
EasyChair Preprint

№ 79

An extensive formal analysis of multi-factor

authentication protocols

Charlie Jacomme and Steve Kremer

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 20, 2018

An extensive formal analysis of multi-factor authentication protocols

Charlie Jacomme
LSV & CNRS & ENS Paris-Saclay
& Inria & Université Paris-Saclay

Steve Kremer
LORIA, Inria Nancy-Grand Est

& CNRS & Université de Lorraine

Abstract—Passwords are still the most widespread means for
authenticating users, even though they have been shown to
create huge security problems. This motivated the use of
additional authentication mechanisms used in so-called multi-
factor authentication protocols. In this paper we define a
detailed threat model for this kind of protocols: while in
classical protocol analysis attackers control the communication
network, we take into account that many communications
are performed over TLS channels, that computers may be
infected by different kinds of malwares, that attackers could
perform phishing, and that humans may omit some actions.
We formalize this model in the applied pi calculus and perform
an extensive analysis and comparison of several widely used
protocols — variants of Google 2-step and FIDO’s U2F. The
analysis is completely automated, generating systematically all
combinations of threat scenarios for each of the protocols and
using the PROVERIF tool for automated protocol analysis. Our
analysis highlights weaknesses and strengths of the different
protocols, and allows us to suggest several small modifications
of the existing protocols which are easy to implement, yet
improve their security in several threat scenarios.

1. Introduction

Users need to authenticate to an increasing number of
electronic services in everyday life: emails, agenda, bank
accounts, e-commerce sites, etc. Authentication generally re-
quires a user to present an authenticator, that is “something
the claimant possesses and controls (typically a crypto-
graphic module or password) that is used to authenticate the
claimant’s identity” [1]. Authenticators are often classified
according to their authentication factor:
• what you know, e.g. a password, or a pin code;
• what you have, e.g. an access card or physical token;
• what you are, e.g. a biometric measurement.

Although these different mechanisms exist, passwords are
still by far the most widely used mechanism, despite the fact
that many problems with passwords were already identified
in the late ’70s when they were mainly used to grant login
into a computer [2]. Since then, things have become worse:
many people choose the same weak passwords for many
purposes, and large password databases have been leaked.
Studies have shown that the requirement to add special

characters does not solve these problems, and the latest
recommendations by NIST [3] even discourage this practice.

To palliate password weaknesses, multi-factor authen-
tication protocols combine several authentication factors.
Typically, instead of using only a login and password, the
user proves possession of an additional device, such as his
mobile phone, or a dedicated authentication token. Two
popular protocols are Google 2-step [4] (which actually
regroups several mechanisms) and FIDO’s U2F [5], which
is supported by many websites, including Google, Facebook,
and GitHub. In (one version of) Google 2-step, the user
receives a verification code on his phone that he must copy
onto his computer, while FIDO’s U2F requires the use of a
specific USB token that must be plugged into the computer.

Our contributions. In classical protocol analysis, the at-
tacker is supposed to control the communication network.
However, the protocols we study in this paper make exten-
sive use of TLS communications and are supposed to pro-
vide security even if some devices are infected by malware.
We therefore propose a detailed threat model for multi-
factor authentication protocols which takes into account
many additional threats.

• Compromised passwords: our basic assumption is that
the user’s password has been compromised. Otherwise
multi-factor authentication would not be required.

• Network control: we define a high-level model of TLS
channels that guarantees confidentiality and authenti-
cation of messages and additionally ensures, through
inclusion of session ids, that messages of different TLS
sessions cannot be mixed. Nevertheless, we allow the
attacker to delay or block messages. Our model also
contains a notion of fingerprint that is used in some
protocols to identify machines, and we may give the
adversary the power to spoof such fingerprints.

• Compromised platforms: we give a structured and fine-
grained model for malwares. We take an abstract view
of a system as a set of input and output interfaces,
on which an adversary may have read or write access,
depending on the particular malware.

• Human aspects: we take into account that most of these
protocols require some interaction with the human user.
We model that humans may not correctly perform these
steps. Moreover, we model that a human may be victim

of phishing, or pharming, and hence willing to connect
to and enter his credentials on a malicious website.

• Trust this computer mechanism: to increase usability,
several websites, including Google and Facebook, offer
the possibility to trust a given machine, so that the
use of a second factor becomes unnecessary on these
machines. We add this trust mechanism to our model.

We model these threat scenarios in the applied pi calcu-
lus and use the PROVERIF tool to analyse several variants of
the Google 2-step and FIDO’s U2F protocols. The analysis
is completely automated, generating systematically all com-
binations of threat scenarios for each of the protocols and
using the PROVERIF tool for automated protocol analysis.
Even though we eliminate threat scenarios as soon as results
are implied by weaker scenarios, the analysis required over
6 000 calls to PROVERIF. Our analysis results in a detailed
comparison of the protocols which highlights their respec-
tive weaknesses and strengths. It also allows us to suggest
several small modifications of the existing protocols which
are easy to implement, yet improve their security in several
threat scenarios. In particular, the existing mechanisms do
not authenticate the action that is performed, e.g., a simple
login may be substituted by a login enabling the trust this
computer mechanism, or a password reset.

Related work. Bonneau et al. [6] propose a detailed frame-
work to classify and compare web authentication protocols.
They use it for an extensive analysis and compare many
solutions for authentication. While the scope of their work
is much broader, taking into account more protocols, as well
as usability issues, our security analysis of a more specific
set of protocols is more fine-grained. Moreover, our security
analysis is grounded in a formal model using automated
analysis techniques.

Some other attempts to automatically analyse multi-
factor authentication protocols were made, including for
instance the analysis of FIDO’s U2F [7], the Yubikey One
Time Password [8], [9] and the Secure Call Authorization
protocols [10]. However, those analyses do not study re-
sistance to malware, nor do they capture precisely TLS
channel behaviour or fingerprints. Basin et al. [11] studied
how human errors could decrease security. Their model is
more evolved than ours on this aspect. However, we consider
more elaborate malwares and also check for a stronger
authentication property: an attack where both a honest user
and an attacker try to log into the honest user’s account but
only the attacker succeeds is not captured in [11], as they
simply check that every successful login was proceeded by
an attempt from the corresponding user to login. In the same
vein, [12] studies minimal topologies to establish secure
channels between humans and servers.

2. Multi-factor authentication protocols

In this section we briefly present the two, widely used,
multi-factor authentication protocols that we study in this
paper: (several variants of) Google 2-step and FIDO’s U2F.

USER COMPUTER MOBILE SERVER

login, pwd
login, pwd

new code
code

code

code
code

Figure 1: G2V protocol

2.1. Google 2-step

To improve security of user logins, Google proposes a
two factor authentication mechanism called Google 2-step
[4]. If enabled, a user may use his phone to confirm the
login. On their website Google recalls several reasons why
password-only authentication is not sufficient and states that
“2-Step Verification can help keep bad guys out, even if they
have your password”.

Google 2-step proposes several variants. The default
mechanism sends to the user, by SMS, a verification code
to be entered into his computer. An alternative is the “One-
Tap” version, where the user simply presses a Yes button
in a pop up on his phone. The second version avoids to
copy a code and is expected to improve the usability of
the mechanism. This raises an interesting question about the
trade-off between security and ease of use. We also present a
newer version of “One-Tap” that we dubbed “Double-Tap”.

2.1.1. Google 2-step with verification codes - G2V.
In Figure 1 we depict the different steps of the protocol.
All communications between the user’s computer and the
server are protected by TLS. The user enters his login and
password into his computer, which forwards the information
to the server. Upon receiving login and password, the server
checks them. In case of success, the server generates a fresh
6 digits code, and sends an SMS of the form "G-****** is
your Google verification code" to the user’s mobile phone.
The user then copies the code to his computer, which sends it
to the server. If the correct code is received login is granted.

2.1.2. Google 2-step with One-Tap - G2OT. In Figure 2 we
present the One-Tap version of Google 2-step. The protocol
starts as the verification code variant with the transmission
of the login credentials to the server. The server then creates
a fresh random token that is sent to the user’s mobile phone.
Unlike in the previous version, the communication between
the server and the phone is over a TLS channel rather
than by SMS. The phone displays a pop up to the user
who can then confirm the action or abort it, by choosing
“Yes” or “No” respectively. In case of confirmation the
phone returns the token and login is granted. Note that
in its most basic version, the user only answers a yes/no
question. Google announced in February 2017 [13] that the
pop up would also contain in the future a fingerprint of the

USER COMPUTER MOBILE SERVER

login, pwd
login, pwd

new token

token
yes or no?

yes
token

Figure 2: G2OT protocol

computer, including information such as IP address, location
and computer model. However this new version has yet to
be implemented on some of the smartphones we used for
tests. In the following we will analyse both versions, with
(G2OTfpr) and without (G2OT) the fingerprint.

