space in common between related models. Given
a set of models and a safety property, FuseIC3 sequentially
checks each models by reusing information: reachable state
approximations, counterexamples, and invariants, learned in
earlier runs to reduce the set’s total checking time. When the
stored information cannot be reused directly, FuseIC3 repairs
and patches the information using an efficient algorithm. It
adds “just enough” extra information to the saved reachable
states to enable reuse. Our experiments on real-life challenging



benchmarks demonstrate that FuseIlC3 is a median 1.75x
(average 4.39x) faster than checking each model individually.

III. ONGOING AND FUTURE WORK

Fig. 2] shows the verification workflow for checking a
set of models. Given a set of models M, a property ¢, a
model-set checking algorithm checks if each model in M
satisfies property ¢ by reusing information learned during
earlier checker runs. The output is a report containing results
for every model.

et —————————————

! Internal State
! (Resuable Info)

Property

¢

© Model-set Checking
i Algorithm

Fig. 2. Verification work-flow for model-set checking. Given set of models
M, property , and internal state, a model-set algorithm checks if ¢ holds
for models in M. The shaded regions indicate avenues for future research.

We identify three avenues of research in the model-set
verification workflow in Fig. [2] Experiments using FuseIC3
indicate that algorithm performance is influenced by the order
the models are checked in, and how much stored information
is reused. Two heuristics that may improve performance are:

1. Checking Order for Models in a Set

Each model in a set is defined over the same set of state
variables. A transition relation for a model M over Boolean
variables z,y, and z is of the form (z'=... Ay'=... A
z'=...), where primed variables denote next state. There
are two points to consider:

i) Related models may have the same next state assignment
for some of their variables.

ii) Each next state assignment is a Boolean circuit that
allows us to determine overlap between two assignments
by organizing the Boolean formula in a canonical form.

For example, using a Karnaugh map, the number of similar
groupings is proportional to the degree of overlap. Both
metrics can be computed in linear time for two models.
We organize the models as a weighted undirected graph.
Edge weight between two models is proportional to the
overlap between them, with the first metric contributing
more weight than the second. An approximate polynomial-
time solution to the nearest-neighbor Hamiltonian Path
Problem on the complete graph gives a possible ordering
in which the models can be checked.

2. Ranking Information based on Importance and Relevance

The state approximations reused in FuseIC3 are Boolean
formulas in CNF, and the algorithm tries to selectively
repair them. A lazy approach to repair may reduce the
number of clauses used in a run of FuseIC3. We remove
the violating clauses from the state approximation. When a
bad state is found in the blocking phase, we use one of the
violating clauses from the predecessor frame to block the
bad state. The choice is determined by:

1) Number of literals common between the bad state and
the violating clause.

ii) Number of frames the violating clause appears in the last
checked model.

The chosen clause is then repaired and the algorithm contin-
ues. In other words, we only repair clauses that block a bad
state in the future, instead of repairing them prematurely.

We plan to incorporate all theoretical advances in a tool
for checking large design spaces [6]. Since checking large
design spaces is becoming commonplace, we plan to develop
more model-sets and make them publicly available as research
benchmarks.

IV. CONCLUSION

The design of complex systems often requires analyzing
several models of a system under test and model-set checking
can aid development via a thorough comparison of the models.
Our preliminary results demonstrate that model-set algorithms
that make use of the related information between models,
outperform one-model checking algorithms. We identify future
work along three facets of the verification workflow and
describe two heuristics that may improve performance of
model-set checking algorithms. Finally, model-set checking
can benefit greatly from the availability of a portfolio of
algorithms and tools that implement them.

REFERENCES

[1] M. Bozzano, A. Cimatti, A. Fernandes Pires, D. Jones, G. Kimberly,
T. Petri, R. Robinson, and S. Tonetta, “Formal design and safety analysis
of AIR6110 wheel brake system,” in CAV, 2015.

[2] A. R. Bradley, “SAT-Based Model Checking without Unrolling,” in
VMCAI, 2011, pp. 70-87.

[3] A. Cimatti, A. Griggio, S. Mover, and S. Tonetta, “Parameter synthesis
with IC3,” in FMCAD, 2013, pp. 165-168.

[4] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and
J.-F. Raskin, “Featured transition systems: Foundations for verifying
variability-intensive systems and their application to Itl model checking,”
IEEE Trans. Softw. Eng., vol. 39, no. 8, pp. 1069-1089, 2013.

[5] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin,
“Model checking lots of systems: efficient verification of temporal
properties in software product lines,” in /CSE, 2010, pp. 335-344.

[6] R. Dureja and K. Y. Rozier, “Nexus: A model checker for large design
spaces,” (ongoing work).

[7]1 R. Dureja and K. Y. Rozier, “FuselC3: An algorithm for checking large
design spaces,” in FMCAD, 2017.

[8] E. A. Emerson and V. Kahlon, “Reducing model checking of the many
to the few,” in CADE, 2000, pp. 236-254.

[9] M. Gario, A. Cimatti, C. Mattarei, S. Tonetta, and K. Y. Rozier,

“Model checking at scale: Automated air traffic control design space

exploration,” in CAV, 2016.

G. Yang, M. B. Dwyer, and G. Rothermel, “Regression model checking,”

in ICSM, 2009, pp. 115-124.

[10]



	Introduction
	Preliminary Results
	Ongoing and Future Work
	Conclusion
	References

