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Abstract—Fatigue driving detection technology plays a pivotal
role in ensuring road safety, and electroencephalography (EEG)
signals can be employed as an objective measure of driver fa-
tigue in intelligent vehicles. However, current EEG-based fatigue
driving detection methods encounter certain limitations. Firstly,
the restricted receptive field of convolutional neural networks
struggles to effectively handle the non-stationary nature of fatigue
EEG signals for feature extraction. Secondly, real-world training
data often suffers from noisy labels, leading to model overfitting
on mislabeled data and consequent degradation in the fatigue
detection performance. In this paper, we propose the IEcon-
former ensemble, a robust EEG-based fatigue driving detection
model. The IEconformer architecture integrates multi-scale con-
volutional layers for local feature extraction and the multi-head
attention mechanism to capture global feature correlations. To
tackle the challenge of noisy data during training, we introduce
the co-teaching plus mechanism into our training scheme. This
mechanism facilitates cross-updating each IEconformer using
disagreement data that yields minimal loss on the respective
IEconformer. Experimental results demonstrate the superiority
of our proposed IEconformer ensemble over baseline models
in fatigue detection. Particularly, the IEconformer ensemble
demonstrates high performance even in the presence of noisy data
during the training stage, underscoring the practicality of our
approach in fatigue driving detection applications for intelligent
vehicles.

Index Terms—EEG, fatigue driving detection, convolutional
neural network, self-attention, noisy label, robust deep learning,
brain-computer interface.

I. INTRODUCTION

Fatigue driving emerges as a significant contributor to traffic
accidents. American Automobile Association (AAA) estimates
that approximately one in six fatal traffic accidents and one in

eight accidents resulting in driver or passenger hospitalization
are linked to driver fatigue [1]. Hence, the advancement of
fatigue driving detection technology in intelligent vehicles
assumes paramount importance in bolstering road safety [2].

Physiological signals-based detection methods offer the
advantage of objectively recording the driver’s fatigue state [3],
[4]. The collection of physiological signals is less susceptible
to environmental influences, demonstrating higher robustness
and detection accuracy. Serving as the gold standard for eval-
uating the cognitive condition of drivers, EEG-based fatigue
detection methods have garnered considerable interest [5], [6].
With the advancement of deep learning technology in intelli-
gent vehicle applications [7], [8], deep neural networks have
showcased remarkable proficiency in analyzing fatigue state
through EEG signals, outperforming conventional machine
learning approaches [9]–[11].

However, current deep learning models encounter prac-
tical limitations. Firstly, given the non-stationary nature of
fatigue EEG, the Convolutional Neural Networks (CNNs)
must possess the largest possible receptive field for effective
feature extraction to ensure optimal detection performance.
Nonetheless, the challenge lies in the scarcity of fatigue EEG
data for training due to the difficulty in collection. CNNs must
maintain a conservative number of parameters to mitigate the
risk of overfitting due to the small training data. Therefore, to
ensure precision in fatigue EEG analysis, the design of CNNs
necessitates striking a delicate balance between maximizing
the receptive field and minimizing the number of parameters.

Furthermore, contemporary deep learning models heavily
rely on accurately labeled data to achieve exceptional per-



formance. However, real-world challenges such as sensor
malfunctions [12] and human errors [13] introduce mislabeled
instances into the training dataset. In such scenarios, data-
driven deep learning models may experience significant per-
formance degradation as they might inadvertently overfit to
the mislabeled training data. And this problem becomes more
serious for the small amount of EEG data in the training stage.
Remarkably, existing literature lacks strategies addressing how
to ensure reliable fatigue detection performance despite the
presence of noisy labels in the training data.

Given the limitations of current methodologies, our study
introduces the IEconformer ensemble, a robust EEG-based
fatigue driving detection model adept at learning feature
extraction patterns even from noisy data. Our contributions
are as follows:

• The architecture of IEconformer incorporates multi-scale
convolutional layers for local feature extraction and the
multi-head attention mechanism to capture global feature
correlations. This innovative design empowers IEcon-
former to effectively handle the non-stationary character-
istics of fatigue EEG signals, facilitating precise feature
extraction and analysis.

• In our training scheme, we integrate the co-teaching plus
mechanism to enhance IEconformer’s training with noisy
data. During training, each IEconformer is cross-updated
using disagreement data that yields minimal loss on the
respective IEconformer.