2.1.3. Google 2-step with Double-Tap - G2DTfpr. The
issue with One-Tap compared to the code version is that
the user is likely to simply press “Yes” without reading
any displayed information. To mitigate this issue, Google
sometimes uses a version which we call Double-Tap. It is
not documented, but we saw it at work in practice. The first
step is the One-Tap protocol previously presented, with the
display of the fingerprint. It is then followed by a second
step, where a two digit number is displayed on the user’s
computer screen, and the same number is displayed on the
user phone along two other random numbers. The user is
then asked to select on his phone the number displayed on
his computer. This mimics the behaviour of a verification
code displayed on the computer and that the user should
enter on his phone, but with the benefits of greater simplicity
and ease of use.

2.2. FIDO’s Universal 2nd Factor - U2F

FIDO is an alliance which aims at providing standards
for secure authentication. Among their proposed solutions
is the Universal 2nd Factor (U2F) protocol [5]. We here
concentrate on the version using a USB token as the second
factor. The U2F protocol relies on a token able to securely
generate and store secret and public keys, and perform
cryptographic operations using these keys. Moreover, the
token has a button that a user must press to confirm a
transaction. To enable second-factor authentication for a
website, the token generates a key pair and the public key is
registered on the server. This operation is performed once,
and the token can then be used for authenticating; the steps
of the authentication protocol are presented in Figure 3.
First, the computer forwards the user’s login and password
to the server. Then, the server generates a challenge which
is sent to the user’s computer. Upon reception, the browser
generates a payload containing the url of the server, the
challenge and the identifier of the current TLS session to be
signed by the token. The user confirms the transaction by

USER TOKEN COMPUTER SERVER

login, pwd
login, pwd

new chall

chall

chall, origin, sid
press?

press
signature

signature

Figure 3: U2F protocol

pressing the token button. The signature is then forwarded
to the server for verification.

2.3. Disabling the second factor on trusted devices

When designing an authentication protocol, as also em-
phasized in [6], a key requirement should be usability. On a
user’s main computer, used on a daily basis, it may not be
necessary to use a second factor: for instance, using a second
factor each time a user pops his emails on his main laptop
would be very cumbersome. This is why several providers,
including Google and Facebook, propose to trust specific
computers and disable the second factor authentication on
these particular machines. This is done by checking a “Trust
this computer” option when initiating a two-factor authen-
ticated login. Technically, the computer will be identified
by a cookie and its fingerprint. A fingerprint typically
includes information about the user’s IP address, inferred
location, OS or browsers version, etc. As these elements will
obviously change over time, in practice, a distance between
fingerprints is evaluated, and if the fingerprint is too far from
the expected one, the second factor authentication will be
required. To the best of our knowledge, this feature is not
documented and the full mechanism has not been studied
previously even though it may lead to security issues. To
capture such security issues we will include the “Trust this
computer” mechanism in our analysis.

3. Threat model

In order to conduct an in depth analysis of multi-factor
authentication protocols, we consider different threat mod-
els, types of attacks and corresponding attacker capabilities.
We will consider a Dolev-Yao attacker [14] that controls any
compromised parts and, classically, the network. However,
many of the protocols we study use channels protected
by TLS. The attacker may block a message, even if he
cannot read or write on such channels. Moreover, as we
are studying multi-factor authentication protocols, in order
to assess additional protection offered by these protocols, we
are interested in the case where the user’s password has been

compromised. Therefore, the most basic threat scenario we
consider is the one where the attacker has (partial) control
over the network, and knows the users’ passwords.

There are however several ways the attacker can gain
more power. Our aim is to present a detailed threat model,
reflecting different attacker levels that may have more or less
control over the user’s computer, the network, or even over
the user itself. Those levels aim at capturing the attacker
capabilities that are necessary for a given attack.

3.1. Malware based scenarios

The first range of scenarios covers malwares that give
an attacker control over parts of a user’s device.

3.1.1. Systems as interfaces. To give a principled model of
malwares and what parts of a system a malware may control,
we take an abstract view of a system as a set of interfaces on
which the system receives inputs and sends outputs. Some
interfaces may only be used for inputs, while other interfaces
may be used for outputs, or both. For example the keyboard
is an input interface, the display is an output interface, and
the network is an input and output interface. Compromise
of part of the system can then be formalized by giving an
attacker read or write access to a given interface. On a secure
system, the attacker has neither read nor write access on
any interface. Conversely, on a fully compromised system
the attacker has read-write access on all interfaces.

More formally we consider that for each interface the
attacker may have
• no access (NA),
• read-only access (RO),
• write-only access (WO), or
• read-write access (RW).

We may specify many different levels of malware by spec-
ifying for every interface two access levels, one for in-
puts and one for outputs on the interface. Obviously, for
a given interface not all combinations need to be con-
sidered: a read-write access will yield a stronger threat
model than read-only access, write-only or no access.

In RW

In RO

Out RW

Out RO

NA

Figure 4: Access

We will suppose in this paper that
it is harder to control the outputs of
an interface than its inputs: therefore
a given access level to the outputs
will imply the same access level on
the interface inputs. Although not a
limitation of our model, this choice
is motivated by practical considera-
tions. Running for instance a keylog-
ger does not require specific rights,
because the keyboard data is com-
pletely unprotected in the OS. FIDO
devices are identified by the OS as a keyboard (at least on
linux). However, reading data sent by an application to some
USB device, may require to corrupt the driver (or in the
case of linux enable the "usbmon" module) which requires
specific privileges. Similarly, we suppose that having write

access implies having read access. This yields for each
interface 5 levels, that can be organized as a lattice depicted
in Figure 4.

3.1.2. Malware on a computer. For a computer, we will
consider three interfaces:
• the USB interface, capturing for instance the keyboard,

or a U2F USB key, with all possible types of access;
• the display, the computer screen, with only outputs

interfaces;
• the TLS interface, capturing the network communica-

tions, but by always assuming that the attacker as the
same level of control over inputs and outputs.

We can succinctly describe a malware on a computer by
giving for each interface inputs and output the attacker
access, and we will the use the notation : Minterface

in:acc1,out:acc2,
where interface might be tls, usb or dis, and acc1 and acc2
might be RO or RW .

By convention, if we do not specify any access level,
it means that the attacker has no access. A key logger is
for instance denoted with Musb

in:RO. If the access level is
the same both for the inputs and the outputs, as we always
assume for TLS, we may write Mtls

io:RW , thus capturing
the fact that the attacker may have full control over the user
browser, or that he might have exploited a TLS vulnerability.

3.1.3. Malware on a phone. For a mobile phone, the type
of interface may vary from protocols, with for instance SMS
inputs or TLS inputs. To simplify, we will only consider a
phone to have one input and one output interface. We thus
only consider a generic device interface called dev, with all
possible access level. Mdev

in:RO then corresponds for instance
to the attacker having broken the SMS encryption, or to
some malware on the phone listening to inputs.

3.2. Fingerprint Spoofing

Whenever a user browses the Internet, he provides infor-
mation about himself, called his fingerprint. Those elements
will be very useful later on for additional checks in our
protocols, and as we mentioned Google is adding this kind
of details to their One-Tap protocol. However, in some cases
the attacker might be able to obtain the same fingerprint as
a given user. While some elements, such as the OS version,
are rather easy to spoof, it is more complicated to spoof the
IP address and inferred location. It is nevertheless possible
if an attacker either completely controls the network the user
connects on, or because he is connected to the same Wifi,
or works in the same office.

3.3. Human errors

The attacker may also exploit vulnerabilities that rely
on the user not or wrongly performing some actions, or
preferring to ignore security warnings. The assumption that
users may not behave in the expected way seems reasonable
given that most users are not trained in computer security,
and their goal is generally to access a service rather than
performing security related actions.

3.3.1. Phishing. In our model, we capture that users may be
victim of phishing attempts, i.e. willing to authenticate on
a malicious website. For instance, an untrained, naive user
may be willing to click on a link in an email which redirects
to a fake web site. While a phishing attack through an e-
mail may not fool a trained user, even an experienced user
may be a victim, for instance if he connects to an attacker
Wifi hotspot which asks to login to a website in order to
obtain free Wifi. Therefore, when we consider the phishing
threat scenario we allow the attacker to choose with whom
the user will initiate the protocol. We consider phishing as
one of the simplest attacks to mount, and protocols should
effectively protect users against it.

However, even though we consider that users might be
victim of phishing, we suppose that they are careful enough
to avoid it when performing the most sensitive operations:
these operations include the registration of the U2F key,
and logging for the first time on a computer they wish to
trust later on. Indeed, if we were to allow phishing to be
performed during those steps, no security guarantees could
ever be achieved as the use of a second factor authentication
requires a trusted setup.

3.3.2. No compare. A protocol may submit to the user a fin-
gerprint and expect him to continue the protocol only if the
fingerprint corresponds to his own. When given a fingerprint
and a confirmation button, some users may confirm without
reading the displayed information. Thus, when considering
the no compare scenario, we assume that the user does not
compare any value given to him and always answers yes.

