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ABSTRACT
As the foremost protocol for low-power communication, Bluetooth
Low Energy (BLE) significantly impacts various aspects of our lives,
including industry and healthcare. Given BLE’s inherent security
limitations and firmware vulnerabilities, spoofing attacks can read-
ily compromise BLE devices and jeopardize privacy data. In this
paper, we introduce BLEGuard, a hybrid mechanism for detecting
spoofing attacks in BLE networks. We established a physical Blue-
tooth system to conduct attack simulations and construct a substan-
tial dataset (BLE-SAD). BLEGuard integrates pre-detection, recon-
struction, and classification models to effectively identify spoofing
activities, achieving an impressive preliminary accuracy of 99.01%,
with a false alarm rate of 2.05% and an undetection rate of 0.36%.
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• Security and privacy→ Mobile and wireless security.
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1 INTRODUCTION
Named after the Viking King Harald Bluetooth, Bluetooth is one of
the most popular protocols for short-range wireless communica-
tions. The advent of the Bluetooth Low Energy (BLE) standard has
further solidified its dominance in the era of IoT and 5G. By 2027, the
deployment of BLE devices is anticipated to burgeon to 7.5 billion
[4]. Despite their widespread adoption, these devices remain prone
to spoofing attacks due to their limited I/O capabilities and lack of
support for firmware upgrades. To combat these security threats, a
device-neutral monitoring framework has been introduced, capital-
izing on BLE’s cyber-physical attributes to fortify defenses against
spoofing attackers [5]. Furthermore, various research initiatives
employ machine learning techniques to detect anomalous patterns
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Figure 1: (a) Proposed BLE network testbed and (b) observed
RSSI values during attack simulation.

within BLE network traffic. A proposed learning framework that
amalgamates reconstruction and classification models promises
to discern packets as either benign or malicious with remarkable
precision [1]. However, the prevalent challenge lies in harmonizing
accuracy, false positive rates, and resource utilization for detection,
a triad that presents substantial obstacles to real-world application.

In this paper, we present BLEGuard, a hybrid detection mecha-
nism based on cyber-physical analysis and deep learning techniques.
BLEGuard is capable of pinpointing intricate spoofing attacks by
integrating offline training with real-time analysis. Our contribu-
tions are threefold: (i) the compilation of BLE-SAD, a large-scale
dataset encompassing in excess of 1.2 million packets, specifically
curated for model evaluation, (ii) the conceptualization and em-
pirical validation of BLEGuard, engineered to proficiently detect
spoofing intrusions, (iii) the capacity for BLEGuard to seamlessly
integrate within BLE networks, ensuring detection is accomplished
without causing interference or taxing the network’s resources.

2 SYSTEM DESIGN
2.1 Testbed Deployment
In this work, we built a physical network testbed within a typical
noisy indoor office environment. Nine mainstream BLE devices,
featuring a range of Bluetooth chips such as nRF52840 and DA14585,
were deployed to establish our testbed, as depicted in Fig. 1. Besides,
three network sniffers were deployed using Raspberry Pi equipped
with BLE-Analyzer-PRO to monitor and capture network activity.

BLE-SAD Dataset: To generate multiple spoofing attacks, we
utilized four types of attacker platforms, each with three identi-
cal samples at different locations. In the spoofing attack scenario,
the cyber-physical features of BLE network will undergo notice-
able affected, resulting in significant deviations from the benign
scenario. For instance, the anomalous shift in the Received Signal
Strength Indicator (RSSI) of advertising packets indicates the pres-
ence of spoofing activities (Fig. 1). Currently, we have accumulated
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Figure 2: The workflow of BLEGuard detection mechanism.

a dataset comprising 1,209,200 advertising packets, with benign
packets accounting for 80.3% and malicious packets for 19.7%.

2.2 Detection Mechanism
Pre-detection Scheme: The suspicious activities can be identified
based on the atypical fluctuations in cyber-physical features, like
Used Channel Numbers (UCN), Advertising Interval (INT), Carrier
Frequency Offset (CFO) and Received Signal Strength Indicator
(RSSI). In BLEGuard, three network sniffers are deployed to capture
the values of these four features within a lookback window, estab-
lishing a baseline for normal behavior. Subsequently, the system
scrutinizes the corresponding values of advertising packets within
an observation window. An alarm is triggered upon detecting any
deviation from the established norms in any of these features. This
straightforward scheme can be seamlessly integrated into BLE net-
works without causing any disruption and internal consumption.