• Through extensive experiments, we demonstrate the su-
periority of our proposed IEconformer ensemble over
baseline models in fatigue driving detection. Particularly
noteworthy is its ability to maintain high performance
even in the presence of noisy data, highlighting the
practical applicability of our approach in the fatigue
driving detection applications for intelligent vehicles.

II. METHODS

In this section, we present our designed IEconformer for
fatigue EEG analysis. As shown in Fig. 1, the architecture of
IEconformer includes the InceptionEEG (IE) module proposed
in [14] to extract comprehensive features from fatigue EEG
time series. And we introduce the multi-head attention mecha-
nism to address the challenge of limited receptive field within
the IE module [15]. Subsequently, we elaborate on the co-
teaching plus-based training methodology adopted for IEcon-
former ensemble [16]. This training scheme is instrumental
in preserving the accuracy and robustness of IEconformer
ensemble in fatigue detection tasks, particularly in scenarios
involving noisy labels.

A. Model Architecture

The model structure of IEconformer is illustrated in Fig.
1. The IEconformer comprises IE module and multi-head
attention module (MHA module). In the IE module, local
features of fatigue EEG signals are extracted at various scales
using multi-scale convolutional layers. And the MHA module
is employed to construct temporal dependencies of fatigue

EEG signals from a global perspective, which effectively
addresses the challenge of insufficient receptive fields in the
IE module.

1) IE module: The IE module is composed of multi-
scale convolutional layer (MSC layer), the convolutional layer
of length 1 (Conv1) for feature dimensionality reduction
(FdrConv1), Conv1 for high-dimensional feature extraction
(HdeConv1), Conv1 for cross-channel information extrac-
tion(CieConv1), and the max-pooling layer. The MSC layer
facilitates the IE module in capturing both long-term and short-
term features from fatigue EEG signals, effectively mitigating
noise interference and enhancing the richness of feature ex-
traction.

2) Multi-head Attention Module: The MHA module is
employed to analyze the output feature map of the IE module,
scrutinizing the global temporal relationships through the self-
attention mechanism. In contrast to the convolutional layers
in the IE module, which exclusively extract local features
of the fatigue EEG signals, the MHA module excels at
capturing extensive temporal dependencies within the high-
dimensional features. Therefore, the self-attention mechanism
can overcome the non-stationary nature of fatigue EEG signals
and adeptly learns useful features associated with the fatigue
state, with a limited number of model parameters. As shown
in Fig. 1, in the MHA module, the output feature map
of the IE module is linearly transformed to produce three
same shape feature vectors: query (Q), key (K), and value
(V ). Subsequently, the vectors Q and K undergo sequential
operations including dot product, scaling, and softmax, after
which the resulting feature vectors are further subjected to a
dot product operation with V . This process can be expressed
by,

Att(Q,K, V ) = softmax(
QKT

√
dk

)V. (1)

where Att is the attention mechanism and the factor dk plays a
crucial role in the scaling operation. The MHA module takes
into account various representation subspaces in the feature
map of fatigue EEG signals for enhanced feature extraction,
which can be written by,

MH −Att (Q,K, V ) = [Atthead0; · · · ;Attheadz] , (2)

Attheadm = Att(Qm,Km, Vm), (3)

where MH − Att is the multi-head attention mechanism
and Qm,Km and Vm represent the feature vectors extracted
from the m-th head. Additionally, a fully-connected feed-
forward layer is employed to process the features generated
by the multi-head attention mechanism, thus accentuating the
distinctions of extracted features among different states in
fatigue EEG signals.
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Fig. 1. The model architecture of IEconformer for fatigue driving detection, which consists of InceptionEEG modules to extract local features and multi-head
attention modules to capture global feature correlations.

B. Training Scheme

To enhance the robustness of IEconformer ensemble in
the presence of noisy labels, we integrate the co-teaching
plus strategy in the training stage. In our training scheme,
we employ two IEconformers with identical structures but
differing in initialization parameters. For every mini-batch of
data, we initiate a disagreement update. Specifically, according
to the prediction outcomes of two IEconformers, we select
and retain data that demonstrates prediction discrepancies as
disagreement data. Moreover, each IEconformer is then cross-
updated using the disagreement data that yields minimal loss
on the respective IEconformer. Through this iterative process,
two IEconformers in the ensemble effectively learn from data
with noisy labels. For clarity, we denote the two IEconformer
models with distinct initial parameters as θ1IEconformer and
θ2IEconformer. Let BN represent the current mini-batch data,
and LR denote the learning rate. Initially, for the current mini-
batch data BN , data BNdis that result in divergent predictions
between the two IEconformers are selected. And BNdis can
be written by,