3.4. Threat scenarios considered

In our analysis we consider all the possible combinations
of the previously presented scenarios. This yields a fine-
grained threat model allowing for a detailed comparison of
the different protocols, allowing us to identify the strengths
and weaknesses of each protocol, by showing which threats
are mitigated by which mechanisms.

By considering those possibilities, we capture many real
life scenarios. For instance, when connecting to a Wifi
hotspot in an hotel or a train station, the Wifi might be
controlled by the attacker, and we would have fingerprint
spoof and phishing, because the attacker can have full con-
trol over the network, and thus use the provided IP address
or redirect a user to a fake website.

If we try to connect on some untrusted computer, for
instance the computer of a coworker, it may contain a
rather basic malware, for instance a keylogger (Musb

in:RO).
However, if we connect on a computer shared by many
people at some place, for instance at a cybercaffé, there
could be a very strong malware controlling the display of
the computer (Mdis

out:RW) or controlling any TLS connection
on this computer (Mtls

io:rw). Moreover, the network in this
unknown place might also be compromised, and we may
have some other scenarios combined with the malware, such
as phishing (PH) or fingerprint spoofing (FS).

Our different scenarios, provide a high level of gran-
ularity going from no attacker power at all to complete
control over both the network and the platforms. Our threat
model abstracts how the attacker gained this power. Thus,
the scenarios we consider will contain at some point all the
possible attacks, without the need to specify how they may
be performed. For instance, a side channel attack such as
Meltdown [15] or Spectre [16] may allow the attacker to
read the memory of the user computer: this is captured by
giving read-only access to all the interfaces of the computer
(Musb

in:RO Mtls
in:RO Mdis

in:RO). Another example is pharming,
where the attacker can “lie” about the url that is displayed to
the user. This may happen either because of a malware that
edits the hosts file (on a UNIX system), or by performing
DNS ID Spoofing or DNS Cache Poisoning. All of these
scenarios are simply captured as Mtls

io:RW .

4. The formal model

For our formal analysis, we model protocols in a dialect
of the applied pi calculus [17], [18] that is used as input
language by the PROVERIF tool [19] which we use to
automate the analysis. We will only give a brief, informal
overview here, which should be sufficient to explain our
modelling of TLS sessions and threat scenarios. We refer
the reader to [19] for additional details about the formal
semantics.

4.1. The applied-pi calculus and PROVERIF

In the applied pi-calculus, protocols are modelled as
concurrent processes that communicate messages built from
a typed term algebra. The attacker controls the execution
of the processes and can make computations over known
terms. The grammar is given in Figure 5.

Atomic terms are either names a, b, c, n, . . ., or variables
x, y, z, . . ., each declared with a type. Pre-defined types
include channel, bool and bitstring, but a user may define
additional types. We note that the type system is only a
convenient way to avoid errors in the specification; it does
not limit the attacker, and types are basically ignored in the
semantics. We suppose a set of function symbols, split into
constructors and destructors. Each function symbol has an
arity, defining the number and types of the arguments, as
well as the type of the resulting term. Terms are built by
applying constructors to other terms. Destructors are defined
by one or several rewriting rules and model the properties
of function symbols. For example, we can model digital
signatures as follows. Suppose that pkey and skey are
user defined types, modelling public and secret keys. Then
we can define the function constructors

pk(skey) : pkey and sign(bitstring, skey) : bitstring

as well as the destructor checksign by the following rewrite
rule

checksign(sign(m, k), pk(k)) → m

While constructors are used to build terms, application of
destructors generalizes terms to expressions. Expressions
may fail when a destructor is applied and the expression can-
not reduce to a term by applying the rewrite rules defining
the destructors. Additionally, one may declare equations on
terms, which define a congruence relation on terms that are
considered equal. Hence, an alternative way of specifying
digital signatures would be to declare checksign as a
constructor together with the equation

checksign(sign(m, k), pk(k)) = m

In contrast to the previous modelling, checksign(t1, t2) is
a valid term for any t1, t2 and the evaluation of this term
will not fail. Moreover, one can define private names and
function symbols that may not be used by the attacker.

The protocols themselves are modelled by processes. 0 is
the terminal process that does nothing. P | Q runs processes
P and Q in parallel, and !P allows to spawn an unbounded
number of copies of P to be run in parallel. new n : T
declares a fresh name of type T ; this construct is useful
to generate fresh, secret keys and nonces. in(M,x : T)
inputs a term that will be bound to a variable of type T on
channel M and out(M,N) outputs the term N on channel
M . If the channel name is known to (or can be computed
by) the adversary, the channel is under the adversary’s
control: any input message may come from the adversary,
and any output is added to the adversary’s knowledge. On
the contrary, if the channel is private, then the adversary can
neither read from nor write on this channel. The conditional
if E1 = E2 then P else Q checks whether two expressions
successfully evaluate to equal terms and executes P , or Q if
at least one of the expressions failed or the two expressions
yield different terms. Finally processes can be annotated by
an event e(M) where e is a user defined event. Events do
not influence the process execution and serve merely as an
annotation for specifying properties.

As an example consider the processes defined in Fig-
ure 6. A server process S signs a freshly generated random
bitstring rnd and sends it to a user process U . U raises
the event Accept(rnd) if the signature is valid. The main
process then declares that sk is a fresh secret key and
executes an unbounded number of copies of S and U in
parallel.

In this paper we are interested in verifying authentica-
tion properties. We model them, as usual, as correspondence
properties of the form

e1(t1, . . . , tn) =⇒ e2(u1, . . . , um)

Such a property holds, if for any execution, any occurrence
of an instance of e1(t1, . . . , tn) is preceded by the corre-
sponding instance of e2(u1, . . . , um). Considering the ex-
ample of Figure 6, we model the property that any accepted
session with a given random was actually initiated with the
same random as

Accept(x) =⇒ Init(x)

This property is indeed satisfied. However, it may be too
weak as it does not capture replay attacks. We may have

twice the event Accept(rnd) (for the same value rnd) while
this session was only initiated once. To capture such replay
attack we may use injective correspondence properties

e1(t1, . . . , tn) =⇒inj e2(u1, . . . , um)

that require that any occurrence of e1 is matched by a
different preceding occurrence of e2.

4.2. Modelling TLS communications

Most web protocols rely on TLS to ensure the secrecy
of the data exchanged between a client and a server. In
order to formally analyse online authentication protocols, we
thus need to model TLS sessions and corresponding attacker
capabilities. A possibility would of course be to precisely
model the actual TLS protocol and use this model in our
protocol analysis. This would however yield an extremely
complex model, which would be difficult to analyse. There-
fore, for this paper, we opt to model TLS at a higher level
of abstraction.

In essence we model that TLS provides
• confidentiality of the communications between the

client and the server, unless one of them has been
compromised by the adversary;

• a session identifier that links all messages of a given
session, avoiding mixing messages between different
sessions.

We model this in the applied pi calculus as follows:
• we define a private function tls(id, id) : channel

where id is a user defined type of identities, and use the
channel tls(c, s) for communications between client c
and server s;

• we define a TLS manager process that given as inputs
two identities id1, id2 and outputs on a public channel
the channel name tls(id1, id2), if either id1 or id2 are
compromised;

• we generate a fresh name of type sid for each TLS
connection and use it as a session identifier, concate-
nating it to each message, and checking equality of this
identifier at each reception in a same session.

However, even if the communication is protected by TLS,
we suppose that the adversary can block or delay com-
munications. As communications over private channels
are synchronous we rewrite each process of the form
out(tls(c, s),M).P into a process out(tls(c, s),M)|P .
This ensures that the communications on TLS channels are
indeed asynchronous.

4.3. Modelling threat models

We will now present how we model the different sce-
narios discussed in Section 3 in the applied pi calculus.

4.3.1. Malware. As discussed in Section 3.1.1, we view a
system as a set of interfaces. By default, these interfaces
are defined as private channels. Let a be a public channel.
A malware providing read-only access to an interface ch is

M,N::= terms
| a, b, c, k,m, n, s name
| x, y, z variable
| f(M1, . . . ,Mn) constructor application

E::= expressions
| M name
| h(E1, . . . , En) function application
| fail failure

P,Q::= 0 null process
| P | Q parallel
| !P replication
| new n : T. P name restriction
| in(M,x : T).P message input
| out(M,N).P message output
| if E1 = E2 then P else Q conditional
| event e(M).P event e

Figure 5: Terms and processes

S(sk : skey)=̂
new rnd : bitstring.
event Init(rnd).
out(a, (sign(rnd, sk), rnd))

U(pk : pkey)=̂
in(a, (sig : bitstring, rnd : bitstring)).
if checksign(sig, pk) = rnd then

event Accept(rnd).

new sk : skey; !S(sk)|!U(pk(sk))

Figure 6: Process example

modelled by rewriting processes of the form in(ch, x).P into
processes of the form in(ch, x).out(a, x).P , respectively
out(ch,M).P into out(a,M).out(ch,M).P , depending on
whether inputs or outputs are compromised. Read-write
access is simply modelled by revealing the channel name ch,
which gives full control over this channel to the adversary.