Learning-based Detection: Upon detecting suspicious activ-
ities, we embark on a comprehensive analysis of anomalous data
batches. A Temporal Convolutional Network (TCN) [2] is utilized to
reconstruct traffic patterns, facilitating the isolation of aberrant data
through comparative analysis. During the offline training phase,
our aim is to minimize the error between the learned data 𝐷𝐿 and
the original dataset 𝐷𝑇 . In the online testing phase, the presence of
malicious packets in the input data leads to an increase in the recon-
struction error. The residual is defined as 𝑅(𝐷𝑇 , 𝐷𝐿) = |𝐷𝑇 − 𝐷𝐿 |
with 𝐷𝐿 = 𝑓 (𝐷𝑇 ), where 𝑓 denotes the transformation function
of the TCN auto-encoder. We assess this residual to determine the
anomaly score 𝛼 for each data batch, as depicted in Equation (1),
with 𝑅𝛼 representing the corresponding residual, 𝜇 as the mean
value of the residual, and 𝜎 as its standard deviation.

𝛼 =

{
0, 𝑤ℎ𝑒𝑛 |𝑅𝛼 − 𝜇𝑅𝛼 | ≤ 3 ∗ 𝜎𝑅𝛼 → 𝑁𝑜𝑟𝑚𝑎𝑙

1, 𝑤ℎ𝑒𝑛 |𝑅𝛼 − 𝜇𝑅𝛼 | > 3 ∗ 𝜎𝑅𝛼 → 𝑆𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠
(1)

Packet Classification: After pinpointing suspicious batches,
the subsequent step is to classify these packets into two categories:
benign or malicious. In this study, a text-convolutional neural net-
work (text-CNN) [3] is utilized for traffic feature extraction, while
packet classification is performed using four cost-efficient classi-
fiers (SVM, KNN, Random Forest, and Naïve Bayes) to avoid bias
in text analysis. Network payload-based features are generated

Table 1: Detection performance of BLEGuard

ID Device (Number) Accuracy FAR UND
1 Xiaomi Sensor (*3) 99.06% 2.24% 0.29%
2 Xiaomi Locker (*2) 99.10% 2.04% 0.33%
3 Xiaomi Speaker (*2) 98.92% 1.84% 0.36%
4 Apple HomePod (*1) 99.03% 2.13% 0.34%
5 Dell Speaker (*1) 99.05% 2.52% 0.31%
6 Lenovo Speaker (*1) 98.85% 1.82% 0.61%
7 August Smart Lock (*2) 99.01% 2.41% 0.19%
8 Nutale Key Finder (*2) 99.04% 1.46% 0.52%
9 Nordic nRF52 DK (*2) 99.06% 1.97% 0.36%

Overall 99.01% 2.05% 0.36%

by converting the payload bytes into low-dimensional vectors us-
ingWord2Vec techniques. These vectors serve as the input for the
text-CNN, and the extracted key features are concatenated with
statistical features for input into the final classification models.

System Overview: BLEGuard is designed to strike a balance
between detection accuracy and power overhead in BLE networks.
As illustrated in Fig. 2, when GPU resources are constrained, the
pre-detection algorithm can be efficiently implemented with min-
imal online consumption. Conversely, reconstruction models are
activated when achieving high detection accuracy is of utmost
importance. Furthermore, the classification models can reliably
pinpoint specific malicious advertising packets and offer precise
feedback to enhance the performance of the detection modules.

3 PRELIMINARY RESULTS
We evaluate the performance of BLEGuard through large-scale,
imbalanced data collected from nice different BLE devices, as illus-
trated in Table 1. The results revealed a high level of effectiveness,
achieving an average accuracy of 99.01%, with a false alarm rate
of 2.05% and an un-detection rate of 0.36%. We have provided our
code and data for the reproducibility of experiments1.
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