BNdis = {(xi, yi) : ŷi(θ
1
IEconformer) ̸= ŷi(θ

2
IEconformer)}.

(4)
We sample η% of the small-loss data from BNdis for

training the first IEconformer model,

BN1
dis = arg min

BNdis:Γ
l(BNdis; θ

1
IEconformer), (5)

Γ = |BNdis| ≥ η|BNdis|. (6)

where l(.) means the loss function. The parameter η is
employed to regulate the inclusion of small-loss disagreement
data throughout the training phase, serving as an effective mea-
sure to prevent overfitting of the IEconformer on noisy data.
Correspondingly, η% of the small-loss instances in BNdis are
specifically chosen for training the second IEconformer model,

BN2
dis = arg min

BNdis:Γ
l(BNdis; θ

2
IEconformer). (7)

Then we conduct cross-update, that is, back-propagate the
second IEconformer with the small-loss data selected from the
first IEconformer, which can be written as,

θ2IEconformer = θ2IEconformer − LR×∇1, (8)

∇1 = ∇l(BN1
dis; θ

2
IEconformer). (9)

Similarly, the parameter update for the first IEconformer
can be expressed as,

θ1IEconformer = θ1IEconformer − LR×∇2, (10)

∇2 = ∇l(BN2
dis; θ

1
IEconformer). (11)

At the end of a training epoch, we update the η parameter,
which can be expressed by,

η(Ep) = 1−min

(
Ep

Epsel
NR,NR

)
. (12)

where NR represents the estimated noise rate and Ep is
the number of current epoch. In the first Epsel epochs,
IEconformer ensemble gradually diminishes the selection ratio
of small-loss data to mitigate overfitting on noisy EEG data,
thereby ensuring a stable model performance on fatigue detec-
tion. Subsequent to the Epsel epochs, IEconformer ensemble
consistently selects a proportion η = 1 − NR of small-loss
data for backpropagation update. After training, the ensemble
of two IEconformers forms the final model for fatigue driving
detection.

In our experiments, we explored two training scenarios: one
involving training data with accurately annotated data, and the
other involving training data with noisy labels. In the case of
training data with noisy labels, we controlled the proportion
of noisy labels by adjusting the noise rate parameter.
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Fig. 2. The average AUC performance across all subjects for IEconformer
ensemble and baseline models with different noise rate in the training data.

III. RESULTS

We employ a public dataset from [17] to evaluate the
performance of our proposed method. A subject-dependent
validation method was employed. The EEG data from each
participant was partitioned into training, validation, and test
sets in a ratio of 6:2:2. In the case of training data with
noisy labels, we controlled the proportion of noisy labels by
adjusting the noise rate parameter.

Fig. 2 illustrates the fatigue detection performance of
IEconformer ensemble and baseline models under varying
proportions of noisy labels in the training data. The fig-
ure distinctly depicts a decrease in the AUC performance
of both IEconformer ensemble and the baseline model as
the noise rate increases. The memory effect of deep neural
network leads to the overfitting on noisy data, impacting its
feature extraction capability. And we can clearly observe that
IEconformer ensemble consistently outperforms other baseline
models at different noise rates, demonstrating the efficacy of
our proposed training scheme. At noise rates of 0.1, 0.2,
and 0.3, IEconformer ensemble exhibits AUC performance
consistently over 10% higher than that of the baseline models.
Even in scenarios with extremely noisy data (noise rate is
0.4), IEconformer ensemble maintains relatively high detection
performance, showcasing its robustness on noisy training data.
The findings depicted in figure validate the robustness of our
proposed IEconformer ensemble with co-teaching plus-based
training mechanism in the presence of noisy labels, making
IEconformer ensemble well-suited for training and deployment
in real-world scenarios.

IV. CONCLUSION

In this paper, we propose the IEconformer ensemble for
EEG-based fatigue driving detection. In the architecture of
IEconformer, we employ MSC layer and MHA module to
extract effective features from fatigue EEG signals. Moreover,
to enhance the model’s ability to capture relevant features

from noisy training data, we introduce the co-teaching plus
mechanism within the IEconformer ensemble training strategy.
Experimental results validate the superiority of our proposed
IEconformer ensemble over baseline models in fatigue driving
detection. Particularly noteworthy is the IEconformer ensem-
ble’s ability to maintain high performance even in the presence
of noisy data, highlighting the practical utility of our method
in the fatigue driving detection applications for intelligent
vehicles.
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