4.3.2. Human errors - No compare. Our model contains
dedicated processes that represent the expected actions of a
human, e.g., initiating a login by typing on the keyboard,
or copying a code that he may receive through the display
interface of its computer or its phone. A user is also assumed
to perform checks, such as verifying the correctness of a
fingerprint or comparing two random values, one displayed
on the computer and one on the phone. In the No Compare
scenario we suppose that a human does not perform these
checks and simply remove them.

4.3.3. Human errors - Phishing. In our model of TLS we
simply represent a url by the server identity idS, provided by
the human user. This initiates a communication between the
user’s computer, with identifier idC, and the server over the
channel tls(idC, idS). This models that the server URL
is provided by the user and may be that of a malicious
server, which his machine is then connecting to. We let the
adversary provide the server identity idA to the user in order
to model a basic phishing mechanism. We distinguish two
cases: a trained user will check that idA = idS, where idS
is the correct server, while an untrained user will omit this
check and connect to the malicious server.

4.3.4. Fingerprint and spoofing. As discussed before,
when browsing, one may extract informations about a user’s
location, computer, browser and OS version, etc. This finger-
print may be used as an additional factor for identification,
and can also be transmitted to a user for verification of its
accuracy. We model this fingerprint by adding a function
fpr(id) : fingerprint which takes an identity and returns
its corresponding fingerprint. Given that all network com-
munications are performed over a TLS channel tls(c, s) the
server s can simply extract the fingerprint fpr(c). However,
in some cases we want to give the attacker the possibility
to spoof the fingerprint, e.g., if the attacker controls the
user’s local network. In these cases we declare an additional
function spooffpr(fingerprint) : id and the equation

fpr(spooffpr(fpr(c))) = fpr(c)

which allows the attacker to initiate a communication on
a channel tls(spooffpr(fpr(idC)), s) using a fingerprint
that is identical to fpr(idC).

5. Analysis and Comparison

In this section we use the formal framework to analyze
several multi-factor authentication protocols. The analysis is
completely automated using the PROVERIF tool. All scripts
and source files used for these analyses are available at [20].

5.1. Properties and methodology

5.1.1. Properties. We will concentrate on authentication
properties and consider that a user may perform 3 different
actions:

• an untrusted login: the user performs a login on an un-
trusted computer, i.e., without selecting the “trust this
computer” option, using second-factor authentication;

• a trusted login: the user performs an initial login on a
trusted computer, and selects the “trust this computer”
option, using second-factor authentication;

• a cookie login: the user performs a login on a computer
that he previously trusted, using his password, but no
second factor, and identifying through a cookie and
fingerprint.

For each of these actions we check that whenever a login
happens, the corresponding login was requested by the user.
We therefore define three pairs of events

(initx(id), acceptx(id)) x ∈ {u, t, c}

The initx(id) events are added to the process modelling
the human user, in order to capture the user’s intention to
perform the login action. The acceptx events are added to
the server process. The three properties are then modelled
as three injective correspondence properties:

acceptx(id) =⇒inj initx(id) x ∈ {u, t, c}

When the three properties hold, we have that every login
of some kind accepted by the server for a given computer
is matching exactly one login of the same kind initiated by
the user on the same computer.

5.1.2. Methodology. For every protocol, we model the three
different types of login, and then check using PROVERIF
whether each security property holds for all possible (com-
binations of) threat scenarios presented in Section 3. As we
consider trusted and untrusted login, we provide the user
with two platforms: a trusted platform on which the user
will try to perform trusted logins, and an untrusted platform
for untrusted logins. We will thus extend the notation for
malwares presented in 3.1.2 by prefixing the interface with
t if the interface belongs to the trusted computer, and u if it
belongs to the untrusted computer, with for instance Mu−usb

io:RO
for a keylogger on the untrusted computer. A scenario is
described by a list of considered threats that may contain
• phishing (PH);
• fingerprint spoofing (FS);
• no comparisons by the user (NC);
• the malwares that may be present on the trusted and

untrusted platform.
For instance, “PH FS Mt−usb

io:RW” corresponds to the sce-
nario where the attacker can perform phishing, fingerprint
spoofing, and has read-write access to usb devices of the
trusted computer, and “NC Mu−tls

io:RW Mu−usb
io:RW Mu−dis

io:RW”
corresponds to a human that does not perform comparisons
and full attacker control (read-write access to TLS, USB
and display interfaces) on the untrusted device.

We use a script to generate the files corresponding to
all scenarios for each protocol and launch the PROVERIF
tool on the generated files. In total we generated 6 172
scenarios that are analysed by PROVERIF in 8 minutes on a
computing server with twelve Intel(R) Xeon(R) CPU X5650
@ 2.67GHz and 50Go of RAM. We note that we do not
generate threat scenarios whenever properties are already
falsified for a weaker attacker (considering less threats or
weaker malware). The script generates automatically the
result tables, displaying only results for minimal threat sce-
narios that provide attacks, and maximal threat scenarios for
which properties are guaranteed. In the following sections
we present partial tables with results for particular protocols.
Full results for all protocols are given in Tables 7 and 8 in
Appendix.

Threat Scenarios G2V G2OT G2OTfpr

4 6 4
PH 6 6 4

NC 4 6 6
FS 4 6 6

PH NC 6 6 6
PH FS 6 6 6

Mdev
in:RO 6 6 4

Mt−dis
io:RO 4 6 4

Mt−tls
io:RO 6 6 4

Mt−usb
in:RO 6 6 4

NC Mt−tls
io:RO 6 6 6

NC Mt−usb
in:RO 6 6 6

Mdev
in:RW 6 6 6

Mt−tls
io:RW 6 6 737

Mt−usb
in:RW 6 6 337

FS Mt−tls
io:RO 6 6 6

FS Mt−usb
in:RO 6 6 6

Mu−dis
io:RO 4 6 4

Mu−tls
io:RO 6 6 4

Mu−usb
in:RO 6 6 4

NC Mu−tls
io:RO 6 6 6

NC Mu−usb
in:RO 6 6 6

Mu−tls
io:RW 6 6 377

Mu−usb
in:RW 6 6 373

FS Mu−tls
io:RO 6 6 6

FS Mu−usb
in:RO 6 6 6

Table 1: Analysis of the basic Google 2-step protocols

The result tables use the following notations:
• results are displayed as a triple u t c where u, t, c are

each 7 (violated) or 3 (satisfied) and give the status of
the authentication property for untrusted login, trusted
login and cookie login for the given threat scenario;

• 6 and 4 are shortcuts for 777 and 333;
• signs are greyed when they are implied by other results,

i.e., the attack existed for a weaker threat model, or the
property is satisfied for a stronger adversary;

• we sometimes use blue symbols to emphasize differ-
ences when comparing protocols.

Even if PROVERIF can sometimes return false attacks,
we remark that any 7 corresponds to an actual attack where
PROVERIF was able to reconstruct the attack trace.

5.2. Google 2-step: Verification Code and One-Tap

In this section we report on the analysis of the currently
available Google 2-step protocols: the verification code
(G2V, described in Section 2.1.1), the One-Tap (G2OT,
described in Section 2.1.2) with and without fingerprint, and
the Double-Tap (G2DTfpr, described in Section 2.1.3). The
results are summarized in Tables 1 and 2.

5.2.1. G2V. In the G2V protocol the user must copy a
code received on his phone to his computer to validate the
login. We first show that G2V is indeed secure when only
the password of the user was revealed to the attacker: as
long as the attacker cannot obtain the code, the protocol
remains secure. If the attacker obtains the code, either using

a keylogger (Mt−usb
in:RO), or by reading the SMS interface

(Mdev
in:RO), or any other read access on an interface on which

the code is transmitted, the attacker can use this code to
validate his own session.

We have tested on the Google website that a code
generated for a login request can indeed be used (once) for
any other login, demonstrating that such attacks are indeed
feasible. Interestingly, this also shows that in the actual
implementation, the verification code is not linked to the
TLS session. This may be useful as it allows to print in
advance a set of codes, e.g., if no SMS access is available.
In theory, linking the code to a session does not improve
security, as the code of the attacker session will also be sent
to the user’s phone and could then be recovered. In practice,
if the code is linked, an attack can be produced only if the
attacker’s code is received first, i.e., if the attacker can login
just before or after the user.

We remark that the results for G2V are also valid for
another protocol, Google Authenticator, in which the phone
and the server shares a secret key, and use it to derive from
the current time a one time password. In all the scenarios
where the SMS channel is secure, G2V can be seen as
a modelling of Google Authenticator where the OTP is
a random value “magically” shared by the phone and the
server.

5.2.2. G2OT. In the G2OT protocol a user simply confirms
the login by pressing a yes/no button on his phone. We first
consider the version that does not display the fingerprint,
and which is still in use. Our automated analysis reports
a vulnerability even if only the password has been stolen.
In this protocol, the client is informed when a second,
concurrent login is requested and the client aborts. However,
if the attacker can block, or delay network messages, a
race condition can be exploited to have the client tap yes
and confirm the attacker’s login. We have been able to
reproduce this attack in practice and describe it in more
detail in Appendix A. While the attack is in our most basic
threat mode, it nevertheless requires that the attacker can
detect a login attempt from the user, and can block network
messages.

5.2.3. G2OTfpr. We provide in the third column of Table
1 the analysis of G2OTfpr. To highlight the benefits of the
fingerprint, we color additionally satisfied properties in blue.
In many read only scenarios (Mt−tls

io:RO, Mt−usb
in:RO,Mu−tls

io:RO,
Mu−usb

in:RO), and even in case of a phishing attempt, the user
sees the attacker’s fingerprint on his phone and does not
confirm. However, if the user does not check the values
(NC) or if the attacker can spoof the fingerprint (FS),
G2OTfpr simply degrades to G2OT and becomes insecure.
Some attacks may be performed on the cookie login, for
instance for scenarios Mt−tls

io:RW or Mt−usb
io:RW , as the attacker

may initiate a login from the user’s computer without the
user having any knowledge of it, and then use it as a kind
of proxy.

Because of the verification code, in scenarios of FS or
NC, G2V provides better guarantees than G2OTfpr. It is

however interesting to note that G2OTfpr resists to read only
access on the device as there is no code to be leaked to
the attacker. One may argue that an SMS channel provides
less confidentiality than a TLS channel, i.e., the read-access
on the SMS channel may be easier to obtain in practice.
Indeed, SMS communications between the cellphone and
the relay can be made with weaker encryption (A5/0 and
A5/2) than TLS, and the SMS message will also travel over
TLS between the relay and the provider’s servers. While
this argument is in favour of G2OTfpr, one may also argue
that G2V has better resistance to user inattention, as a user
needs to actively copy a code.

Threat Scenarios G2DTfpr

NC 4
FS 4

NC Mt−tls
io:RO 4

NC Mt−usb
in:RO 4

FS Mt−tls
io:RO 337

FS Mt−usb
in:RO 4

NC Mu−tls
io:RO 4

NC Mu−usb
in:RO 4

FS Mu−tls
io:RO 4

FS Mu−usb
in:RO 4

Table 2: Analysis of the
Google 2-step Double-Taps

5.2.4. G2DTfpr. To palli-
ate the weakness of G2OT
compared to G2V, Google
proposes G2DTfpr where a
comparison through a sec-
ond tap is required. The
additional security provided
by the second tap is dis-
played in Table 2, where we
highlight in blue the differ-
ences between G2OTfpr and
G2DTfpr. The attacker must
now be able to have its code
displayed to the user and
then selected onto the user’s
device in order to success-
fully login, so even in case of FS or NC and some read only
access, it is not enough. Interestingly, in the NC scenario,
we are now as secure as G2V, while having greater usability.
We note that we are still not secure in the PH FS scenario.
This means that an attacker controlling the user’s network or
some Wifi hotspot, could in practice mount an attack against
G2DTfpr.

5.3. Additional display

In this section, we propose and analyse small modi-
fications of the previously presented protocols. Given the
benefits discussed in section 5.2.3, we first add a fingerprint
to G2V.

In Google 2-step some attacks occur because the attacker
is able to replace a trusted login by an untrusted one, e.g.
under Mu−usb

in:RW . If this happens, the attacker can obtain a
session cookie for its own computer and perform additional
undetected logins later on. A user might expect that by using
a second factor, he should be able to securely login once
on an untrusted computer and be assured that no additional
login will be possible.

Thus, we also add for all the protocols the action the
user is trying to perform (trusted or untrusted login) to
the display. This mechanism may create some harmless
“attacks” where the attacker replaces a trusted login with
an untrusted login. However, such attacks indicate that an
attacker may change to other types of actions, such as
password reset, or disabling second-factor authentication.

Threat Scenarios G2Vfpr G2Vdis G2OTdis G2DTdis

PH 4 4 4 4
PH FS 6 733 6 733

PH FS Mt−tls
io:RO 6 6 6 737

PH FS Mt−usb
in:RO 6 6 6 733

PH FS Mt−dis
io:RW 6 733 6 6

Mt−tls
io:RO 4 4 333 4

Mt−usb
in:RO 4 4 333 4

Mt−tls
io:RW 737 337 337 337

Mt−usb
in:RW 337 337 337 337

Mt−usb
in:RW M

t−tls
io:RO 337 337 337 337

FS Mt−tls
io:RO 6 377 6 337

FS Mt−usb
in:RO 6 377 6 4

FS Mt−dis
io:RW 4 4 6 377

FS Mt−tls
io:RW 6 377 6 377

FS Mt−usb
in:RW 6 377 6 377

FS Mt−dis
io:RW M

t−tls
io:RO 6 377 6 377

FS Mt−usb
in:RO M

t−dis
io:RW 6 377 6 377

FS Mt−usb
in:RW M

t−tls
io:RO 6 377 6 377

Mu−tls
io:RO 4 4 333 4

Mu−usb
in:RO 4 4 333 4

Mu−tls
io:RW 377 4 333 333

Mu−usb
in:RW 373 4 333 333

FS Mu−tls
io:RO 6 733 6 4

FS Mu−usb
in:RO 6 733 6 4

FS Mu−dis
io:RW 4 4 6 733

FS Mu−tls
io:RW 6 733 6 733

FS Mu−usb
in:RW 6 733 6 733

FS Mu−dis
io:RW M

u−tls
io:RO 6 733 6 733

FS Mu−usb
in:RO M

u−dis
io:RW 6 733 6 733

Table 3: Google 2-step protocols with additional display

We call G2Vfpr, G2Vdis, G2OTdis and G2DTdis the
protocols versions that additionally display fingerprint, re-
spectively the action, and provide in Table 3 the results of
our analysis. To highlight the benefits of our modifications,
we color additionally satisfied properties in blue, when
considering G2V and G2Vfpr, G2Vfpr and G2Vdis, G2OTfpr

and G2OTdis and G2DTfpr and G2DTdis.
It appears that adding the action - and the fingerprint in

the G2V case - performs as expected: the protocols become
secure in all the scenarios where the only possible attack
was a mixing of actions.

5.4. Conclusion regarding Google 2-step

Currently, Google proposes G2V, G2OT, G2OTfpr and
G2DTfpr. Adding the action to the display would provide
additional security guarantees.

Among the studied mechanisms, G2Vdis and G2DTdis

provide the best security guarantees in our model, having
each advantages and disadvantages. In Table 4, we provide
a comparison between these two mechanisms. We observe
that G2Vdis performs better than G2DTdis only in scenarios
where we have Mt−dis

io:RW , which may be considered as a
powerful malware.

G2DTdis provides better guarantees in many simpler
threat scenarios, with for instance read-only access to the
phone. As the code is sent back to the server from the phone

Threat Scenarios G2Vdis G2DTdis

PH FS Mt−tls
io:RO 6 737

PH FS Mt−usb
in:RO 6 733

PH FS Mt−dis
io:RW 733 6

Mdev
in:RO 6 4

NC Mt−tls
io:RO 6 4

NC Mt−usb
in:RO 6 4

NC Mt−dis
io:RW 4 6

FS Mt−tls
io:RO 377 337

FS Mt−usb
in:RO 377 333

FS NC Mt−tls
io:RO 6 337

FS Mt−dis
io:RW 333 377

NC Mu−tls
io:RO 6 4

NC Mu−usb
in:RO 6 4

NC Mu−dis
io:RW 4 6

FS Mu−tls
io:RO 733 333

FS Mu−usb
in:RO 733 333

FS Mu−dis
io:RW 333 733

Table 4: Comparison of Google 2-step with code or tap

rather than the computer, this mechanism is more resilient
to malware on the computer.

Moreover, the code is sent through a TLS channel rather
than via SMS, which may arguably provide better security.

Finally, even though Google 2-step may significantly
improve security, phishing attacks combined with fingerprint
spoofing are difficult to prevent. This seems to be inherent
to the kind of protocol which is Google 2-step, where the
security is only enforced through the 2nd factor. As we will
see in the next section the FIDO U2F protocol may provide
better guarantees for these threat scenarios.

5.5. FIDO U2F

Threat Scenarios U2F
4

PH 4
FS 333

Mt−dis
io:RO 4

Mt−tls
io:RO 333

Mt−usb
in:RO 333

Mt−tls
io:RW 6

Mt−usb
in:RW 337

Mt−usb
io:RW 777

FS Mt−tls
io:RO 337

Mu−dis
io:RO 4

Mu−tls
io:RO 4

Mu−usb
in:RO 333

Mu−tls
io:RW 6

Mu−usb
in:RW 373

Mu−usb
io:RW 777

Table 5: U2F results

FIDO’s U2F adds crypto-
graphic capabilities through its
registration mechanism. As ex-
plained previously, the URL of
the server the user is trying to
authenticate to is included in
the query made to the FIDO
USB token, and also in the sig-
nature returned by the token.
The server will then only grant
login if the signature contains
its own url.

We present the results of
our formal analysis in Ta-
ble 5. U2F is secure under
many threat scenarios, includ-
ing some that combine phish-
ing and fingerprint spoofing.
However, an attack is found
when the computer runs mal-
ware that controls the USB in-
terface of the trusted computer
(Mt−usb

io:RW). Indeed, the malware can then communicate with
the U2F token, and thus send a request generated for

an attacker session. Also, if the attacker can control the
TLS interface (Mt−tls

io:RW or Mu−tls
io:RW), he may change the

intended action and replace an untrusted login with a trusted
one, thus providing the attacker with a trusted cookie. As a
consequence, a login on an untrusted computer with U2F
may enable future attacker logins on this computer.

This is a problem, as Yubikeys (an implementation of
U2F token) claims protection against "phishing, session
hijacking, man-in-the-middle, and malware attacks." While
this holds for the first ones, this is not the case for the mal-
ware attacks. Moreover, one might expect that an external
hardware token should allow users to login securely on an
untrusted computer. Then, it is actually easy for an attacker
to submit its own request to the user’s token. Of course, a
user has to press a button to accept a request. As we said
previously, with a malware controlling the TLS connection,
one press of the user may lead to many attacker logins, but
this is a failure of the trust mechanism, not of U2F.

U2F may lead to another problem that is out of the
scope of our analysis: the Yubikey does not have any way to
provide feedback for a successful press. When the computer
submits two request in a row to the token and the user just
presses once, the user may believe that the press failed, and
press once more. This is similar to the problem identified
during the analysis of the One-Tap mechanism: success and
failure of the second factor should not be silent.

To summarize, one might expect U2F to protect against
malware, as it is based on a secure hardware token providing
cryptographic capabilities. Thus, even if U2F does provide
a better security than most existing solutions, it does not up-
hold this promise. However, the U2F mechanism providing
protection against phishing is very interesting. What appears
to be lacking from U2F is some feedback capabilities, i.e
a screen, to notify failures, success, and maybe information
such as the fingerprint of the computer.

5.6. Token Binding

We previously studied the security of the protocols com-
bined with the “Trust this computer” mechanism where a
cookie is used to authenticate a computer on the long term.
While cookies are a common mechanism, a new protocol
called TOKENBINDING [21] is under development. After
a successful login a public key may be bound to the user
account, and the corresponding secret key will be used to
sign the session identifier of the following TLS sessions.
We describe the protocol in appendix in Figure 7. It may
be seen as a partial U2F where the keys are directly stored
on the computer.

We provide in Table 6 the results of the formal analysis
of TOKENBINDING combined with U2F and G2DTdis. It
provides protection against a read only access to the TLS
interface, because it is not any more sufficient to steal the
cookie. The attacker needs to be able to access the private
key of the user which was generated on his platform but
never sent over the network.

We remark that for TOKENBINDING, having full access
to the computer interfaces is not enough to steal the secret

key because it is generated directly on the computer and
never sent over the network. We could have specified as we
did for the others a memory interface and the corresponding
malware. However, this malware scenario is not useful for
our comparison : it would have lead to attacks for both the
cookie and TOKENBINDING.

6. Pratical Considerations

As mentioned previously, there are some interesting
aspects that are outside of the scope of our threat models and
formal analysis. We therefore discuss below some additional
thoughts and findings.

Short integer for G2DTdis. Currently, G2DTdis uses only
a 2-digit integer. Hence, an attacker has probability 1/100
to guess the integer, which is much higher than usually
accepted. To maintain usability it might be worth exploring
different mechanisms, such as using images or visual hashes.
The only conditions are that the domain should be large, and
a human should be able to instantly pick the correct value
out of the three proposed ones.

Independence of the second factor. When trying to login
on a malicious computer, we saw that the U2F token might
be used by the attacker if he controls the USB interface.
Therefore, our phone, which remains completely indepen-
dent from the untrusted computer, is not affected by malware
on the untrusted computer.

On the need of feedback. An advantage of the phone
over the U2F token is also that the token does not provide
feedback to the user, and two consecutive button presses
may remain unnoticed. On the phone, a success or failure
confirmation after pressing the button is easily provided to
the user.

Storing the keys on a dedicated secure token. An ad-
vantage of the U2F token is that if your computer is
compromised, the number of attacker logins is limited by the
number of times the button is pressed. It is then more secure
to store the keys on a device that ensures that keys are not
completely compromised, rather than storing the keys on a
computer or a smartphone, where a malware may extract
them. We however saw that U2F does not provide perfect
security, and if indeed the key cannot be compromised, one
should be careful of how the token is used, to ensure that
no unwanted computer becomes trusted, or that the user
may not press twice the button in a row. A solution to
mitigate key leakage for computer or smartphones could be
to consider an Isolated Execution Environment, such as Intel
SGX, ARM Trustzone or a Trusted Platform Module.

Carrying additional authenticators. An important ques-
tion for multi-factor protocols is of course usability. From
that point of view, the need to buy and carry an additional
token may be cumbersome. Nowadays, more and more
people possess and constantly carry their phone, making it
a natural choice for a second factor.

Threat Scenarios U2F U2Ftb G2DTdis G2DTdis
tb

PH FS Mt−tls
io:RO 337 333 737 733

PH FS NC Mt−tls
io:RO 337 333 6 6

PH FS Mt−dis
io:RW M

t−tls
io:RO 337 333 6 6

FS Mt−dis
io:RW M

t−tls
io:RO 337 333 377 377

FS NC Mt−dis
io:RW M

t−tls
io:RO 337 333 6 6

Table 6: Results for the TOKENBINDING extension

Disabling the second factor. On some websites, for instance
Github, disabling the second factor (and then changing the
password) does not require the use of the second factor,
once a login was performed. It seems advisable to require
a second factor authentication to disable the mechanism.

Privacy. A concern about authentication that is often ig-
nored is unlinkability. If the same second factor is used
to login on different providers, e.g. the user’s phone, it
might be possible to use this second factor to link accounts.
Unlinkability is obviously not provided by G2DTdis, because
one provides the same phone number. However, U2F explic-
itly claims to achieve unlinkability by generating a fresh key
pair for every distinct provider.

7. Conclusion
In this paper we propose a detailed threat model for

multi-factor authentication protocols. It takes into account
communication through TLS channels in an abstract way,
yet modelling interesting details such as session identifiers
and TLS sessions in with compromised agents. Moreover,
we consider different levels of malwares, in a systematic
way by representing a system as a set of interfaces. Ad-
ditionally, we allow the adversary to perform phishing and
spoof fingerprints, and consider scenarios where a careless
user does not perform expected checks. We formalize this
model in a dialect of the applied pi calculus and use the
PROVERIF tool to systematically and automatically analyse
several versions of Google 2-step and U2F in an extensive
way, considering all combinations of threats. The resulting
protocol comparison highlights strengths and weaknesses of
the different mechanisms, and allows us to propose some
simple variants, adding actions to the displayed information,
which improves security.

As a direction for future work we consider the use of
enclaves in trusted execution environments: such environ-
ments could provide execution certification and a way to
enable secure login on a completely untrusted computer, if
the computer is equipped with a trusted module. One could
then use a phone as a U2F token assuming that we also
have an efficient way to establish a channel between the
computer and the phone in order to pass the payload. The
U2F keys could be stored on the phone, and the next natural
step would be to merge G2DTdis and U2F by performing
a U2F on the phone in parallel of the G2DTdis. The user
would only see the G2DTdis part. G2DTdis combined with
for instance the storage of the keys using a trusted execution
environment, such as TrustZone would then palliate the issue
of keys being revealed due to malware on the phone.

Finally, as discussed above, U2F tokens claim to achieve
unlinkability. It would be interesting to formally model and
study this property.

Acknowledgements. We wish to thank Arnar Birgisson and
Alexei Czeskis for interesting discussions and the anony-
mous reviewers for their comments. We are grateful for the
support from the ERC under the EU’s Horizon 2020 research
and innovation program (grant agreements No 645865-
SPOOC), as well as from the French National Research
Agency (ANR) under the project Sequoia.

References

[1] P. A. Grassi, M. E. Garcia, and J. L. Fenton, “Nist special publication
800-63-3 – digital identity guidelines,” Jun. 2017, available at https:
//doi.org/10.6028/NIST.SP.800-63-3.

[2] R. Morris and K. Thompson, “Password security: A case history,”
Communications of the ACM, vol. 22, no. 11, pp. 594–597, 1979.

[3] P. A. Grassi, J. L. Fenton, E. M. Newton, R. A. Perlner, A. R.
Regenscheid, W. E. Burr, J. P. Richer, N. B. Lefkovitz, J. M.
Danker, K. K. Choong, Yee-Yin Greene, and M. F. Theofanos,
“Nist special publication 800-63b – digital identity guidelines –
authentication and lifecycle management,” Jun. 2017, available at
https://doi.org/10.6028/NIST.SP.800-63b.

[4] “Google 2 Step,” https://www.google.com/landing/2step/.

[5] “FIDO Yubikey,” https://www.yubico.com/solutions/fido-u2f/.

[6] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano, “The
quest to replace passwords: A framework for comparative evaluation
of web authentication schemes,” in Proceedings of the 2012 IEEE
Symposium on Security and Privacy, ser. SP ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 553–567. [Online].
Available: http://dx.doi.org/10.1109/SP.2012.44

[7] O. Pereira, F. Rochet, and C. Wiedling, “Formal Analysis of the Fido
1.x Protocol,” in The 10th International Symposium on Foundations &
Practice of Security, ser. Lecture Notes in Computer Science (LNCS).
Springer, 10 2017.

[8] S. Kremer and R. Künnemann, “Automated analysis of security
protocols with global state,” CoRR, vol. abs/1403.1142, 2014.
[Online]. Available: http://arxiv.org/abs/1403.1142

[9] R. Künnemann and G. Steel, YubiSecure? Formal Security Analysis
Results for the Yubikey and YubiHSM. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 257–272. [Online]. Available:
https://doi.org/10.1007/978-3-642-38004-4_17

[10] A. Armando, R. Carbone, and L. Zanetti, Formal Modeling
and Automatic Security Analysis of Two-Factor and Two-Channel
Authentication Protocols. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, pp. 728–734. [Online]. Available: https://doi.org/
10.1007/978-3-642-38631-2_63

[11] D. Basin, S. Radomirovic, and L. Schmid, “Modeling human errors
in security protocols,” in 2016 IEEE 29th Computer Security Foun-
dations Symposium (CSF), June 2016, pp. 325–340.

https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63-3
https://doi.org/10.6028/NIST.SP.800-63b
https://www.google.com/landing/2step/
https://www.yubico.com/solutions/fido-u2f/
http://dx.doi.org/10.1109/SP.2012.44
http://arxiv.org/abs/1403.1142
https://doi.org/10.1007/978-3-642-38004-4_17
https://doi.org/10.1007/978-3-642-38631-2_63
https://doi.org/10.1007/978-3-642-38631-2_63

[12] D. A. Basin, S. Radomirovic, and M. Schläpfer, “A complete
characterization of secure human-server communication,” in IEEE
28th Computer Security Foundations Symposium, CSF 2015, Verona,
Italy, 13-17 July, 2015, 2015, pp. 199–213. [Online]. Available:
https://doi.org/10.1109/CSF.2015.21

[13] “G Suite updates - Improved phone prompts for 2-Step
Verification,” https://gsuiteupdates.googleblog.com/2017/02/
improved-phone-prompts-for-2-step.html.

[14] D. Dolev and A. Yao, “On the security of public key protocols,” in
Proc. 22nd Symp. on Foundations of Computer Science (FOCS’81).
IEEE Comp. Soc. Press, 1981, pp. 350–357.

[15] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown,” meltdownattack.com, 2018. [Online]. Available:
https://meltdownattack.com/meltdown.pdf

[16] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” meltdownattack.com,
2018. [Online]. Available: https://spectreattack.com/spectre.pdf

[17] M. Abadi and C. Fournet, “Mobile values, new names, and secure
communication,” SIGPLAN Not., vol. 36, no. 3, pp. 104–115, Jan.
2001. [Online]. Available: http://doi.acm.org/10.1145/373243.360213

[18] M. Abadi, B. Blanchet, and C. Fournet, “The applied pi calculus:
Mobile values, new names, and secure communication,” Journal of
the ACM, vol. 65, no. 1, pp. 1:1–1:41, Oct. 2017.

[19] B. Blanchet, “Modeling and verifying security protocols with the
applied pi calculus and proverif,” Foundations and Trends R© in
Privacy and Security, vol. 1, no. 1-2, pp. 1–135, 2016. [Online].
Available: http://dx.doi.org/10.1561/3300000004

[20] “Proverif source files,” https://sites.google.com/site/
multifactorformalverif/.

[21] A. Popov, M. Nystrom, D. Balfanz, A. Langley, N. Harper, and
J. Hodges, “Token Binding over HTTP,” Internet Engineering Task
Force, Internet-Draft draft-ietf-tokbind-https-12, Jan. 2018, work
in Progress. [Online]. Available: https://datatracker.ietf.org/doc/html/
draft-ietf-tokbind-https-12

Appendix A.
An attack on G2OT

We provide bellow the steps of an attack on G2OT when
only the password is compromised:

1) The User enters its password and email.
2) Its browser tells him to press yes on his phone.
3) The attacker detects that the user contacted Google.

After the first answer from Google the attacker blocks
all further messages.

4) The Attacker initiates a session of its own by entering
the user’s email and password.

5) Depending on the timing, two things then happen:
• The user press yes, nothing happens on its screen,

and the attacker is logged in.
• The user press yes, nothing happens on its screen, but

another yes/no pops up on his phone. If he presses
yes once more, the attacker is logged in.

In step 3, we block other answers from the server, because
whenever two simultaneous login requests are submitted
to the server, the server informs first one that there is a
problem, resulting in an error message for the user. Thus
to complete the attack in a completely invisible way, the

attacker should be able to block the server response. If he
cannot do this, depending on the timing, the user may not
validate if he sees the error. Finally, in the attack description,
we provide two cases, because we were not able to obtain
a deterministic response from the phone. Indeed, when two
login attempts where made at the same time, we sometime
needed to validate twice on the screen, and sometimes only
once. This may be due to the order of reception of requests,
and session expiration on the server side. To be robust,
the implementation should not accept this kind of situation,
and reject any kind of simultaneous login from different
sessions, or at least display it clearly on the phone, as it is
done in the browser. Indeed, we believe that it is plausible
that users, after having pressed yes on their phone without
any result, would press yes once more.

USER DEVICE COMPUTER SERVER

Successful trusted Multi Factor login

new cookienew sk

cookie

pk(sk)

Registration

login, pass

login, pass, cookie

check cookie

sign((TLS_sid), sk)

sign

check sign

TOKENBINDING

Figure 7: TOKENBIND-
ING

It is however important to
mention that the attacker must
be able to detect the user login,
and block messages from the
server to the client.

Appendix B.
TOKENBINDING

TOKENBINDING is meant
to be enabled on the trusted
devices of the user, once the
trust was established through
a previously successful Multi
Factor Authentication. We
present it in Figure 7.

Appendix C.
Global results

We summarize in Table
7 and 8 all the results we
computed using the automated
generation of scenarios. The
results were obtained in 8 min-
utes of computing on a server
with 12 Intel(R) Xeon(R) CPU
X5650 @ 2.67GHz and 50Gb of RAM. During the compu-
tation, 6172 calls to PROVERIF were made. As PROVERIF
may not terminate we set a timeout at 3 seconds: only two
scenarios exceeded the timeout limit. For readability, we
only display the minimal or maximal interesting scenarios,
and results which are implied by an other scenario are
greyed. The table was completely generated by an automated
script, to avoid transcription mistakes.

https://doi.org/10.1109/CSF.2015.21
https://gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-for-2-step.html
https://gsuiteupdates.googleblog.com/2017/02/improved-phone-prompts-for-2-step.html
https://meltdownattack.com/meltdown.pdf
https://spectreattack.com/spectre.pdf
http://doi.acm.org/10.1145/373243.360213
http://dx.doi.org/10.1561/3300000004
https://sites.google.com/site/multifactorformalverif/
https://sites.google.com/site/multifactorformalverif/
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-12
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-https-12

Threat Scenarios G2V G2Vfpr G2Vdis G2OTG2OTfpr G2OTdis G2DTfpr G2DTdis U2F U2Ftb G2DTdis
tb

4 4 4 6 4 4 4 4 4 4 4
PH 6 4 333 6 4 4 4 333 4 4 333

NC 4 4 4 6 6 6 4 4 4 4 4
FS 4 4 4 6 6 6 4 4 4 4 4

PH NC 6 6 6 6 6 6 6 6 333 4 6
PH FS 6 6 733 6 6 6 6 733 4 4 733

PH FS Mt−tls
io:RO 6 6 6 6 6 6 6 73- 337 4 733

PH FS Mt−usb
in:RO 6 6 6 6 6 6 6 733 4 4 733

PH FS NC Mt−tls
io:RO 6 6 6 6 6 6 6 6 337 4 6

PH FS Mt−dis
io:RW 6 6 733 6 6 6 6 6 4 4 6

PH FS Mt−tls
io:RW 6 6 6 6 6 6 6 6 6 6 6

PH FS Mt−usb
in:RW 6 6 6 6 6 6 6 6 337 337 6

PH FS Mt−dis
io:RW M

t−tls
io:RO 6 6 6 6 6 6 6 6 337 4 6

PH FS Mt−usb
in:RO M

t−dis
io:RW 6 6 6 6 6 6 6 6 4 4 6

PH FS Mt−usb
io:RW 6 6 6 6 6 6 6 6 6 6 6

Mdev
in:RO 6 6 6 6 4 4 4 4 - - - - - - 4

Mt−dis
io:RO 4 4 4 6 333 333 333 333 4 4 333

Mt−tls
io:RO 6 333 333 6 333 333 4 4 4 4 4

Mt−usb
in:RO 6 333 333 6 333 333 4 4 4 4 4

NC Mt−tls
io:RO 6 6 6 6 6 6 333 333 4 4 4

NC Mt−usb
in:RO 6 6 6 6 6 6 4 4 4 4 4

Mdev
io:RO 6 6 6 6 4 4 4 4 6 6 4

Mdev
in:RW 6 6 6 6 6 6 6 6 6 6 6

Mt−tls
io:RW 6 737 337 6 737 337 737 337 6 77- 337

NC Mt−dis
io:RW 4 4 4 6 6 6 6 6 4 4 6

Mt−usb
in:RW 6 337 337 6 337 337 337 337 337 337 337

NC Mt−tls
io:RW 6 6 6 6 6 6 777 777 6 77- 777

NC Mt−usb
in:RW 6 6 6 6 6 6 777 777 337 337 777

Mt−dis
io:RO M

t−tls
io:RW 6 737 337 6 737 337 737 337 6 777 337

Mt−usb
in:RO M

t−tls
io:RW 6 737 337 6 737 337 737 337 6 777 337

NC Mt−dis
io:RW M

t−tls
io:RO 6 6 6 6 6 6 6 6 333 4 6

NC Mt−usb
in:RO M

t−dis
io:RW 6 6 6 6 6 6 6 6 4 4 6

Mt−usb
in:RW M

t−tls
io:RO 6 337 337 6 337 337 33- 33- 337 337 337

Mt−usb
io:RW 6 337 337 6 337 337 337 337 777 777 337

NC Mt−usb
io:RW 6 6 6 6 6 6 6 6 6 6 6

Mt−usb
io:RW M

t−tls
io:RO 6 337 337 6 337 337 33- 33- 6 6 337

FS Mt−tls
io:RO 6 6 377 6 6 6 33- 33- 337 4 4

FS Mt−usb
in:RO 6 6 377 6 6 6 4 4 4 4 4

FS NC Mt−tls
io:RO 6 6 6 6 6 6 33- 33- 337 4 4

FS Mt−dis
io:RW 4 4 4 6 6 6 6 377 4 4 377

FS Mt−tls
io:RW 6 6 377 6 6 6 777 377 6 777 377

FS Mt−usb
in:RW 6 6 377 6 6 6 777 377 337 337 377

FS NC Mt−tls
io:RW 6 6 6 6 6 6 6 6 6 6 6

FS Mt−dis
io:RW M

t−tls
io:RO 6 6 377 6 6 6 6 377 337 4 377

FS Mt−usb
in:RO M

t−dis
io:RW 6 6 377 6 6 6 6 377 4 4 377

FS NC Mt−dis
io:RW M

t−tls
io:RO 6 6 6 6 6 6 6 6 337 4 6

FS Mt−usb
in:RW M

t−tls
io:RO 6 6 377 6 6 6 6 37- 337 337 377

FS Mt−usb
io:RW 6 6 377 6 6 6 6 377 6 6 377

FS Mt−usb
io:RW M

t−tls
io:RO 6 6 377 6 6 6 6 37- 6 6 377

Protocols
• G2V- Google 2-step with Verification code
• G2Vfpr- G2V with fingerprint display
• G2Vdis- G2Vfpr with action display
• G2OT- Google 2-step One Tap
• G2OTfpr- G2OT with fingerprint display
• G2OTdis- G2OT with action display

• G2DTfpr- Google 2-step Double Tap (random to compare)
• G2DTdis- G2DTfpr with action display
• U2F- FIDO’s U2F
• U2Ftb- TOKENBINDING U2F
• G2DTdis

tb - TOKENBINDING G2DTdis

Scenarios:
• NC- No Compare, the human does not compare values
• FS- Fingerprint spoof, the attacker can copy the user IP address
• PH- The user might be victim of phishing only on trusted everyday connections

or untrusted computers
• Minterface

in:acc1,out:acc2- The interface inputs are given to the attacker with access
level acc1, and acc2 for the outputs

Notations:
• 3- Property satisfied (4if all three)
• 7- Attack found (6if all three)
• 7- Attack also present in a weaker scenario

• 3- Property also satisfied in a stronger scenario
• - - Either scenario not pertinent, or failure to reconstruct attack trace

Table 7: Global results for malware on trusted platform

Threat Scenarios G2V G2Vfpr G2Vdis G2OTG2OTfpr G2OTdis G2DTfpr G2DTdis U2F U2Ftb G2DTdis
tb

Mu−dis
io:RO 4 4 4 6 4 4 4 333 4 4 333

Mu−tls
io:RO 6 333 4 6 333 4 4 4 4 4 4

Mu−usb
in:RO 6 333 4 6 333 4 4 4 4 4 4

NC Mu−tls
io:RO 6 6 6 6 6 6 4 4 4 4 4

NC Mu−usb
in:RO 6 6 6 6 6 6 4 4 4 4 4

Mu−tls
io:RW 6 377 333 6 377 4 377 333 6 6 333

NC Mu−dis
io:RW 4 4 4 6 6 6 6 6 4 4 6

Mu−usb
in:RW 6 373 4 6 373 4 373 4 373 373 4

NC Mu−tls
io:RW 6 6 6 6 6 6 777 6 6 6 6

NC Mu−usb
in:RW 6 6 6 6 6 6 777 6 373 373 6

NC Mu−dis
io:RW M

u−tls
io:RO 6 6 6 6 6 6 6 6 4 4 6

NC Mu−usb
in:RO M

u−dis
io:RW 6 6 6 6 6 6 6 6 4 4 6

Mu−usb
io:RW 6 373 333 6 373 4 373 333 777 777 333

NC Mu−usb
io:RW 6 6 6 6 6 6 6 6 6 6 6

FS Mu−tls
io:RO 6 6 733 6 6 6 4 333 4 4 333

FS Mu−usb
in:RO 6 6 733 6 6 6 4 333 4 4 333

FS Mu−dis
io:RW 4 4 333 6 6 6 6 733 4 4 733

FS Mu−tls
io:RW 6 6 733 6 6 6 777 733 6 6 733

FS Mu−usb
in:RW 6 6 733 6 6 6 777 733 373 373 733

FS Mu−dis
io:RW M

u−tls
io:RO 6 6 733 6 6 6 6 733 4 4 733

FS Mu−usb
in:RO M

u−dis
io:RW 6 6 733 6 6 6 6 733 4 4 733

FS Mu−usb
io:RW 6 6 733 6 6 6 6 733 6 6 733

Protocols
• G2V- Google 2-step with Verification code
• G2Vfpr- G2V with fingerprint display
• G2Vdis- G2Vfpr with action display
• G2OT- Google 2-step One Tap
• G2OTfpr- G2OT with fingerprint display
• G2OTdis- G2OT with action display

• G2DTfpr- Google 2-step Double Tap (random to compare)
• G2DTdis- G2DTfpr with action display
• U2F- FIDO’s U2F
• U2Ftb- TOKENBINDING U2F
• G2DTdis

tb - TOKENBINDING G2DTdis

Scenarios:
• NC- No Compare, the human does not compare values
• FS- Fingerprint spoof, the attacker can copy the user IP address
• PH- The user might be victim of phishing only on trusted everyday connections

or untrusted computers
• Minterface

in:acc1,out:acc2- The interface inputs are given to the attacker with access
level acc1, and acc2 for the outputs

Notations:
• 3- Property satisfied (4if all three)
• 7- Attack found (6if all three)
• 7- Attack also present in a weaker scenario

• 3- Property also satisfied in a stronger scenario
• - - Either scenario not pertinent, or failure to reconstruct attack trace

Table 8: Global results for malwares on untrusted platform

	Introduction
	Multi-factor authentication protocols
	Google 2-step
	Google 2-step with verification codes - g2V
	Google 2-step with One-Tap - g2OT
	Google 2-step with Double-Tap - g2DTfpr

	FIDO's Universal 2nd Factor - U2F
	Disabling the second factor on trusted devices

	Threat model
	Malware based scenarios
	Systems as interfaces
	Malware on a computer
	Malware on a phone

	Fingerprint Spoofing
	Human errors
	Phishing
	No compare

	Threat scenarios considered

	The formal model
	The applied-pi calculus and Proverif
	Modelling TLS communications
	Modelling threat models
	Malware
	Human errors - No compare
	Human errors - Phishing
	Fingerprint and spoofing

	Analysis and Comparison
	Properties and methodology
	Properties
	Methodology

	Google 2-step: Verification Code and One-Tap
	g2V
	g2OT
	g2OTfpr
	g2DTfpr

	Additional display
	Conclusion regarding Google 2-step
	FIDO U2F
	Token Binding

	Pratical Considerations
	Conclusion
	References
	Appendix A: An attack on g2OT
	Appendix B: TokenBinding
	Appendix C: Global results

